101
|
Lapchak PA, Wu Q. Vascular Dysfunction in Brain Hemorrhage: Translational Pathways to Developing New Treatments from Old Targets. JOURNAL OF NEUROLOGY & NEUROPHYSIOLOGY 2011; 2011:S1-e001. [PMID: 22400125 PMCID: PMC3293216 DOI: 10.4172/2155-9562.s1-e001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hemorrhagic stroke which is a form of stroke that affects 20% of all stroke patients is a devastating condition for which new treatments must be developed. Current treatment methods are quite insufficient to reduce long term morbidity and high mortality rate, up to 50%, associated with bleeding into critical brain structures, into ventricular spaces and within the subarachnoid space. During the last 10-15 years, significant advances in the understanding of important mechanisms that contribute to cell death and clinical deficits have been made. The most important observations revolve around a key set of basic mechanisms that are altered in brain bleeding models, including activation of membrane metalloproteinases, oxidative stress and both inflammatory and coagulation pathways. Moreover, it is now becoming apparent that brain hemorrhage can activate the ischemic stroke cascade in neurons, glial cells and the vascular compartment. The activation of multiple pathways allows comes the opportunity to intervene pharmacologically using monotherapy or combination therapy. Ultimately, combination therapy or pleiotropic compounds with multi-target activities should prove to be more efficacious than any single therapy alone. This article provides a comprehensive look at possible targets for small molecule intervention as well as some new approaches that result in metabolic down-regulation or inhibition of multiple pathways simultaneously.
Collapse
Affiliation(s)
- Paul A. Lapchak
- Director of Translational Research, Cedars-Sinai Medical Center, Department of Neurology, Davis Research Building, D- 2091, 110 N, George Burns Road, Los Angeles, CA 90048 USA
| | - Qiang Wu
- Project Scientist, Cedars-Sinai Medical Center, Department of Neurology, Davis Research Building, D-2094E, 110 N. George Burns Road, Los Angeles, CA 90048 USA
| |
Collapse
|
102
|
Solberg R, Løberg EM, Andresen JH, Wright MS, Charrat E, Khrestchatisky M, Rivera S, Saugstad OD. Resuscitation of newborn piglets. short-term influence of FiO2 on matrix metalloproteinases, caspase-3 and BDNF. PLoS One 2010; 5:e14261. [PMID: 21151608 PMCID: PMC3000320 DOI: 10.1371/journal.pone.0014261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 11/10/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Perinatal hypoxia-ischemia is a major cause of mortality and cerebral morbidity, and using oxygen during newborn resuscitation may further harm the brain. The aim was to examine how supplementary oxygen used for newborn resuscitation would influence early brain tissue injury, cell death and repair processes and the regulation of genes related to apoptosis, neurodegeneration and neuroprotection. METHODS AND FINDINGS Anesthetized newborn piglets were subjected to global hypoxia and then randomly assigned to resuscitation with 21%, 40% or 100% O(2) for 30 min and followed for 9 h. An additional group received 100% O(2) for 30 min without preceding hypoxia. The left hemisphere was used for histopathology and immunohistochemistry and the right hemisphere was used for in situ zymography in the corpus striatum; gene expression and the activity of various relevant biofactors were measured in the frontal cortex. There was an increase in the net matrix metalloproteinase gelatinolytic activity in the corpus striatum from piglets resuscitated with 100% oxygen vs. 21%. Hematoxylin-eosin (HE) staining revealed no significant changes. Nine hours after oxygen-assisted resuscitation, caspase-3 expression and activity was increased by 30-40% in the 100% O(2) group (n = 9/10) vs. the 21% O(2) group (n = 10; p<0.04), whereas brain-derived neurotrophic factor (BDNF) activity was decreased by 65% p<0.03. CONCLUSIONS The use of 100% oxygen for resuscitation resulted in increased potentially harmful proteolytic activities and attenuated BDNF activity when compared with 21%. Although there were no significant changes in short term cell loss, hyperoxia seems to cause an early imbalance between neuroprotective and neurotoxic mechanisms that might compromise the final pathological outcome.
Collapse
Affiliation(s)
- Rønnaug Solberg
- Department of Paediatric Research, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Guo S, Stins M, Ning M, Lo EH. Amelioration of inflammation and cytotoxicity by dipyridamole in brain endothelial cells. Cerebrovasc Dis 2010; 30:290-6. [PMID: 20664263 DOI: 10.1159/000319072] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 04/23/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Increasing evidence suggests that beyond its antiplatelet properties, dipyridamole may have pleiotropic effects on other cells within the neurovascular elements of the brain. In this experimental cellular study, we asked whether dipyridamole can ameliorate brain endothelial injury after exposure to inflammatory and metabolic insults. METHODS Human brain endothelial cells were grown in culture, and exposed to TNFalpha (continuously for 20 h) or subjected to oxygen-glucose deprivation (OGD; 6 h of insult followed by 18 h recovery). Expression of ICAM-1, VCAM-1 and PECAM-1 were measured by immunoblotting. Matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) in the conditioned media were quantified via zymography. MTT mitochondrial activity was measured to assess endothelial cell viability. RESULTS Exposure of human brain endothelial cells to TNFalpha (12.5-50 ng/ml) induced a clear increase in protein levels of ICAM-1, VCAM-1 and MMP-9. TNFalpha did not alter PECAM-1. Dipyridamole (1-5 muM) significantly attenuated ICAM-1 and MMP-9 levels after this inflammatory insult. No significant effects of dipyridamole were noted for VCAM-1. Six-hour OGD induced moderate endothelial cell death accompanied by a release of MMP-9. Dipyridamole significantly decreased MMP-9 levels and cell death after this metabolic insult. CONCLUSIONS These results suggest that dipyridamole may ameliorate brain endothelial injury after inflammation and/or metabolic insults. How these putative cellular mechanisms may relate to clinical outcomes and conditions in stroke patients remains to be elucidated.
Collapse
Affiliation(s)
- Shuzhen Guo
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA.
| | | | | | | |
Collapse
|
104
|
Denes A, Thornton P, Rothwell NJ, Allan SM. Inflammation and brain injury: acute cerebral ischaemia, peripheral and central inflammation. Brain Behav Immun 2010; 24:708-23. [PMID: 19770034 DOI: 10.1016/j.bbi.2009.09.010] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/15/2009] [Accepted: 09/15/2009] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a classical host defence response to infection and injury that has many beneficial effects. However, inappropriate (in time, place and magnitude) inflammation is increasingly implicated in diverse disease states, now including cancer, diabetes, obesity, atherosclerosis, heart disease and, most relevant here, CNS disease. A growing literature shows strong correlations between inflammatory status and the risk of cerebral ischaemia (CI, most commonly stroke), as well as with outcome from an ischaemic event. Intervention studies to demonstrate a causal link between inflammation and CI (or its consequences) are limited but are beginning to emerge, while experimental studies of CI have provided direct evidence that key inflammatory mediators (cytokines, chemokines and inflammatory cells) contribute directly to ischaemic brain injury. However, it remains to be determined what the relative importance of systemic (largely peripheral) versus CNS inflammation is in CI. Animal models in which CI is driven by a CNS intervention may not accurately reflect the clinical condition; stroke being typically induced by atherosclerosis or cardiac dysfunction, and hence current experimental paradigms may underestimate the contribution of peripheral inflammation. Experimental studies have already identified a number of potential anti-inflammatory therapeutic interventions that may limit ischaemic brain damage, some of which have been tested in early clinical trials with potentially promising results. However, a greater understanding of the contribution of inflammation to CI is still required, and this review highlights some of the key mechanism that may offer future therapeutic targets.
Collapse
Affiliation(s)
- A Denes
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
105
|
Yonezawa T, Hattori S, Inagaki J, Kurosaki M, Takigawa T, Hirohata S, Miyoshi T, Ninomiya Y. Type IV collagen induces expression of thrombospondin-1 that is mediated by integrin alpha1beta1 in astrocytes. Glia 2010; 58:755-67. [PMID: 20091789 DOI: 10.1002/glia.20959] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Following brain injury, thrombospondin-1 (TSP-1) is involved in angiogenesis and synaptic recovery. In this study, we used a cold injury-model and found that TSP-1 mRNA was markedly upregulated after brain injury. Immunohistochemistry showed that TSP-1 was upregulated in both the core of the lesion and in the perilesional area of injured brain tissue. Numerous astrocytes immunopositive for glial fibrillary acidic protein (GFAP) were found in the perilesional area, and TSP-1 was also expressed in almost all astrocytes surrounding blood vessels at 4 days after injury. Next, we examined the influence of vascular basement membrane components on TSP-1 expression. When astrocytes were cultured on type IV collagen, TSP-1 was significantly upregulated compared with the expression when cells were grown on laminin, fibronectin, or poly-L-lysine. This increase occurred exclusively when astrocytes were grown on the native form of type IV collagen but not on the heat-denatured form or the non-collagenous 1 domain. Further, integrin alpha1 and beta1 mRNAs were upregulated concomitantly with GFAP mRNA, and integrin alpha1 protein was localized to the endfeet of astrocytes that surrounded blood vessels in the injured brain. Using function-blocking antibodies, we found that the effect of type IV collagen was attributed to integrin alpha1beta1 in primary astrocytes. Collectively, our results suggest that vascular basement membrane components substantially impact gene expression in astrocytes during brain tissue repair.
Collapse
Affiliation(s)
- Tomoko Yonezawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Lapchak PA. A new embolus injection method to evaluate intracerebral hemorrhage in New Zealand white rabbits. Brain Res 2010; 1349:129-36. [PMID: 20599833 DOI: 10.1016/j.brainres.2010.06.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 06/11/2010] [Accepted: 06/14/2010] [Indexed: 01/01/2023]
Abstract
The rabbit large clot embolic stroke model has been used for over 23 years to study methods to manipulate hemorrhage and to test drugs and devices for safety, because the rabbit model is particularly sensitive to embolism-induced hemorrhage. This study refined the original embolization procedure using an automated, pump-assisted injection method to introduce large blood clots or macroscopic emboli into the middle cerebral artery (MCA) via an indwelling carotid artery catheter. The study shows that rapid injection of blood clots (3 ml/30s) produced a model where there is a high hemorrhage incidence rate (79%) and a high stroke success rate (63%), compared to a low stroke success rate (19%) with no hemorrhages when clots were injected at a slow rate (3 ml/90 s). The rapid injection method, which produces a high hemorrhage rate, is particularly useful to study neuroprotective agents to attenuate embolism-induced hemorrhage. In addition, we show that manual injection of blood clots, which produces a lower baseline hemorrhage rate (41%) with a similar stroke success rate (65%), may allow investigators to study pharmacological agents to either up or down-regulate hemorrhage incidence. Lastly, we show that in the rabbit embolic stroke model, hemorrhages are adjacent to areas of 2,3,5-triphenyltetrazolium (TTC)-negative tissue, normally associated with infarcted or ischemic tissue. Thus, there is clear separation of ischemia and hemorrhage in the model, suggesting that therapeutics that are neuroprotective may also be useful to limit the evolution of ischemic damage associated with a hemorrhage, if not attenuate hemorrhage itself.
Collapse
Affiliation(s)
- Paul A Lapchak
- Cedars-Sinai Medical Center, Department of Neurology, Burns & Allen Res. Inst. 110 North George Burns Road, D-2091, Los Angeles, CA 90048, USA.
| |
Collapse
|
107
|
Tejima E, Guo S, Murata Y, Arai K, Lok J, van Leyen K, Rosell A, Wang X, Lo EH. Neuroprotective effects of overexpressing tissue inhibitor of metalloproteinase TIMP-1. J Neurotrauma 2010. [PMID: 19469687 DOI: 10.1089/neu.2009-0959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Accumulating data suggest that matrix metalloproteinases (MMPs) may be important mediators in the pathophysiology of acute brain injury after trauma or stroke. Here, we test the hypothesis that the endogenous tissue inhibitor of metalloproteinase (TIMP-1) is neuroprotective in vitro and in vivo. For in vitro studies, primary cortical neuronal cultures were subjected to hypoxia and reoxygenation. Treatment with recombinant TIMP-1 protein significantly decreased neuronal death. In vivo studies in models of brain trauma and stroke supported these cell culture results. After controlled cortical impact, 24-h MMP-9 levels were significantly reduced in transgenic mice overexpressing TIMP-1 compared to wild-type mice. And at 7 days post-trauma, brain lesion volumes were also significantly decreased by TIMP-1 overexpression as well. In a model of transient 2-h focal cerebral ischemia, MMP-9 levels were lower in TIMP-1 transgenic mice compared with wild-types. Correspondingly, blood-brain barrier leakage was ameliorated by TIMP-1 overexpression, and 24-h infarction volumes were also reduced. Taken together, these cell culture and in vivo data provide initial proof-of-principle that TIMP-1 is neuroprotective against traumatic and ischemic brain injury in mice.
Collapse
Affiliation(s)
- Emiri Tejima
- Program in Neuroscience, Harvard Medical School, Charlestown, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Tejima E, Guo S, Murata Y, Arai K, Lok J, van Leyen K, Rosell A, Wang X, Lo EH. Neuroprotective effects of overexpressing tissue inhibitor of metalloproteinase TIMP-1. J Neurotrauma 2010; 26:1935-41. [PMID: 19469687 DOI: 10.1089/neu.2009.0959] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Accumulating data suggest that matrix metalloproteinases (MMPs) may be important mediators in the pathophysiology of acute brain injury after trauma or stroke. Here, we test the hypothesis that the endogenous tissue inhibitor of metalloproteinase (TIMP-1) is neuroprotective in vitro and in vivo. For in vitro studies, primary cortical neuronal cultures were subjected to hypoxia and reoxygenation. Treatment with recombinant TIMP-1 protein significantly decreased neuronal death. In vivo studies in models of brain trauma and stroke supported these cell culture results. After controlled cortical impact, 24-h MMP-9 levels were significantly reduced in transgenic mice overexpressing TIMP-1 compared to wild-type mice. And at 7 days post-trauma, brain lesion volumes were also significantly decreased by TIMP-1 overexpression as well. In a model of transient 2-h focal cerebral ischemia, MMP-9 levels were lower in TIMP-1 transgenic mice compared with wild-types. Correspondingly, blood-brain barrier leakage was ameliorated by TIMP-1 overexpression, and 24-h infarction volumes were also reduced. Taken together, these cell culture and in vivo data provide initial proof-of-principle that TIMP-1 is neuroprotective against traumatic and ischemic brain injury in mice.
Collapse
Affiliation(s)
- Emiri Tejima
- Program in Neuroscience, Harvard Medical School, Charlestown, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Increased brain microvascular MMP-9 and incidence of haemorrhagic transformation in obese mice after experimental stroke. J Cereb Blood Flow Metab 2010; 30:267-72. [PMID: 19826431 PMCID: PMC2949124 DOI: 10.1038/jcbfm.2009.217] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Obesity is an independent risk factor for stroke and is associated with poorer outcome after stroke. We investigated whether this poorer outcome is related to brain microvascular disruption. Focal cerebral ischaemia was induced in lean or obese (ob/ob) mice by transient middle cerebral artery occlusion. The incidence of haemorrhagic transformation and the volume of ischaemic brain damage were significantly greater in obese mice. Blood-brain barrier permeability and brain microvascular MMP-9 expression were also markedly increased in obese mice. These effects were independent of leptin or glycaemic status, suggesting that obesity potentiates brain microvascular disruption after experimental stroke.
Collapse
|
110
|
Sun XL, Hu G. ATP-sensitive potassium channels: A promising target for protecting neurovascular unit function in stroke. Clin Exp Pharmacol Physiol 2010; 37:243-52. [DOI: 10.1111/j.1440-1681.2009.05190.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
111
|
Timing of serum active MMP-9 and MMP-2 levels in acute and subacute phases after spontaneous intracerebral hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2010; 106:137-40. [PMID: 19812936 DOI: 10.1007/978-3-211-98811-4_24] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Serum active matrix metalloproteinase (MMP)-9 and -2 levels and their tissue inhibitors TIMP-1 and -2 were measured in 28 patients with spontaneous intracerebral hemorrhage (SICH) at 24 h, 48 h and 7 days after bleeding. Perihematomal edema volume was calculated on non-enhanced computed tomography scans by using the formula AxBxC/2 at the same time points. Mean levels of serum active MMP-9 and MMP-2, as well as perihematomal edema volume, were significantly different over time (p < 0.0001). In comparison to values observed at 24 h, serum active MMP-9 mean concentrations increased at 48 h and reached their peak at 7 days, serum active MMP-2 mean levels progressively declined at 48 h and at 7 days, whereas perihematomal edema volume increased at 48 h and at 7 days. Perihematomal edema volume was positively correlated with active MMP-9 and MMP-2 at 24 h (p < 0.02 and p < 0.05, respectively) and with active MMP-9 at 48 h (p < 0.05), but was inversely correlated with active MMP-2 at 7 days (p < 0.02). These findings suggest a different involvement of active MMP-9 and MMP-2 in perihematomal-associated inflammatory response occurring in the transition from acute to subacute phases after SICH.
Collapse
|
112
|
Abstract
Oxidative stress and matrix metalloproteinases (MMPs) contribute to hemorrhagic transformation after ischemic stroke and brain injury after intracerebral hemorrhage (ICH). The goal of this study was to develop a new model of spontaneous ICH, based on the hypothesis that acute, superimposed on chronic, hypertension produces ICH. We hypothesized that increases in angiotensin II (AngII)-mediated oxidative stress and activation of MMPs are associated with, and may precede, spontaneous ICH during hypertension. In C57BL/6 mice, chronic hypertension was produced with AngII infusion and an inhibitor of nitric oxide synthase. During chronic hypertension, mice with acute hypertension from injections of AngII developed ICH. Oxidative stress and MMP levels increased in the brain even before developing ICH. Active MMPs colocalized with a marker of oxidative stress, especially on cerebral vessels that appeared to lead toward regions with ICH. Incidence of ICH and levels of oxidative stress and MMP-9 were greater in mice with acute hypertension produced by AngII than by norepinephrine. In summary, we have developed an experimental model of ICH during hypertension that may facilitate studies in genetically altered mice. We speculate that acute hypertension, especially when induced by AngII, may be critical in spontaneous ICH during chronic hypertension, possibly through oxidative stress and MMP-9.
Collapse
|
113
|
|
114
|
Abstract
Current imaging techniques focus on evaluating the anatomical structure of blood vessel wall and atherosclerotic plaque. These techniques fail to evaluate the biological processes which take place in the vessel wall and inside the plaque. Novel imaging techniques like optical imaging can evaluate the biological and cellular processes inside the plaque and provide information which can be vital for better patient risk stratification. This review highlights the various optical imaging techniques and their application in assessing biological processes in atherosclerosis.
Collapse
Affiliation(s)
- Sharath Subramanian
- Cardiac MR-PET-CT Program, Massachusetts General Hospital, 165 Cambridge Street, Suite 400, Boston, MA 02114, USA
| | | | | |
Collapse
|
115
|
Dong X, Song YN, Liu WG, Guo XL. Mmp-9, a potential target for cerebral ischemic treatment. Curr Neuropharmacol 2009; 7:269-75. [PMID: 20514206 PMCID: PMC2811860 DOI: 10.2174/157015909790031157] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 09/22/2009] [Accepted: 10/05/2009] [Indexed: 11/27/2022] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) which is a member of matrix metalloproteinases family that normally remodel the extracellular matrix, has been shown to play an important role in both animal models of cerebral ischemia and human stroke. The expression of MMP-9 is elevated after cerebral ischemia which is involved in accelerating matrix degradation, disrupting the blood-brain barrier, increasing the infarct size and relating to hemorrhagic transformation. Recently, many drugs, such as tetracycline derivatives, cyclooxygenase inhibitors, ACEI inhibitors and AT1 receptor blockers, etc., have been found to attenuate the elevated expression levels of MMP-9 after ischemia and to reduce the damage of cerebral ischemic. This article reviews the physiological features of MMP-9 and its important role in the genesis, propagation, and therapeutics of cerebral ischemic diseases.
Collapse
Affiliation(s)
- Xue Dong
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, No. 44 WenHuaXi Road, Jinan 250012, P.R. China
| | - Yu-Ning Song
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, No. 44 WenHuaXi Road, Jinan 250012, P.R. China
| | - Wei-Guo Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, No. 44 WenHuaXi Road, Jinan 250012, P.R. China
- Qianfoshan Hospital, Jinan 250014, P.R. China
| | - Xiu-Li Guo
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, No. 44 WenHuaXi Road, Jinan 250012, P.R. China
| |
Collapse
|
116
|
Long-term functional and neurological outcome after simultaneous treatment with tissue-plasminogen activator and hyperbaric oxygen in early phase of embolic stroke in rats. Brain Res 2009; 1303:161-8. [DOI: 10.1016/j.brainres.2009.09.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/05/2009] [Accepted: 09/11/2009] [Indexed: 11/22/2022]
|
117
|
Bordet R, Ouk T, Onténiente B, Charriaut-Marlangue C, Heurteaux C. Ischémie cérébrale. Med Sci (Paris) 2009; 25:847-54. [DOI: 10.1051/medsci/20092510847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
118
|
Guo Z, Sun X, He Z, Jiang Y, Zhang X, Zhang JH. Matrix metalloproteinase-9 potentiates early brain injury after subarachnoid hemorrhage. Neurol Res 2009; 32:715-20. [PMID: 19703360 DOI: 10.1179/016164109x12478302362491] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE This study investigated the role of matrix metalloproteinase-9 (MMP-9) in early brain injury after subarachnoid hemorrhage (SAH). METHOD Sprague-Dawley male rats (n=36) weighing between 250 and 300 g were used. SAH was produced by injecting autologous arterial blood into the pre-chiasmatic cistern. MMP-9 protein expression and activity were measured by Western blot and zymogram; laminin expression and neuronal cell in hippocampus were studied by immunohistochemistry and TUNEL staining at 24 hours after SAH in the presence or absence of a selective MMP-9 inhibitor SB-3CT. RESULT MMP-9 was activated by SAH and inhibited by SB-3CT at 24 hours after SAH (p<0.01). Laminin, the substrate of MMP-9, was decreased at 24 hours after SAH, and SB-3CT prevented laminin degradation. The number of TUNEL-positive neurons in hippocampus was increased after SAH and decreased by SB-3CT (p<0.01). In addition, brain water content and neurological functional abnormalities were attenuated by SB-3CT. CONCLUSION MMP-9 may be involved in early brain injury through degradation of laminin and neuronal death, and inhibition of MMP-9 may be a potential direction for brain protection after SAH.
Collapse
Affiliation(s)
- Zongduo Guo
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
119
|
Park KP, Rosell A, Foerch C, Xing C, Kim WJ, Lee S, Opdenakker G, Furie KL, Lo EH. Plasma and brain matrix metalloproteinase-9 after acute focal cerebral ischemia in rats. Stroke 2009; 40:2836-42. [PMID: 19556529 DOI: 10.1161/strokeaha.109.554824] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Plasma levels of matrix metalloproteinase-9 (MMP-9) have been proposed to be a useful biomarker for assessing pathological events in brain. Here, we examined the temporal profiles of MMP-9 in blood and brain using a rat model of acute focal cerebral ischemia. METHODS Plasma and brain levels of MMP-2 and MMP-9 were quantified at 3, 6, 12, and 24 hours after permanent middle cerebral artery occlusion in male Sprague-Dawley rats. Infarct volumes at 24 hours were confirmed with 2,3,5-triphenyl-tetrazolium-chloride staining. RESULTS In plasma, zymographic bands were detected between 70 and 95 kDa corresponding to pro-MMP-2, pro-MMP-9, and activated MMP-9. A higher 135-kDa band was also seen that is likely to be NGAL-conjugated MMP-9. After ischemia, there were no significant changes in pro-MMP-2, but plasma levels of pro-MMP-9 steadily increased over the course of 24 hours. Activated MMP-9 levels in plasma were significantly elevated only at 24 hours. Plasma NGAL-MMP-9 complexes showed a transient elevation between 3 to 6 hours, after which levels decreased back down to pre-ischemic baselines. In brain homogenates, pro-MMP-2, pro-MMP-9, and activated MMP-9 were seen but no NGAL-MMP-9 bands were detected. Compared to the contralateral hemisphere, MMP-2 and MMP-9 levels in ischemic brain progressively increased over the course of 24 hours. Overall levels of MMP-9 in plasma and brain were significantly correlated, especially at 24 hours. Plasma levels of pro-MMP-9 at 24 hours were correlated with final infarct volumes. CONCLUSIONS Elevated plasma levels of MMP-9 appear to be correlated with brain levels within 24 hours of acute cerebral ischemia in rats. Further investigation into clinical profiles of MMP-9 in acute stroke patients may be useful.
Collapse
Affiliation(s)
- Kyung-Pil Park
- Neuroprotection Research Laboratory, MGH East 149-2401 Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Urra X, Villamor N, Amaro S, Gómez-Choco M, Obach V, Oleaga L, Planas AM, Chamorro A. Monocyte subtypes predict clinical course and prognosis in human stroke. J Cereb Blood Flow Metab 2009; 29:994-1002. [PMID: 19293821 DOI: 10.1038/jcbfm.2009.25] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The number of circulating monocytes increases after stroke. In this study, we assessed the time course and phenotype of monocyte subsets and their relationship with the clinical course and outcome in 46 consecutive stroke patients and 13 age-matched controls. The proportion of the most abundant 'classical' CD14(high)CD16- monocytes did not change after stroke, whereas that of CD14(high)CD16+ monocytes increased and CD14(dim)CD16+ monocytes decreased. CD14(high)CD16+ monocytes had the highest expression of TLR2, HLA-DR and the angiogenic marker, Tie-2; CD14(dim)CD16+ monocytes had the highest expression of costimulatory CD86 and adhesion molecule CD49d. Platelet-monocyte interactions were highest in CD14(high)CD16- monocytes and lowest in CD14(dim)CD16+ monocytes. In adjusted models, 1/CD14(high)CD16- monocytes were associated with poor outcome (OR: 1.38), higher mortality (OR: 1.40) and early clinical worsening (OR: 1.29); 2/CD14(high)CD16+ monocytes were inversely related to mortality (OR: 0.32); and 3/CD14(dim)CD16+ monocytes were inversely related to poor outcome (OR: 0.74) and infarction size (r=-0.45; P=0.02). These results illustrate that the predominant monocyte subtype conveys harmful effects after stroke, which include stronger interaction with platelets. Alternatively, rarer subpopulations of monocytes are beneficial with a phenotype that could promote tissue repair and angiogenesis. Therefore, monitoring of monocyte subtypes may emerge as a useful tool at the bedside for stroke patients.
Collapse
Affiliation(s)
- Xabier Urra
- Functional Unit of Cerebrovascular Diseases, Hospital Clínic, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Lee H, Park JW, Kim SP, Lo EH, Lee SR. Doxycycline inhibits matrix metalloproteinase-9 and laminin degradation after transient global cerebral ischemia. Neurobiol Dis 2009; 34:189-98. [DOI: 10.1016/j.nbd.2008.12.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 12/02/2008] [Accepted: 12/13/2008] [Indexed: 12/14/2022] Open
|
122
|
Kwon I, Kim EH, del Zoppo GJ, Heo JH. Ultrastructural and temporal changes of the microvascular basement membrane and astrocyte interface following focal cerebral ischemia. J Neurosci Res 2009; 87:668-76. [PMID: 18831008 DOI: 10.1002/jnr.21877] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microvascular integrity is lost during cerebral ischemia. Detachment of the microvascular basement membrane (BM) from the astrocyte, as well as degradation of the BM, is responsible for the loss of microvascular integrity. However, their ultrastructural and temporal changes during cerebral ischemia are not well known. Male Sprague-Dawley rats were subjected to permanent middle cerebral artery occlusion (MCAO) for 1, 4, 8, 12, 16, 20, and 48 hr. By using transmission electron microscopy, the proportion of intact BM-astrocyte contacts and electron densities of the BM were measured from five randomly selected microvessels in the ischemic basal ganglia. Their temporal changes and associations with activities of the matrix metalloproteinases (MMPs) were investigated. The intact portion of the BM-astrocyte contacts was decreased significantly within 4 hr and was rarely observed at 48 hr after MCAO. Decreases in the electron density and degradation of the BM were significant 12 hr after MCAO. The intact BM-astrocyte contacts and the mean BM density showed a significant positive correlation (r = 0.784, P < 0.001). MMP-9 activity was correlated negatively with the intact BM-astrocyte contacts (r = -0.711, P < 0.001) and with the BM density (r = -0.538, P = 0.0016). The increase in MMP-9 coincided temporally with the loss of the BM-astrocyte contacts and a decrease in the BM density. Ultrastructural alterations occurring in the microvascular BM and its contacts with astrocyte endfeet were temporally associated in cerebral ischemia. Time courses of their alterations should be considered in the treatment targeted to the microvascular BM and its contact with astrocytes.
Collapse
Affiliation(s)
- Il Kwon
- Department of Neurology, National Core Research Center for Nanomedical Technology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
123
|
Abstract
Pathophysiological processes in the vascular system are the major cause of mortality and disease. Atherosclerosis, an inflammatory process in arterial walls, can lead to formation of plaques, whose rupture can lead to thrombus formation, obstruction of vessels (thrombosis), reduction of the blood flow (ischemia), cell death in the tissue fed by the occluded vessel, and depending on the affected vessel, to myocardial infarction or stroke. Imaging techniques enabling visualization of the biological processes involved in this scenario are therefore highly desirable. In recent years, a number of reporter agents and reporter systems have been developed to visualize these processes using different imaging modalities including nuclear imaging techniques, such as positron emission tomography or single photon emission computed tomography, magnetic resonance imaging, and ultrasound. This article comprises a brief overview of optical imaging techniques, such as fluorescence imaging and bioluminescence imaging for the visualization of vascular pathophysiology.
Collapse
Affiliation(s)
- Andreas Wunder
- Molecular imaging group, Dept. of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité - University Medicine Berlin, Charitéplatz 1, 10098, Berlin, Germany.
| | | |
Collapse
|
124
|
The development of stroke therapeutics: promising mechanisms and translational challenges. Neuropharmacology 2008; 56:329-41. [PMID: 19007799 DOI: 10.1016/j.neuropharm.2008.10.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/29/2008] [Accepted: 10/06/2008] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is the second most common cause of death worldwide and a major cause of disability. Intravenous thrombolysis with rt-PA remains the only available acute therapy in patients who present within 3h of stroke onset other than the recently approved mechanical MERCI device, substantiating the high unmet need in available stroke therapeutics. The development of successful therapeutic strategies remains challenging, as evidenced by the continued failures of new therapies in clinical trials. However, significant lessons have been learned and this knowledge is currently being incorporated into improved pre-clinical and clinical design. Furthermore, advancements in imaging technologies and continued progress in understanding biological pathways have established a prolonged presence of salvageable penumbral brain tissue and have begun to elucidate the natural repair response initiated by ischemic insult. We review important past and current approaches to drug development with an emphasis on implementing principles of translational research to achieve a rigorous conversion of knowledge from bench to bedside. We highlight current strategies to protect and repair brain tissue with the promise to provide longer therapeutic windows, preservation of multiple tissue compartments and improved clinical success.
Collapse
|
125
|
Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci 2008; 28:9451-62. [PMID: 18799677 DOI: 10.1523/jneurosci.2674-08.2008] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Systemic inflammatory events, such as infection, increase the risk of stroke and are associated with worse outcome, but the mediators of this clinically important effect are unknown. Our aim here was to elucidate mechanisms contributing to the detrimental effects of systemic inflammation on mild ischemic brain injury in mice. Systemic inflammation was induced in mice by peripheral interleukin-1beta (IL-1beta) challenge and focal cerebral ischemia by transient middle cerebral artery occlusion (MCAo). Systemic inflammation caused an alteration in the kinetics of blood-brain barrier (BBB) disruption through conversion of a transient to a sustained disruption of the tight junction protein, claudin-5, and also markedly exacerbated disruption to the cerebrovascular basal lamina protein, collagen-IV. These alterations were associated with a systemic inflammation-induced increase in neurovascular gelatinolytic activity that was mediated by a fivefold increase in neutrophil-derived matrix metalloproteinase-9 (MMP-9) in the brains of IL-1beta-challenged mice after MCAo. Specific inhibition of MMP-9 abrogated the effects of systemic inflammation on the sustained but not the acute disruption of claudin-5, which was associated with phosphorylation of cerebrovascular myosin light chain. MMP-9 inhibition also attenuated the deleterious impact of systemic inflammation on brain damage, edema, neurological deficit, and incidence of hemorrhagic transformation. These data indicate that a transformation from transient to sustained BBB disruption caused by enhanced neutrophil-derived neurovascular MMP-9 activity is a critical mechanism underlying the exacerbation of ischemic brain injury by systemic inflammation. These mechanisms may contribute to the poor clinical outcome in stroke patients presenting with antecedent infection.
Collapse
|
126
|
Abstract
The involvement of matrix metalloproteinase (MMP) 9 in methamphetamine-induced neurotoxicity was evaluated. Injection of mice with stimulant or toxic doses of methamphetamine upregulated MMP9 gene expression in the brain within 5 min. By 24 h, MMP9 gene expression returned to control levels in the stimulant-treated mice, but remained elevated in animals exposed to toxic doses of methamphetamine. Reductions in striatal dopamine levels, a marker of methamphetamine neurotoxicity, developed 1-7 days after methamphetamine exposure, but were not accompanied by concomitant changes in MMP9 gene expression. In MMP9 knockout mice, methamphetamine retained its ability to elicit neurotoxicity. The data suggest that MMP9 expression does not contribute to methamphetamine-induced neurotoxicity, and may instead be involved in remodeling of the nervous system.
Collapse
|
127
|
Lu L, Tonchev AB, Kaplamadzhiev DB, Boneva NB, Mori Y, Sahara S, Ma D, Nakaya MA, Kikuchi M, Yamashima T. Expression of matrix metalloproteinases in the neurogenic niche of the adult monkey hippocampus after ischemia. Hippocampus 2008; 18:1074-84. [DOI: 10.1002/hipo.20466] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
128
|
Sbai O, Ferhat L, Bernard A, Gueye Y, Ould-Yahoui A, Thiolloy S, Charrat E, Charton G, Tremblay E, Risso JJ, Chauvin JP, Arsanto JP, Rivera S, Khrestchatisky M. Vesicular trafficking and secretion of matrix metalloproteinases-2, -9 and tissue inhibitor of metalloproteinases-1 in neuronal cells. Mol Cell Neurosci 2008; 39:549-68. [PMID: 18817873 DOI: 10.1016/j.mcn.2008.08.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 07/08/2008] [Accepted: 08/09/2008] [Indexed: 11/17/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases that cleave matrix, soluble and membrane-bound proteins and are regulated by their endogenous inhibitors the tissue inhibitors of MMPs (TIMPs). Nothing is known about MMP/TIMP trafficking and secretion in neuronal cells. We focussed our attention on the gelatinases MMP-2 and MMP-9, and their inhibitor TIMP-1. MMPs and TIMP-1 fused to GFP were expressed in N2a neuroblastoma and primary neuronal cells to study trafficking and secretion using real time video-microscopy, imaging, electron microscopy and biochemical approaches. We show that MMPs and TIMP-1 are secreted in 160-200 nm vesicles in a Golgi-dependent pathway. These vesicles distribute along microtubules and microfilaments, co-localise differentially with the molecular motors kinesin and myosin Va and undergo both anterograde and retrograde trafficking. MMP-9 retrograde transport involves the dynein/dynactin molecular motor. In hippocampal neurons, MMP-2 and MMP-9 vesicles are preferentially distributed in the somato-dendritic compartment and are found in dendritic spines. Non-transfected hippocampal neurons also demonstrate vesicular secretion of MMP-2 in both its pro- and active forms and gelatinolytic activity localised within dendritic spines. Our results show differential trafficking of MMP and TIMP-1-containing vesicles in neuronal cells and suggest that these vesicles could play a role in neuronal and synaptic plasticity.
Collapse
Affiliation(s)
- Oualid Sbai
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 6184 CNRS-Université de la Méditerranée, Faculté de Médecine, IFR Jean Roche, Bd Pierre Dramard, 13916 Marseille Cedex 20, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
McColl BW, Allan SM, Rothwell NJ. Systemic infection, inflammation and acute ischemic stroke. Neuroscience 2008; 158:1049-61. [PMID: 18789376 DOI: 10.1016/j.neuroscience.2008.08.019] [Citation(s) in RCA: 246] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 08/08/2008] [Accepted: 08/11/2008] [Indexed: 12/16/2022]
Abstract
Extensive evidence implicates inflammation in multiple phases of stroke etiology and pathology. In particular, there is growing awareness that inflammatory events outside the brain have an important impact on stroke susceptibility and outcome. Numerous conditions, including infection and chronic non-infectious diseases, that are established risk factors for stroke are associated with an elevated systemic inflammatory profile. Recent clinical and pre-clinical studies support the concept that the systemic inflammatory status prior to and at the time of stroke is a key determinant of acute outcome and long-term prognosis. Here, we provide an overview of the impact of systemic inflammation on stroke susceptibility and outcome. We discuss potential mechanisms underlying the impact on ischemic brain injury and highlight the implications for stroke prevention, therapy and modeling.
Collapse
Affiliation(s)
- B W McColl
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester M13 9PT, UK.
| | | | | |
Collapse
|
130
|
Abstract
The penumbra is an area of brain tissue that is damaged but not yet dead after focal ischemia. The existence of a penumbra implies that therapeutic salvage is theoretically possible after stroke. The first decade of penumbral science investigated the ischemic regulation of electrophysiology, cerebral blood flow and metabolism. The second decade advanced our understanding of molecular mechanisms that mediate penumbral cell death. And the third decade saw the rapid development of clinical neuroimaging tools that are now increasingly applied in stroke patients. But how can we look ahead as we move into the fourth decade of penumbra research? This author speculates that a paradigm shift is needed. Most molecular targets for therapy have biphasic roles in stroke pathophysiology. During the acute phase, these targets mediate injury. During the recovery phase, the same mediators contribute to neurovascular remodeling. It is this boundary zone that comprises the new penumbra, and future investigations should dissect where, when and how damaged brain makes the transition from injury into repair.
Collapse
Affiliation(s)
- Eng H Lo
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| |
Collapse
|
131
|
Abstract
Spontaneous behavioral recovery is usually limited after stroke, making stroke a leading source of disability. A number of therapies in development aim to improve patient outcomes not by acutely salvaging threatened tissue, but instead by promoting repair and restoration of function in the subacute or chronic phase after stroke. Examples include small molecules, growth factors, cell-based therapies, electromagnetic stimulation, device-based strategies, and task-oriented and repetitive training-based interventions. Stage of development across therapies varies widely, from preclinical to late-phase clinical trials. The optimal methods to prescribe such therapies require further studies, for example, to best identify appropriate patients or to guide features of dosing. Likely, anatomic, functional, and behavioral measures of brain state, as well as measures of injury, will each be useful in this regard. Considerations for clinical trials of restorative therapies are provided, emphasizing both similarities and points of divergence with acute stroke clinical trial design.
Collapse
Affiliation(s)
- Steven C Cramer
- Department of Neurology, University of California, Irvine, CA 92868-4280, USA.
| |
Collapse
|
132
|
Differential Regulation of Matrix Metalloproteinase-9 and Tissue Plasminogen Activator Activity by the Cyclic-AMP System in Lipopolysaccharide-stimulated Rat Primary Astrocytes. Neurochem Res 2008; 33:2324-34. [DOI: 10.1007/s11064-008-9737-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Accepted: 04/29/2008] [Indexed: 11/26/2022]
|
133
|
Kumar M, Tyagi N, Moshal KS, Sen U, Pushpakumar SB, Vacek T, Lominadze D, Tyagi SC. GABAA receptor agonist mitigates homocysteine-induced cerebrovascular remodeling in knockout mice. Brain Res 2008; 1221:147-53. [PMID: 18547546 DOI: 10.1016/j.brainres.2008.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 04/03/2008] [Accepted: 04/06/2008] [Indexed: 11/15/2022]
Abstract
Individuals with homozygous deficiency in cystathionine-beta-synthase (CBS) develop high levels of homocysteine in plasma, a condition known as homocysteinuria. Mental retardation ensues with death in teens; the heterozygous live normally but develop vascular dementia and Alzheimer's disease (AD) in later part of life. The treatment with muscimol, a gamma amino butyric acid receptor-A (GABA(A)) agonist, mitigates the AD syndrome and vascular dementia. We tested the hypothesis that homocysteine (Hcy) antagonizes the GABA(A) receptor and behaves as an excitotoxic neurotransmitter that causes blood brain barrier (BBB) permeability and vascular dementia. The BBB permeability was measured by infusing Evan's blue dye (2% in saline 5 ml/kg concentration) in CBS-/+, GABA(A)-/-, CBS-/+/GABA(A)-/- double knockout, CBS-/+ mice treated with muscimol and wild type (WT) mice. Matrix Metalloproteinase (MMP-2, MMP-9), Tissue Inhibitor of Matrix Metalloproteinase (TIMP-3, TIMP-4), collagen-III and elastin levels were measured in whole brain by Western blot. These results suggested an increase in Evan's blue permeability: CBS-/+<GABA(A)-/-<CBS-/+/GABA(A)-/- compared to WT mice. Interestingly, in CBS-/+ mice treated with muscimol, BBB permeability was significantly decreased compared with the CBS-/+ group. There was a decrease in the TIMP-4 protein expression level, whereas the TIMP-3 level increased in CBS-/+, GABA(A)-/-, and CBS-/+/GABA(A)-/- mice compared to the WT. MMP-2 and MMP-9 expression significantly increased in all the groups compared to the wild type. The results suggested that Hcy caused cerebral interstitial remodeling in brain by distorting the extracellular matrix, thus increasing the blood brain permeability; treatment with muscimol mitigated BBB permeability.
Collapse
Affiliation(s)
- Munish Kumar
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Kuluz J, Huang T, Watson B, Vannucci S. Stroke in the immature brain: review of pathophysiology and animal models of pediatric stroke. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.2.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pediatric stroke research presents many challenges. Relatively low incidence, need for age stratification, diverse etiologies, delays in diagnosis, lack of an established age-based stroke severity scale and outcome measures are only some of the issues that have prevented the implementation of clinical trials in infants and children with stroke. Experimental animal models of pediatric stroke, therefore, are critical to understanding the pathophysiology and management of ischemic brain damage in the immature brain, and provide the necessary platform for future clinical trials. In this review we discuss the pertinent clinical aspects of pediatric stroke, the pathophysiology of stroke in the developing brain and the animal models established to study basic mechanisms as well as translational issues in pediatric stroke.
Collapse
Affiliation(s)
- John Kuluz
- Associate Professor of Pediatrics, University of Miami, Department of Pediatrics (R-131), Miller School of Medicine, PO Box 016960, Miami, FL 33101, USA
| | - Tingting Huang
- Post-Doctoral Research Associate, University of Miami, Department of Pediatrics (R-131), Miller School of Medicine, PO Box 016960 Miami, FL 33101, USA
| | - Brant Watson
- Professor of Neurology, University of Miami, Department of Neurology (D4–5), Miller School of Medicine, PO Box 016960, Miami, FL 33136, USA
| | - Susan Vannucci
- Research Professor of Neuroscience in Pediatrics/Newborn Medicine, Weill Cornell Medical College, 525 East 68th Street, N-506, NY 10065, USA
| |
Collapse
|
135
|
Vilalta A, Sahuquillo J, Poca MA, De Los Rios J, Cuadrado E, Ortega-Aznar A, Riveiro M, Montaner J. Brain contusions induce a strong local overexpression of MMP-9. Results of a pilot study. ACTA NEUROCHIRURGICA. SUPPLEMENT 2008; 102:415-9. [PMID: 19388358 DOI: 10.1007/978-3-211-85578-2_81] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Brain contusions are inflammatory evolutive lesions that induce intracranial pressure increase and edema, contributing to neurological outcome. Matrix metalloproteinases (MMPs) 2 and 9 can degrade the majority of the extracellular matrix components, and are implicated in blood-brain barrier disruption and edema formation. The aim of this study was to investigate MMP-2 and MMP-9 profiles in human brain contusions using zymography. METHODS A prospective study was conducted in 20 traumatic brain injury patients where contusion brain tissue was resected. Brain tissues from lobectomies were used as controls. Brain homogenates were analysed by gelatin zymography and in situ zimography was performed to confirm results, on one control and one brain contusion tissue sample. FINDINGS MMP-2 and MMP-9 levels were higher in brain contusions when compared to controls. MMP-9 was high during the first 24 hours and at 48 to 96 hours, whereas MMP-2 was slightly high at 24 to 96 hours. In situ zymography confirmed gelatin zymography results. A relation between outcome and MMP-9 levels was found; MMP-9 levels were higher in patients with worst outcome. CONCLUSIONS Our results indicate strong time-dependent gelatinase expression primarily from MMP-9, suggesting that the inflammatory response induced by focal lesions should be considered as a new therapeutic target.
Collapse
Affiliation(s)
- A Vilalta
- Neurosurgery and Neurotraumatology Research Unit, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Passeig Vail d'Hebron 119-129, 08035 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Experimental models, neurovascular mechanisms and translational issues in stroke research. Br J Pharmacol 2007; 153 Suppl 1:S396-405. [PMID: 18157168 DOI: 10.1038/sj.bjp.0707626] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Numerous failures in clinical stroke trials have led to some pessimism in the field. This short review examines the following questions: Can experimental models of stroke be validated? How can combination stroke therapies be productively pursued? Can we achieve neuroprotection without reperfusion? And finally, can we move from a pure neurobiology view of stroke towards a more integrative approach targeting all cell types within the entire neurovascular unit? Emerging data from both experimental models and clinical findings suggest that neurovascular mechanisms may provide new opportunities for treating stroke. Ultimately, both bench-to-bedside and bedside-back-to-bench interactions may be required to overcome the translational hurdles for this challenging disease.
Collapse
|
137
|
Abstract
The matrix metalloproteinases (MMPs) are important enzymes that regulate developmental processes, maintain normal physiology in adulthood and have reparative roles at specific stages after an insult to the nervous system. Conversely, the concordant presence and significant upregulation of several MMP members in virtually all neurological conditions result in pathology. Thus, the MMPs have diverse functions, capable of mediating repair and recovery on the one hand and being involved in producing injury on the other. Therefore, targeting MMPs in neurological conditions has become a complicated challenge. This article highlights the beneficial roles of MMPs in normal and reparative processes within the nervous system and discusses the detriments of MMPs encountered in pathology. We review the availability of MMP inhibitors for clinical use and propose that an important consideration for these inhibitors is timing and duration of their use. With acute injuries where a massive upregulation of several MMPs are observed in the early periods after the insult, early and short-term use of broad spectrum MMP inhibitors would seem logical. In chronic conditions where recurrent insults to the CNS are accompanied by prolonged upregulation of MMPs, thereby necessitating the chronic use of medications, the beneficial effects of MMPs in repair may be compromised by the long-term application of MMP inhibitors. In this review we have used spinal cord injury and multiple sclerosis as examples of acute and chronic neurological conditions, respectively, and we consider the use of MMP inhibitors in these states.
Collapse
Affiliation(s)
- V. Wee Yong
- Hotchkiss Brain Institute, Department of Clinical Neurosciences and Oncology, University of Calgary, T2N 4N1 Calgary, Alberta Canada
| | - Smriti M. Agrawal
- Hotchkiss Brain Institute, Department of Clinical Neurosciences and Oncology, University of Calgary, T2N 4N1 Calgary, Alberta Canada
| | - David P. Stirling
- Hotchkiss Brain Institute, Department of Clinical Neurosciences and Oncology, University of Calgary, T2N 4N1 Calgary, Alberta Canada
| |
Collapse
|
138
|
Lapchak PA, Araujo DM. Advances in hemorrhagic stroke therapy: conventional and novel approaches. Expert Opin Emerg Drugs 2007; 12:389-406. [PMID: 17874968 DOI: 10.1517/14728214.12.3.389] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Treatments for spontaneous intracerebral, thrombolytic-induced and intraventricular hemorrhages (IVH) are still at the preclinical or early clinical investigational stages. There has been some renewed interest in the use of surgical evacuation surgery or thrombolytics to remove hematomas, but these techniques can be used only for specific types of brain bleeding. The STICH (Surgical Trial in Intracerebral Haemorrhage) clinical trials should provide some insight into the potential for such techniques to counteract hematoma-induced damage and subsequently, morbidity and mortality. More recently, clinical trials (ATACH [Antihypertensive Treatment in Acute Cerebral Hemorrhage] and INTERACT [Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial]) have begun testing whether or not regulating blood pressure affects the well-being of hemorrhage patients, but the findings thus far have not conclusively demonstrated a positive result. More promising trials, such as the early stage CHANT (Cerebral Hemorrhagic And NXY-059 Treatment) and the late stage FAST (Factor VIIa for Acute Hemorrhagic Stroke Treatment), have addressed whether or not manipulating oxidative stress and components of the blood coagulation cascade can achieve an improved prognosis following spontaneous hemorrhages. However, CHANT was halted prematurely because although it showed that the spin trap agent NXY-059 was safe, it also demonstrated that the drug was ineffective in treating acute ischemic stroke. In addition, the recombinant activated factor VII FAST trial recently concluded with only modestly positive results. Despite a beneficial effect on the primary end point of reducing hemorrhage volume, controlling the coagulation cascade with recombinant factor VIIa did not decrease the mortality rate. Consequently, Novo Nordisk has abandoned further development of the drug for the treatment of intracerebral hemorrhaging. Even though progress in hemorrhage therapy that successfully reduces the escalating morbidity and mortality rate associated with brain bleeding is slow, perseverance and applied translational drug development will eventually be productive. The urgent need for such therapy becomes more evident in light of concerns related to uncontrolled high blood pressure in the general population, increased use of blood thinners by the elderly (e.g., warfarin) and thrombolytics by acute ischemic stroke patients, respectively. The future of drug development for hemorrhage may require a multifaceted approach, such as combining drugs with diverse mechanisms of action. Because of the substantial benefit of factor VIIa in reducing hemorrhage volume, it should be considered as a prime drug candidate included in combination therapy as an off-label use if the FAST trial proves that the risk of thromboembolic events is not increased with drug administration. Other promising drugs that may be considered in combination include uncompetitive NMDA receptor antagonists (such as memantine), antioxidants, metalloprotease inhibitors, statins and erythropoietin analogs, all of which have been shown to reduce hemorrhage and behavioral deficits in one or more animal models.
Collapse
Affiliation(s)
- Paul A Lapchak
- University of California San Diego, Department of Neuroscience, MTF 316, 9500 Gilman Drive, La Jolla, CA 92093-0624, USA.
| | | |
Collapse
|
139
|
|