101
|
Platelet ADP-receptor antagonists for cardiovascular disease: past, present and future. ACTA ACUST UNITED AC 2008; 5:766-80. [PMID: 18957959 DOI: 10.1038/ncpcardio1372] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 08/21/2008] [Indexed: 01/25/2023]
Abstract
Aspirin is the foundation antiplatelet therapy for patients at risk of cardiovascular events. The thienopyridine, clopidogrel, is modestly more effective than aspirin and in patients with stroke seems to be as effective as the combination of aspirin and dipyridamole. The addition of clopidogrel to aspirin further reduces the risk of cardiovascular events in patients with acute coronary syndromes and those who undergo percutaneous coronary intervention, but uncertainty remains about whether this combination has incremental efficacy over clopidogrel monotherapy in patients with stroke or peripheral arterial disease. Clopidogrel has pharmacological limitations that have prompted the search for more effective ADP-receptor antagonists. Promising results have been achieved with the thienopyridine, prasugrel, which has been compared with clopidogrel in patients treated with aspirin. The nonthienopyridine P2Y(12) inhibitors AZD6140 and cangrelor are presently being evaluated in phase III, randomized, controlled trials.
Collapse
|
102
|
Søreide K. Proteinase-activated receptor 2 (PAR-2) in gastrointestinal and pancreatic pathophysiology, inflammation and neoplasia. Scand J Gastroenterol 2008; 43:902-9. [PMID: 19086162 DOI: 10.1080/00365520801942141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Of all the body systems, the gastrointestinal (GI) tract is the most exposed to proteinases. Proteolytic activity must thus be tightly regulated in the face of diverse environmental challenges, because unrestrained or excessive proteolysis leads to pathological GI conditions. The protease-activated receptor-2 (PAR-2) is expressed in numerous cell types within the GI tract, suggesting both multiple functions and numerous modes of receptor activation. Although best known as a pancreatic digestive enzyme, trypsin has also been found in other tissues and various cancers. Of interest, trypsin and PAR-2 act together in an autocrine loop that promotes proliferation, invasion and metastasis in neoplasia through various mechanisms. Trypsin and PAR-2 seem to act both directly and indirectly through activation of other proteinase cascades, including metalloproteinases. PAR-2 activation can participate in inflammatory reactions, be protective to mucosal surfaces, send or inhibit nociceptive messages, modify gut motility or secretory functions, and stimulate cell proliferation and motility. Several studies point to a role for the PARs in disease processes of the GI tract and pancreas ranging from inflammatory bowel disease, symptoms associated with irritable bowel syndrome, pain in pancreatitis, development of colon and other GI cancers, and even infectious colitis. Proteinases should not only be considered from the traditional view as digestive or degradative enzymes in the gut, but additionally as signalling molecules that actively participate in the spectrum of physiology and diseased states of the GI tract.
Collapse
Affiliation(s)
- Kjetil Søreide
- Department of Surgery, Stavanger University Hospital, Stavanger, Norway.
| |
Collapse
|
103
|
Sastre AP, Grossmann S, Reusch HP, Schaefer M. Requirement of an intermediate gene expression for biphasic ERK1/2 activation in thrombin-stimulated vascular smooth muscle cells. J Biol Chem 2008; 283:25871-8. [PMID: 18650426 DOI: 10.1074/jbc.m800949200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The expression of contractile proteins in vascular smooth muscle cells is controlled by still poorly defined mechanisms. A thrombin-inducible expression of smooth muscle-specific alpha-actin and myosin heavy chain requires transactivation of the epidermal growth factor (EGF) receptor and a biphasic activation of ERK1/2. Here we demonstrate that the sustained second phase of ERK1/2 phosphorylation requires de novo RNA and protein synthesis. Depolymerization of the actin cytoskeleton by cytochalasin D or disruption of transit between the endoplasmic reticulum and the Golgi apparatus by brefeldin A prevented the second phase of ERK1/2 phosphorylation. We thus conclude that synthesis and trafficking of a plasma membrane-resident protein may be critical intermediates. Analysis of the expression of protease-activated receptor 1, heparin-binding EGF (HB-EGF), and the EGF receptor revealed that pro-HB-EGF is significantly up-regulated upon thrombin stimulation. The kinetic of HB-EGF expression closely matched that of the second phase of ERK1/2 phosphorylation. Because inhibition of matrix metalloproteases or of the EGF receptor strongly attenuated the late phase of ERK1/2 phosphorylation, the second phase of ERK1/2 activation is primarily relayed by shedding of EGF receptor ligands. The small interfering RNA-mediated knockdown of HB-EGF expression confirmed an important role of HB-EGF expression in triggering the second phase of ERK1/2 activation. Confocal imaging of a yellow fluorescent protein-tagged HB-EGF construct demonstrates the rapid plasma membrane integration of the newly synthesized protein. These data imply that the hormonal control of contractile protein expression relies on an intermediate HB-EGF expression to sustain the signaling strength within the Ras/Raf/MEK/ERK cascade.
Collapse
Affiliation(s)
- Alejandra Pérez Sastre
- Charité-Universitätsmedizin Berlin, Division of Molecular Pharmacology and Cell Biology, Thielallee 67-73, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
104
|
Kai Y, Maeda Y, Sasaki T, Kanaide H, Hirano K. Basic and Translational Research on Proteinase-Activated Receptors: The Role of Thrombin Receptor in Cerebral Vasospasm in Subarachnoid Hemorrhage. J Pharmacol Sci 2008; 108:426-32. [DOI: 10.1254/jphs.08r11fm] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
105
|
Hsieh NK, Chen HI. Interacting leukocytes predict atherosclerosis and restenosis. Stroke 2007; 38:e162-3; discussion e160-1. [PMID: 17975100 DOI: 10.1161/strokeaha.107.496455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
106
|
|
107
|
Matsushita T, Rama A, Charolidi N, Dupont E, Severs NJ. Relationship of connexin43 expression to phenotypic modulation in cultured human aortic smooth muscle cells. Eur J Cell Biol 2007; 86:617-28. [PMID: 17651863 DOI: 10.1016/j.ejcb.2007.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 06/11/2007] [Accepted: 06/12/2007] [Indexed: 01/12/2023] Open
Abstract
Transition of arterial smooth muscle cells from the contractile to the synthetic phenotype in vivo is associated with up-regulation of the gap-junctional protein, connexin43 (Cx43). However, the role of increased Cx43 expression in relation to the characteristic features of the synthetic phenotype - altered growth, differentiation or synthetic activity - has not previously been defined. In the present study, growth was induced in cultured human aortic smooth muscle cells by treatment with thrombin and with PDGF-bb; growth arrest was induced by serum deprivation and contact inhibition. Alterations in Cx43 expression and gap-junctional communication were analyzed in relation to expression of markers for contractile differentiation and extracellular matrix synthesis. Treatment with thrombin, but not PDGF-bb, led to up-regulation of Cx43 gap junctions, increased synthetic activity yet also enhanced contractile differentiation. Inhibition of growth by deprivation of serum growth factors in sub-confluent cultures had no effect on Cx43 expression or contractile differentiation. Growth arrest by contact inhibition led to progressive reduction in Cx43 expression, in parallel with progressive increase in expression of differentiation markers but no alteration in synthetic activity. Of a range of stimuli examined, only thrombin had the combined effect of increasing Cx43 gap-junction communication, growth and synthesis, yet it also enhanced contractile differentiation. Down-regulation of Cx43 and improved contractile differentiation occurred only when growth arrest was induced through the contact-inhibition pathway, though, in this instance, synthesis remained undiminished. We conclude that Cx43 levels, though having common correlates, are not exclusively linked to the cell phenotype or the state of growth.
Collapse
Affiliation(s)
- Tsutomu Matsushita
- Cardiac Medicine, National Heart and Lung Institute (Imperial College London), Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK
| | | | | | | | | |
Collapse
|
108
|
Maeda Y, Hirano K, Kai Y, Hirano M, Suzuki SO, Sasaki T, Kanaide H. Up-regulation of proteinase-activated receptor 1 and increased contractile responses to thrombin after subarachnoid haemorrhage. Br J Pharmacol 2007; 152:1131-9. [PMID: 17767169 PMCID: PMC2095114 DOI: 10.1038/sj.bjp.0707435] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND PURPOSE The mechanism for the development of post-haemorrhagic cerebral vasospasm after subarachnoid haemorrhage (SAH) still remains unknown. EXPERIMENTAL APPROACH We investigated the role of thrombin and its receptor PAR1 in the development of hyper-contractility of the basilar artery in a rabbit double haemorrhage model, which received two injections of autologous blood into the cisterna magna. KEY RESULTS In the basilar artery isolated from the control rabbits, thrombin, only at 10 units ml(-1), induced a transient endothelium-dependent relaxation and a slight smooth muscle contraction. In SAH, the contractile response to thrombin was markedly enhanced, while the endothelium-dependent relaxant effect of thrombin remained unchanged. The enhancement of the contractile responses was also observed in the absence of endothelium and thrombin induced an enhanced contraction at concentrations higher than 0.3 units ml(-1). The contractile response to PAR1-activating peptide was also enhanced after SAH. However, the contractile responses to high K+ and endothelin-1, and the myofilament Ca2+-sensitivity remained unchanged after SAH. An immunoblot analysis suggested the up-regulation of PAR1 in the smooth muscle of the basilar artery. The heparinization of blood before injection prevented the enhancement of the contractile responses to thrombin and PAR1-activating peptide. CONCLUSIONS AND IMPLICATIONS The present study demonstrated, for the first time, that the contractile response of the basilar artery to thrombin was markedly enhanced after SAH. Mechanistically, our findings suggested that the activation of thrombin following hemorrhage up-regulated the expression of PAR1, thereby inducing the hyper-responsiveness to thrombin.
Collapse
MESH Headings
- Animals
- Basilar Artery/drug effects
- Basilar Artery/metabolism
- Basilar Artery/physiopathology
- Calcium/pharmacology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Heparin/pharmacology
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiopathology
- Organ Culture Techniques
- Potassium/pharmacology
- Rabbits
- Receptor, PAR-1/agonists
- Receptor, PAR-1/biosynthesis
- Receptor, PAR-1/metabolism
- Subarachnoid Hemorrhage/physiopathology
- Thrombin/metabolism
- Thrombin/pharmacology
- Up-Regulation/drug effects
- Vasoconstriction/drug effects
- Vasospasm, Intracranial/physiopathology
Collapse
Affiliation(s)
- Y Maeda
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University Higashi-ku, Fukuoka, Japan
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University Higashi-ku, Fukuoka, Japan
| | - K Hirano
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University Higashi-ku, Fukuoka, Japan
| | - Y Kai
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University Higashi-ku, Fukuoka, Japan
| | - M Hirano
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University Higashi-ku, Fukuoka, Japan
| | - S O Suzuki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University Higashi-ku, Fukuoka, Japan
| | - T Sasaki
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University Higashi-ku, Fukuoka, Japan
| | - H Kanaide
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University Higashi-ku, Fukuoka, Japan
- Kyushu University COE Program on Lifestyle-related Disease, Kyushu University Higashi-ku, Fukuoka, Japan
- Author for correspondence:
| |
Collapse
|
109
|
Hirano K, Nomoto N, Hirano M, Momota F, Hanada A, Kanaide H. Distinct Ca2+ Requirement for NO Production between Proteinase-Activated Receptor 1 and 4 (PAR1 and PAR4) in Vascular Endothelial Cells. J Pharmacol Exp Ther 2007; 322:668-77. [PMID: 17494865 DOI: 10.1124/jpet.107.121038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteinase-activated receptors 1 and 4 (PAR(1) and PAR(4)) are the major receptors mediating thrombin-induced NO production in endothelial cells. The intracellular signaling following their activation still remains to be elucidated. The present study provides the first evidence for the distinct Ca(2+) requirement for the NO production between PAR(1) and PAR(4). The activation of PAR(1) by the activating peptide (PAR(1)-AP) elevated cytosolic Ca(2+) concentrations ([Ca(2+)](i)) and activated NO production in porcine aortic and human umbilical vein endothelial cells, whereas it had little effect on bovine aortic endothelial cells. PAR(4) activation by PAR(4)-AP consistently induced NO production without an appreciable [Ca(2+)](i) elevation in three types of endothelial cells. The PAR(1)-mediated NO production was significantly inhibited by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), whereas the PAR(4)-mediated NO production was resistant. NO production following the PAR(1) and PAR(4) activation was significantly inhibited by pertussis toxin, but it was resistant to a Galpha(q/11) inhibitor, YM254890 [(1R)-1-[(3S,6S,9S,12S,18R,21S,22R)-21-acetamido-18-benzyl-3-[(1R)-1-methoxyethyl]-4,9,10,12,16,22-hexamethyl-15-methylene-2,5,8,11,14,17,20-heptaoxo-1,19-dioxa-4,7,10,13,16-pentaazacyclodocosan-6-yl]-2-methylpropyl rel-(2S,3R)-2-acetamido-3-hydroxy-4-methylpentanoate]. However, YM254890 abrogated the PAR(1)-mediated Ca(2+) signal. PAR(4)-mediated NO production was substantially inhibited by the inhibitors of phosphotidylinositol-3 kinase (PI3K) and Akt, as well as by the dominant negative mutant of Akt. The PAR(1)-mediated NO production was relatively resistant to inhibitors of PI3K. An immunoblot analysis revealed a transient increase in the phosphorylation of Akt and endothelial NO synthase following the PAR(4) stimulation. In conclusion, PAR(1) and PAR(4) engage distinct signal transduction mechanisms to activate NO production in vascular endothelial cells. PAR(4) preferably activates Galpha(i/o) and induced NO production in a manner mostly independent of Ca(2+) but dependent on the PI3K/Akt pathway, whereas PAR(1) activates both the Ca(2+)-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Katsuya Hirano
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
110
|
Fujiyoshi T, Hirano K, Hirano M, Nishimura J, Takahashi S, Kanaide H. Plasmin induces endothelium-dependent nitric oxide-mediated relaxation in the porcine coronary artery. Arterioscler Thromb Vasc Biol 2007; 27:949-54. [PMID: 17272753 DOI: 10.1161/01.atv.0000259360.33203.00] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Plasmin is a key enzyme in fibrinolysis. We attempted to determine the possible role of plasmin in the regulation of vascular tone, while also investigating the mechanism of plasmin-induced vasorelaxation. METHODS AND RESULTS In porcine coronary artery, plasmin induced an endothelium-dependent relaxation. This relaxing effect was mostly abolished by a proteinase inhibitor, a plasmin inhibitor, or a nitric oxide (NO) synthase inhibitor. The preceding stimulation with plasmin significantly inhibited the subsequent relaxation induced by thrombin but not that induced by proteinase-activated receptor-1-activating peptide. The relaxation induced by trypsin and substance P remained unaffected by the preceding plasmin stimulation. The pretreatment with plasmin, thrombin, or trypsin significantly attenuated the plasmin-induced relaxation. In porcine coronary artery endothelial cells (PCAECs) and human umbilical vein endothelial cells (HUVECs), plasmin induced a transient elevation in the cytosolic Ca2+ concentrations ([Ca2+]i). The preceding stimulation with plasmin inhibited the subsequent [Ca2+]i elevation induced by thrombin but not that induced by trypsin. In PCAECs, plasmin concentration-dependently induced NO production. CONCLUSIONS The present study demonstrated, for the first time, that plasmin induced an endothelium-dependent NO-mediated relaxation in the porcine coronary artery, while also showing plasmin to specifically inactivate the thrombin receptor.
Collapse
Affiliation(s)
- Tetsuhiro Fujiyoshi
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|