101
|
Yeh WJ, Hsia SM, Lee WH, Wu CH. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. J Food Drug Anal 2017; 25:84-92. [PMID: 28911546 PMCID: PMC9333423 DOI: 10.1016/j.jfda.2016.10.017] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 10/28/2022] Open
|
102
|
Morgenstern J, Fleming T, Schumacher D, Eckstein V, Freichel M, Herzig S, Nawroth P. Loss of Glyoxalase 1 Induces Compensatory Mechanism to Achieve Dicarbonyl Detoxification in Mammalian Schwann Cells. J Biol Chem 2016; 292:3224-3238. [PMID: 27956549 DOI: 10.1074/jbc.m116.760132] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/02/2016] [Indexed: 11/06/2022] Open
Abstract
The glyoxalase system is a highly specific enzyme system existing in all mammalian cells that is responsible for the detoxification of dicarbonyl species, primarily methylglyoxal (MG). It has been implicated to play an essential role in preventing the increased formation of advanced glycation end products under certain pathological conditions. We have established the first glyoxalase 1 knock-out model (GLO1-/-) in mammalian Schwann cells using the CRISPR/Cas9 technique to investigate compensatory mechanisms. Neither elevated concentrations of MG nor associated protein modifications were observed in GLO1-/- cells. Alternative detoxification of MG in GLO1-/- is achieved by increased catalytic efficiency of aldose reductase toward hemithioacetal (product of glutathione and MG), which is most likely caused by S-nitrosylation of aldose reductase. The hemithioacetal is mainly converted into lactaldehyde, which is paralleled by a loss of reduced glutathione. Inhibition of aldose reductase in GLO1-/- cells is associated with an increased sensitivity against MG, elevated intracellular MG levels, associated modifications, as well as increased oxidative stress. Our data suggest that aldose reductase can compensate for the loss of GLO1. This might be of clinical importance within the context of neuronal diseases caused by an impaired glyoxalase system and elevated levels of dicarbonyl species, such as MG.
Collapse
Affiliation(s)
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry; German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Dagmar Schumacher
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg
| | - Volker Eckstein
- Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410
| | - Marc Freichel
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg
| | - Stephan Herzig
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; German Institute for Diabetes and Cancer (IDC)
| | - Peter Nawroth
- Department of Internal Medicine I and Clinical Chemistry; German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; German Institute for Diabetes and Cancer (IDC)
| |
Collapse
|
103
|
Glyoxalase 1-knockdown in human aortic endothelial cells - effect on the proteome and endothelial function estimates. Sci Rep 2016; 6:37737. [PMID: 27898103 PMCID: PMC5127188 DOI: 10.1038/srep37737] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/01/2016] [Indexed: 11/08/2022] Open
Abstract
Methylglyoxal (MG), an arginine-directed glycating agent, is implicated in diabetic late complications. MG is detoxified by glyoxalase 1 (GLO1) of the cytosolic glyoxalase system. The aim was to investigate the effects of MG accumulation by GLO1-knockdown under hyperglycaemic conditions in human aortic endothelial cells (HAECs) hypothesizing that the accumulation of MG accounts for the deleterious effects on vascular function. SiRNA-mediated knockdown of GLO1 was performed and MG concentrations were determined. The impact of MG on the cell proteome and targets of MG glycation was analysed, and confirmed by Western blotting. Markers of endothelial function and apoptosis were assessed. Collagen content was assayed in cell culture supernatant. GLO1-knockdown increased MG concentration in cells and culture medium. This was associated with a differential abundance of cytoskeleton stabilisation proteins, intermediate filaments and proteins involved in posttranslational modification of collagen. An increase in fibrillar collagens 1 and 5 was detected. The extracellular concentration of endothelin-1 was increased following GLO1-knockdown, whereas the phosphorylation and amount of eNOS was not influenced by GLO1-knockdown. The expression of ICAM-1, VCAM-1 and of MCP-1 was elevated and apoptosis was increased. MG accumulation by GLO1-knockdown provoked collagen expression, endothelial inflammation and dysfunction and apoptosis which might contribute to vascular damage.
Collapse
|
104
|
CHOP deficiency inhibits methylglyoxal-induced endothelial dysfunction. Biochem Biophys Res Commun 2016; 480:362-368. [DOI: 10.1016/j.bbrc.2016.10.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/17/2016] [Indexed: 11/20/2022]
|
105
|
Nam DH, Han JH, Kim S, Shin Y, Lim JH, Choi HC, Woo CH. Activated protein C prevents methylglyoxal-induced endoplasmic reticulum stress and cardiomyocyte apoptosis via regulation of the AMP-activated protein kinase signaling pathway. Biochem Biophys Res Commun 2016; 480:622-628. [PMID: 27794481 DOI: 10.1016/j.bbrc.2016.10.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 12/13/2022]
Abstract
Previous epidemiological studies have shown that methylglyoxal (MGO) levels are highly regulated in diabetic cardiovascular diseases. We have also previously reported that MGO mediates ER stress and apoptosis in cardiomyocytes. Furthermore, activated protein C (APC) has recently been shown to play a protective role against ER stress, as well as a cardioprotective role against ischemia and reperfusion injury by augmenting the AMP-activated protein kinase (AMPK) signaling pathway. Therefore, we hypothesized that APC protects against MGO-induced cardiomyocyte apoptosis through the inhibition of ER stress. Our results showed that APC inhibited MGO-induced cardiomyocyte apoptosis and ER stress-related gene expression. Additionally, APC inhibited MGO-induced Ca2+ mobilization and the generation of reactive oxygen species. In contrast, inhibitors of AMPK signaling abolished the cytoprotective effects of APC. Collectively, these data depict a pivotal role for AMPK signaling in inhibiting ER stress responses via the activation of APC during MGO-induced cardiomyocyte apoptosis. Thus, APC may be a potential novel therapeutic target for the management of diabetic cardiovascular complications such as diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Dae-Hwan Nam
- Department of Pharmacology and Smart-aging Convergence Research Center, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu, Republic of Korea
| | - Jung-Hwa Han
- Department of Pharmacology and Smart-aging Convergence Research Center, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu, Republic of Korea
| | - Suji Kim
- Department of Pharmacology and Smart-aging Convergence Research Center, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu, Republic of Korea
| | - YoungHyun Shin
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University School of Medicine, 911-1 Mok-dong, Seoul, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology and Smart-aging Convergence Research Center, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu, Republic of Korea
| | - Chang-Hoon Woo
- Department of Pharmacology and Smart-aging Convergence Research Center, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu, Republic of Korea.
| |
Collapse
|
106
|
Rabbani N, Xue M, Thornalley PJ. Dicarbonyls and glyoxalase in disease mechanisms and clinical therapeutics. Glycoconj J 2016; 33:513-25. [PMID: 27406712 PMCID: PMC4975768 DOI: 10.1007/s10719-016-9705-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022]
Abstract
The reactive dicarbonyl metabolite methylglyoxal (MG) is the precursor of the major quantitative advanced glycation endproducts (AGEs) in physiological systems - arginine-derived hydroimidazolones and deoxyguanosine-derived imidazopurinones. The glyoxalase system in the cytoplasm of cells provides the primary defence against dicarbonyl glycation by catalysing the metabolism of MG and related reactive dicarbonyls. Dicarbonyl stress is the abnormal accumulation of dicarbonyl metabolites leading to increased protein and DNA modification contributing to cell and tissue dysfunction in ageing and disease. It is produced endogenously by increased formation and/or decreased metabolism of dicarbonyl metabolites. Dicarbonyl stress contributes to ageing, disease and activity of cytotoxic chemotherapeutic agents. It contributes to ageing through age-related decline in glyoxalase 1 (Glo-1) activity. Glo-1 has a dual role in cancer as a tumour suppressor protein prior to tumour development and mediator of multi-drug resistance in cancer treatment, implicating dicarbonyl glycation of DNA in carcinogenesis and dicarbonyl-driven cytotoxicity in mechanism of action of anticancer drugs. Glo-1 is a driver of cardiovascular disease, likely through dicarbonyl stress-driven dyslipidemia and vascular cell dysfunction. Dicarbonyl stress is also a contributing mediator of obesity and vascular complications of diabetes. There are also emerging roles in neurological disorders. Glo-1 responds to dicarbonyl stress to enhance cytoprotection at the transcriptional level through stress-responsive increase of Glo-1 expression. Small molecule Glo-1 inducers are in clinical development for improved metabolic, vascular and renal health and Glo-1 inhibitors in preclinical development for multidrug resistant cancer chemotherapy.
Collapse
Affiliation(s)
- Naila Rabbani
- Warwick Systems Biology Centre, Coventry House, University of Warwick, Coventry, CV4 7AL, UK
| | - Mingzhan Xue
- Glyoxalase Research Group, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, CV2 2DX, UK
| | - Paul J Thornalley
- Warwick Systems Biology Centre, Coventry House, University of Warwick, Coventry, CV4 7AL, UK.
- Glyoxalase Research Group, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, CV2 2DX, UK.
| |
Collapse
|
107
|
Wang B, Aw TY, Stokes KY. The protection conferred against ischemia-reperfusion injury in the diabetic brain by N-acetylcysteine is associated with decreased dicarbonyl stress. Free Radic Biol Med 2016; 96:89-98. [PMID: 27083477 PMCID: PMC5079522 DOI: 10.1016/j.freeradbiomed.2016.03.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 01/08/2023]
Abstract
Diabetes, a risk factor for stroke, leads to elevated blood methylglyoxal (MG) levels. This is due to increased MG generation from the high glucose levels, and because diabetes impairs the glutathione (GSH)-glyoxalase system for MG elimination. MG glycates proteins and causes dicarbonyl stress. We investigated the contribution of MG and GSH to stroke outcome. Cerebral ischemia/reperfusion was performed in chemical-induced (streptozotocin) and genetic Akita mouse models of Type 1 diabetes. Brain infarction and functions of the GSH-dependent MG elimination pathway were determined. Diabetes increased post-ischemia-reperfusion cerebral infarct area in association with elevated MG and diminished GSH levels. Infarct size correlated with brain MG-to-GSH ratio. Expression of glutamate-cysteine ligase catalytic subunit (GCLc) was increased in diabetic brain. GCL activity was unchanged. MG-adducts were elevated in the diabetic brain and, using immunoprecipitation, we identified one of the bands as glycated occludin. This was accompanied by increased blood-brain barrier permeability. Total protein carbonyls were elevated, indicative of oxidative/carbonyl stress. N-acetylcysteine (NAC) corrected MG-to-GSH ratio, and reduced diabetic brain infarct area, occludin glycation and permeability. In addition, protein carbonyls were decreased by NAC. We showed that the diabetic brain exhibited a lower GSH-dependent potential for MG elimination, which contributed to increased protein glycation, and oxidative/carbonyl stress. The consequence of these changes was aggravated post-stroke brain injury. NAC administration protected against the exacerbated brain damage via restored GSH generation and normalization of the MG-to-GSH ratio and possibly by attenuating oxidative/carbonyl stress. This treatment could contribute to the successful management of stroke risk/outcome in diabetes.
Collapse
Affiliation(s)
- Bin Wang
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, 1501 Kings Hwy, Shreveport, LA 71130, USA; Center for Cardiovascular Diseases and Sciences, LSU Health Sciences Center, 1501 Kings Hwy, Shreveport, LA 71130, USA; Department of Geriatrics, Union hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tak Yee Aw
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, 1501 Kings Hwy, Shreveport, LA 71130, USA; Center for Cardiovascular Diseases and Sciences, LSU Health Sciences Center, 1501 Kings Hwy, Shreveport, LA 71130, USA
| | - Karen Y Stokes
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, 1501 Kings Hwy, Shreveport, LA 71130, USA; Center for Cardiovascular Diseases and Sciences, LSU Health Sciences Center, 1501 Kings Hwy, Shreveport, LA 71130, USA; Center for Molecular and Tumor Virology, LSU Health Sciences Center, 1501 Kings Hwy, Shreveport, LA 71130, USA.
| |
Collapse
|
108
|
Abstract
The glyoxalase system in the cytoplasm of cells provides the primary defence against glycation by methylglyoxal catalysing its metabolism to D-lactate. Methylglyoxal is the precursor of the major quantitative advanced glycation endproducts in physiological systems - arginine-derived hydroimidazolones and deoxyguanosine-derived imidazopurinones. Glyoxalase 1 of the glyoxalase system was linked to anthropometric measurements of obesity in human subjects and to body weight in strains of mice. Recent conference reports described increased weight gain on high fat diet-fed mouse with lifelong deficiency of glyoxalase 1 deficiency, compared to wild-type controls, and decreased weight gain in glyoxalase 1-overexpressing transgenic mice, suggesting a functional role of glyoxalase 1 and dicarbonyl stress in obesity. Increased methylglyoxal, dicarbonyl stress, in white adipose tissue and liver may be a mediator of obesity and insulin resistance and thereby a risk factor for development of type 2 diabetes and non-alcoholic fatty liver disease. Increased methylglyoxal formation from glyceroneogenesis on adipose tissue and liver and decreased glyoxalase 1 activity in obesity likely drives dicarbonyl stress in white adipose tissue increasing the dicarbonyl proteome and related dysfunction. The clinical significance will likely emerge from on-going clinical evaluation of inducers of glyoxalase 1 expression in overweight and obese subjects. Increased transcapillary escape rate of albumin and increased total body interstitial fluid volume in obesity likely makes levels of glycation of plasma protein unreliable indicators of glycation status in obesity as there is a shift of albumin dwell time from plasma to interstitial fluid, which decreases overall glycation for a given glycemic exposure.
Collapse
|
109
|
Mangiferin Upregulates Glyoxalase 1 Through Activation of Nrf2/ARE Signaling in Central Neurons Cultured with High Glucose. Mol Neurobiol 2016; 54:4060-4070. [PMID: 27318675 DOI: 10.1007/s12035-016-9978-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
Mangiferin, a natural C-glucoside xanthone, has anti-inflammatory, anti-oxidative, neuroprotective actions. Our previous study showed that mangiferin could attenuate diabetes-associated cognitive impairment of rats by enhancing the function of glyoxalase 1 (Glo-1) in brain. The aim of this study was to investigate whether Glo-1 upregulation by mangiferin in central neurons exposed to chronic high glucose may be related to activation of Nrf2/ARE pathway. Compared with normal glucose (25 mmol/L) culture, Glo-1 protein, mRNA, and activity levels were markedly decreased in primary hippocampal and cerebral cortical neurons cultured with high glucose (50 mmol/L) for 72 h, accompanied by the declined Nrf2 nuclear translocation and protein expression of Nrf2 in cell nucleus, as well as protein expression and mRNA level of γ-glutamylcysteine synthetase (γ-GCS) and superoxide dismutase activity, target genes of Nrf2/ARE signaling. Nonetheless, high glucose cotreating with mangiferin or sulforaphane, a typical inducer of Nrf2 activation, attenuated the above changes in both central neurons. In addition, mangiferin and sulforaphane significantly prevented the formation of advanced glycation end-products (AGEs) reflecting Glo-1 activity, while elevated the level of glutathione, a cofactor of Glo-1 activity and production of γ-GCS, in high glucose cultured central neurons. These findings demonstrated that Glo-1 was greatly downregulated in central neurons exposed to chronic high glucose, which is expected to lead the formation of AGEs and oxidative stress damages. We also proved that mangiferin enhanced the function of Glo-1 under high glucose condition by inducing activation of Nrf2/ARE signaling pathway.
Collapse
|
110
|
Furst JR, Bandeira LC, Fan WW, Agarwal S, Nishiyama KK, McMahon DJ, Dworakowski E, Jiang H, Silverberg SJ, Rubin MR. Advanced Glycation Endproducts and Bone Material Strength in Type 2 Diabetes. J Clin Endocrinol Metab 2016; 101:2502-10. [PMID: 27115060 PMCID: PMC4891790 DOI: 10.1210/jc.2016-1437] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CONTEXT Skeletal deterioration, leading to an increased risk of fracture, is a known complication of type 2 diabetes mellitus (T2D). Yet plausible mechanisms to account for skeletal fragility in T2D have not been clearly established. OBJECTIVE The objective of the study was to determine whether bone material properties, as measured by reference point indentation, and advanced glycation endproducts (AGEs), as determined by skin autofluorescence (SAF), are related in patients with T2D. DESIGN This was a cross-sectional study. SETTING The study was conducted at a tertiary medical center. PATIENTS Sixteen postmenopausal women with T2D and 19 matched controls participated in the study. MAIN OUTCOME MEASURES Bone material strength index (BMSi) by in vivo reference point indentation, AGE accumulation by SAF, and circulating bone turnover markers were measured. RESULTS BMSi was reduced by 9.2% in T2D (P = .02) and was inversely associated with the duration of T2D (r = -0.68, P = .004). Increased SAF was associated with reduced BMSi (r = -0.65, P = .006) and lower bone formation marker procollagen type 1 amino-terminal propeptide (r = -0.63, P = .01) in T2D, whereas no associations were seen in controls. SAF accounted for 26% of the age-adjusted variance in BMSi in T2D (P = .03). CONCLUSIONS Bone material properties are impaired in postmenopausal women with T2D as determined by reference point indentation. The results suggest a role for the accumulation of AGEs to account for inferior BMSi in T2D.
Collapse
Affiliation(s)
- Jessica R Furst
- Department of Medicine, Metabolic Bone Diseases Unit, Division of Endocrinology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Leonardo C Bandeira
- Department of Medicine, Metabolic Bone Diseases Unit, Division of Endocrinology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Wen-Wei Fan
- Department of Medicine, Metabolic Bone Diseases Unit, Division of Endocrinology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Sanchita Agarwal
- Department of Medicine, Metabolic Bone Diseases Unit, Division of Endocrinology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Kyle K Nishiyama
- Department of Medicine, Metabolic Bone Diseases Unit, Division of Endocrinology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Donald J McMahon
- Department of Medicine, Metabolic Bone Diseases Unit, Division of Endocrinology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Elzbieta Dworakowski
- Department of Medicine, Metabolic Bone Diseases Unit, Division of Endocrinology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Hongfeng Jiang
- Department of Medicine, Metabolic Bone Diseases Unit, Division of Endocrinology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Shonni J Silverberg
- Department of Medicine, Metabolic Bone Diseases Unit, Division of Endocrinology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Mishaela R Rubin
- Department of Medicine, Metabolic Bone Diseases Unit, Division of Endocrinology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| |
Collapse
|
111
|
Tsekovska R, Sredovska-Bozhinov A, Niwa T, Ivanov I, Mironova R. Maillard reaction and immunogenicity of protein therapeutics. World J Immunol 2016; 6:19-38. [DOI: 10.5411/wji.v6.i1.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 11/24/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023] Open
Abstract
The recombinant DNA technology enabled the production of a variety of human therapeutic proteins. Accumulated clinical experience, however, indicates that the formation of antibodies against such proteins is a general phenomenon rather than an exception. The immunogenicity of therapeutic proteins results in inefficient therapy and in the development of undesired, sometimes life-threatening, side reactions. The human proteins, designed for clinical application, usually have the same amino acid sequence as their native prototypes and it is not yet fully clear what the reasons for their immunogenicity are. In previous studies we have demonstrated for the first time that interferon-β (IFN-β) pharmaceuticals, used for treatment of patients with multiple sclerosis, do contain advanced glycation end products (AGEs) that contribute to IFN-β immunogenicity. AGEs are the final products of a chemical reaction known as the Maillard reaction or glycation, which implication in protein drugs’ immunogenicity has been overlooked so far. Therefore, the aim of the present article is to provide a comprehensive overview on the Maillard reaction with emphasis on experimental data and theoretical consideration telling us why the Maillard reaction warrants special attention in the context of the well-documented protein drugs’ immunogenicity.
Collapse
|
112
|
Choi EM, Suh KS, Kim YJ, Hong SM, Park SY, Chon S. Glabridin Alleviates the Toxic Effects of Methylglyoxal on Osteoblastic MC3T3-E1 Cells by Increasing Expression of the Glyoxalase System and Nrf2/HO-1 Signaling and Protecting Mitochondrial Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:226-235. [PMID: 26670935 DOI: 10.1021/acs.jafc.5b05157] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Methylglyoxal (MG) contributes to the pathogenesis of age- and diabetes-associated complications. The present study investigated the effects of glabridin on MG-induced cytotoxicity in MC3T3-E1 osteoblastic cells. MC3T3-E1 cells were treated with glabridin in the presence of MG, and markers of mitochondrial function and oxidative damage were examined. Pretreatment of MC3T3-E1 osteoblastic cells with glabridin prevented MG-induced cell death, the production of intracellular reactive oxygen species and mitochondrial superoxides, cardiolipin peroxidation, and the production of inflammatory cytokines. The soluble form of receptor for advanced glycation end products (sRAGEs)/RAGE ratio increased upon MG treatment, but less so after pretreatment with glabridin, which also increased the level of reduced glutathione and the activities of glyoxalase I and heme oxygenase-1, all of which were reduced by MG. In addition, glabridin elevated the level of nuclear factor erythroid 2-related factor 2. These findings suggest that glabridin protects against MG-induced cell damage by inhibiting oxidative stress and increasing MG detoxification. Pretreatment of MC3T3-E1 osteoblastic cells with glabridin reduced MG-induced mitochondrial dysfunction. Additionally, the nitric oxide level significantly increased upon glabridin pretreatment. Together, these data show that glabridin may potentially serve to prevent the development of diabetic bone disease associated with MG-induced oxidative stress.
Collapse
Affiliation(s)
- Eun Mi Choi
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University , 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Kwang Sik Suh
- Research Institute of Endocrinology, Kyung Hee University Hospital , 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-702, Republic of Korea
| | - Yu Jin Kim
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University , 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Soo Min Hong
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University , 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University , Hoegi-dong, Dongdaemun-gu, Seoul 130-702, Republic of Korea
| | - So Yong Park
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University , 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University , 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| |
Collapse
|
113
|
Roy A, Hashmi S, Li Z, Dement AD, Cho KH, Kim JH. The glucose metabolite methylglyoxal inhibits expression of the glucose transporter genes by inactivating the cell surface glucose sensors Rgt2 and Snf3 in yeast. Mol Biol Cell 2016; 27:862-71. [PMID: 26764094 PMCID: PMC4803311 DOI: 10.1091/mbc.e15-11-0789] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/05/2016] [Indexed: 01/04/2023] Open
Abstract
Methylglyoxal (MG) is a cytotoxic by-product of glycolysis. MG inhibits the growth of glucose-fermenting yeast cells by inhibiting glycolysis. MG does so by inducing endocytosis and degradation of the cell-surface glucose sensors Rgt2 and Snf3, which are required for glucose induction of HXT (glucose transporter) gene expression. Methylglyoxal (MG) is a cytotoxic by-product of glycolysis. MG has inhibitory effect on the growth of cells ranging from microorganisms to higher eukaryotes, but its molecular targets are largely unknown. The yeast cell-surface glucose sensors Rgt2 and Snf3 function as glucose receptors that sense extracellular glucose and generate a signal for induction of expression of genes encoding glucose transporters (HXTs). Here we provide evidence that these glucose sensors are primary targets of MG in yeast. MG inhibits the growth of glucose-fermenting yeast cells by inducing endocytosis and degradation of the glucose sensors. However, the glucose sensors with mutations at their putative ubiquitin-acceptor lysine residues are resistant to MG-induced degradation. These results suggest that the glucose sensors are inactivated through ubiquitin-mediated endocytosis and degraded in the presence of MG. In addition, the inhibitory effect of MG on the glucose sensors is greatly enhanced in cells lacking Glo1, a key component of the MG detoxification system. Thus the stability of these glucose sensors seems to be critically regulated by intracellular MG levels. Taken together, these findings suggest that MG attenuates glycolysis by promoting degradation of the cell-surface glucose sensors and thus identify MG as a potential glycolytic inhibitor.
Collapse
Affiliation(s)
- Adhiraj Roy
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Science, Washington, DC 20037
| | - Salman Hashmi
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Science, Washington, DC 20037
| | - Zerui Li
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Science, Washington, DC 20037
| | - Angela D Dement
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Kyu Hong Cho
- Department of Biology, Indiana State University, Terre Haute, IN 47809
| | - Jeong-Ho Kim
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Science, Washington, DC 20037
| |
Collapse
|
114
|
Suh KS, Chon S, Choi EM. Protective effects of honokiol against methylglyoxal-induced osteoblast damage. Chem Biol Interact 2016; 244:169-77. [DOI: 10.1016/j.cbi.2015.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/14/2015] [Accepted: 12/21/2015] [Indexed: 12/29/2022]
|
115
|
Aftab MF, Afridi SK, Ghaffar S, Murtaza M, Khan M, Karim A, Khan KM, Waraich RS. A bis-Schiff base of isatin improves methylglyoxal mediated insulin resistance in skeletal muscle cells. Arch Pharm Res 2015:10.1007/s12272-015-0670-z. [PMID: 26519157 DOI: 10.1007/s12272-015-0670-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/03/2015] [Indexed: 10/22/2022]
Abstract
Methylglyoxal (MGO) is a highly reactive advanced glycation end products (AGEs) precursor and its abnormal accumulation causes damage to various tissues and organs. In our previous study, we synthesized a novel MGO inhibitor, MK-I-81, a bis-Schiff base derivative of isatin. In this study we demonstrate the mechanism of action of MK-I-81, on insulin resistance in skeletal muscle cells. MK-I-81 reduced AGEs formation and restored proximal insulin signaling by modulating IRS-1 phosphorylation. MK-I-81 also alleviated MGO mediated diminished distal insulin signaling by increasing protein kinase B and glycogen synthase kinase 3-beta phosphorylation. We also observed that MK-I-81 prevented reduced glucose uptake and glycogen synthesis induced by MGO in muscle cells. We found that the mechanism of action by which MK-I-81 reduced insulin resistance was suppression of production of MGO mediated ROS production in C2C12 cells. We evaluated deactivation of PKC-α and receptor for advanced glycation end products (RAGE) after treatment of cells with MK-I-81. MK-I-81 also reduced MGO mediated IRS-1, PKC-α and RAGE interaction in muscle cells. MK-I-81 also promoted nuclear factor erythroid 2-related factor-2 phosphorylation, heme oxygenase-1 and glyoxalase expression levels. We conclude that MK-I-81 can be a potential therapeutic target to address AGEs mediated insulin resistance. A novel Advanced Glycation End products (AGEs) inhibitor, MK-I-81 (a bis Schiff base of isatin), restored AGEs mediated down regulation of insulin signaling via modulating key molecules of proximal and distal insulin signaling. MK-I-81 also increased glucose uptake and glycogen synthesis in muscle cells. Novel bis-Schiff base of isatin showed significant antioxidant activity and also reduced receptor for AGEs (RAGE) expression and PKC-alpha activation therefore; MK-I-81 reduces AGEs induced insulin resistance.
Collapse
Affiliation(s)
- Meha Fatima Aftab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shabbir Khan Afridi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Safina Ghaffar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Munazza Murtaza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Momin Khan
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Aneela Karim
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Khalid Mohammed Khan
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Rizwana Sanaullah Waraich
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
116
|
Zhou J, Ueda K, Zhao J, Sparrow JR. Correlations between Photodegradation of Bisretinoid Constituents of Retina and Dicarbonyl Adduct Deposition. J Biol Chem 2015; 290:27215-27227. [PMID: 26400086 DOI: 10.1074/jbc.m115.680363] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Indexed: 01/10/2023] Open
Abstract
Non-enzymatic collagen cross-linking and carbonyl adduct deposition are features of Bruch's membrane aging in the eye, and disturbances in extracellular matrix turnover are considered to contribute to Bruch's membrane thickening. Because bisretinoid constituents of the lipofuscin of retinal pigment epithelial (RPE) cells are known to photodegrade to mixtures of aldehyde-bearing fragments and small dicarbonyls (glyoxal (GO) and methylglyoxal (MG)), we investigated RPE lipofuscin as a source of the reactive species that covalently modify protein side chains. Abca4(-/-) and Rdh8(-/-)/Abca4(-/-) mice that are models of accelerated bisretinoid formation were studied and pre-exposure of mice to 430 nm light enriched for dicarbonyl release by bisretinoid photodegradation. MG protein adducts were elevated in posterior eyecups of mutant mice, whereas carbonylation of an RPE-specific protein was observed in Abca4(-/-) but not in wild-type mice under the same conditions. Immunolabeling of cryostat-sectioned eyes harvested from Abca4(-/-) mice revealed that carbonyl adduct deposition in Bruch's membrane was accentuated. Cell-based assays corroborated these findings in mice. Moreover, the receptor for advanced glycation end products that recognizes MG and GO adducts and glyoxylase 1 that metabolizes MG and GO were up-regulated in Abca4(-/-) mice. Additionally, in acellular assays, peptides were cross-linked in the presence of A2E (adduct of two vitamin A aldehyde and ethanolamine) photodegradation products, and in a zymography assay, reaction of collagen IV with products of A2E photodegradation resulted in reduced cleavage by the matrix metalloproteinases MMP2 and MMP9. In conclusion, these mechanistic studies demonstrate a link between the photodegradation of RPE bisretinoid fluorophores and aging changes in underlying Bruch's membrane that can confer risk of age-related macular degeneration.
Collapse
Affiliation(s)
- Jilin Zhou
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York 10032
| | - Keiko Ueda
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York 10032
| | - Jin Zhao
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York 10032
| | - Janet R Sparrow
- Departments of Ophthalmology, Columbia University Medical Center, New York, New York 10032; Departments of Pathology and Cell Biology, Columbia University Medical Center, New York, New York 10032.
| |
Collapse
|
117
|
Stinghen AEM, Massy ZA, Vlassara H, Striker GE, Boullier A. Uremic Toxicity of Advanced Glycation End Products in CKD. J Am Soc Nephrol 2015; 27:354-70. [PMID: 26311460 DOI: 10.1681/asn.2014101047] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Advanced glycation end products (AGEs), a heterogeneous group of compounds formed by nonenzymatic glycation reactions between reducing sugars and amino acids, lipids, or DNA, are formed not only in the presence of hyperglycemia, but also in diseases associated with high levels of oxidative stress, such as CKD. In chronic renal failure, higher circulating AGE levels result from increased formation and decreased renal clearance. Interactions between AGEs and their receptors, including advanced glycation end product-specific receptor (RAGE), trigger various intracellular events, such as oxidative stress and inflammation, leading to cardiovascular complications. Although patients with CKD have a higher burden of cardiovascular disease, the relationship between AGEs and cardiovascular disease in patients with CKD is not fully characterized. In this paper, we review the various deleterious effects of AGEs in CKD that lead to cardiovascular complications and the role of these AGEs in diabetic nephropathy. We also discuss potential pharmacologic approaches to circumvent these deleterious effects by reducing exogenous and endogenous sources of AGEs, increasing the breakdown of existing AGEs, or inhibiting AGE-induced inflammation. Finally, we speculate on preventive and therapeutic strategies that focus on the AGE-RAGE axis to prevent vascular complications in patients with CKD.
Collapse
Affiliation(s)
- Andréa E M Stinghen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U-1088, Jules Verne University of Picardie, Amiens, France
| | - Ziad A Massy
- Institut National de la Santé et de la Recherche Médicale (INSERM) U-1088, Jules Verne University of Picardie, Amiens, France; Division of Nephrology, Ambroise Paré University Medical Center, Assistance Publique-Hôpitaux de Paris (APHP), University of Paris Ouest, University Versailles-Saint Quentin, Boulogne Billancourt/Paris, France
| | - Helen Vlassara
- Division of Experimental Diabetes and Aging, Departments of Geriatrics and Palliative Care and Medicine and Division of Experimental Diabetes and Aging, Department of Geriatrics and Aging and Division of Nephrology, Department of Medicine, Icahn School of Medicine, New York, New York; and
| | - Gary E Striker
- Division of Experimental Diabetes and Aging, Departments of Geriatrics and Palliative Care and Medicine and Division of Experimental Diabetes and Aging, Department of Geriatrics and Aging and Division of Nephrology, Department of Medicine, Icahn School of Medicine, New York, New York; and
| | - Agnès Boullier
- Institut National de la Santé et de la Recherche Médicale (INSERM) U-1088, Jules Verne University of Picardie, Amiens, France; Biochemistry Laboratory, Amiens University Medical Center, Amiens, France
| |
Collapse
|
118
|
Yin MC. Inhibitory effects and actions of pentacyclic triterpenes upon glycation. Biomedicine (Taipei) 2015; 5:13. [PMID: 26260291 PMCID: PMC4530523 DOI: 10.7603/s40681-015-0013-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022] Open
Abstract
Pentacyclic triterpenic compounds including asiatic, betulinic, maslinic, oleanolic and ursolic acid occur naturally in many herbs and plant foods. It is well known that these triterpenoids possess anti-oxidative and anti-inflammatory activities. Furthermore, recent in vitro and in vivo researches indicated that these compounds could inhibit the production of advanced glycation end-products (AGEs). The impact of these triterpenes upon the activity and protein expression of enzymes involved in polyol pathway including aldose reductase and sorbitol dehydrogenase has been examined, and positive results are reported. These studies suggest that certain triterpenes are potent anti-glycative agents, and may benefit the prevention and/or therapy of glycation-related diseases such as diabetes mellitus and Alzheimer’s disease. In this review article, the anti-glycative activity and action mode of certain triterpenes are highlighted. These information may promote the anti-glycative application of these natural compounds.
Collapse
Affiliation(s)
- Mei-Chin Yin
- Department of Nutrition, China Medical University, 16th Floor, No. 91, Hsueh-Shih Road, 404, Taichung, Taiwan,
| |
Collapse
|
119
|
Abstract
Over the years, new research has elucidated the importance of the very fast formation of AGEs by the highly reactive methylglyoxal (MGO). It has become clear that MGO triggers maladaptive responses in vascular tissue. To counteract the deleterious effects of MGO, organisms have an enzymatic glyoxalase defence system in which MGO is converted to D-lactate, with glyoxalase 1 (GLO1) as the key enzyme in this system. Significant progress has been made towards the understanding of the MGO-GLO1 pathway in the pathogenesis of vascular disease in diabetes. This commentary highlights some lines of current research and future perspectives. The work conducted so far is only the starting point--in the coming 50 years, the MGO-GLO1 pathway will be the subject of intensified research, with special focus on pathophysiological pathways, the use of this system for early screening and risk prediction, and the development of intervention strategies for preventing vascular complications in people with and without diabetes. This is one of a series of commentaries under the banner '50 years forward', giving personal opinions on future perspectives in diabetes, to celebrate the 50th anniversary of Diabetologia (1965-2015).
Collapse
Affiliation(s)
- Casper G Schalkwijk
- Department of Internal Medicine, Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre (MUMC), Peter Debeyelaan 25, PO Box 5800, 6202 AZ, Maastricht, the Netherlands,
| |
Collapse
|
120
|
Yadav A, Kumar R, Sunkaria A, Singhal N, Kumar M, Sandhir R. Evaluation of potential flavonoid inhibitors of glyoxalase-I based on virtual screening and in vitro studies. J Biomol Struct Dyn 2015; 34:993-1007. [PMID: 26108947 DOI: 10.1080/07391102.2015.1064830] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Glyoxalase-I (GLO-I) is a component of the ubiquitous detoxification system involved in the conversion of methylglyoxal (MG) to d-lactate in the glycolytic pathway. MG toxicity arises from its ability to form advanced glycation end products. GLO-I has been reported to be frequently overexpressed in various types of cancer cells. In this study, we performed structure-based virtual screening of focused flavonoids commercial library to identify potential and specific inhibitors of GLO-I. The compounds were ranked based on Glide extra precision docking score and five hits (curcumin, quercetin, morin, naringin and silibinin) were selected on the basis of their interaction with active site amino acid residues of GLO-I. Mixed mode QM/MM calculation was performed on the top-scoring hit to ascertain the role of zinc ion in ligand binding. In addition, the identified hits were subjected to MM/GBSA binding energy prediction, ADME prediction and similarity studies. The hits were tested in vitro for cell viability, and GLO-I inhibition. Naringin (ST072162) was found to be most potent inhibitor of GLO-I among the identified hits with highest glide XP dock score of -14.906. These findings suggest that naringin could be a new scaffold for designing inhibitors against GLO-I with potential application as anticancer agents.
Collapse
Affiliation(s)
- Aarti Yadav
- a Department of Biochemistry , Panjab University , Chandigarh , India
| | - Rajnish Kumar
- b University Institute of Pharmaceutical Sciences , Panjab University , Chandigarh , India
| | - Aditya Sunkaria
- a Department of Biochemistry , Panjab University , Chandigarh , India
| | - Nitin Singhal
- c Department of Food Science and Technology , National Agri-Food Biotechnology Institute , Mohali , India
| | - Manoj Kumar
- b University Institute of Pharmaceutical Sciences , Panjab University , Chandigarh , India
| | - Rajat Sandhir
- a Department of Biochemistry , Panjab University , Chandigarh , India
| |
Collapse
|
121
|
Abstract
Molecular, catalytic and structural properties of glyoxalase pathway enzymes of many species are now known. Current research has focused on the regulation of activity and expression of Glo1 (glyoxalase I) and Glo2 (glyoxalase II) and their role in health and disease. Human GLO1 has MRE (metal-response element), IRE (insulin-response element), E2F4 (early gene 2 factor isoform 4), AP-2α (activating enhancer-binding protein 2α) and ARE (antioxidant response-element) regulatory elements and is a hotspot for copy number variation. The human Glo2 gene, HAGH (hydroxyacylglutathione hydrolase), has a regulatory p53-response element. Glo1 is linked to healthy aging, obesity, diabetes and diabetic complications, chronic renal disease, cardiovascular disease, other disorders and multidrug resistance in cancer chemotherapy. Mathematical modelling of the glyoxalase pathway predicts that pharmacological levels of increased Glo1 activity markedly decrease cellular methylglyoxal and related glycation, and pharmacological Glo1 inhibition markedly increases cellular methylglyoxal and related glycation. Glo1 inducers are in development to sustain healthy aging and for treatment of vascular complications of diabetes and other disorders, and cell-permeant Glo1 inhibitors are in development for treatment of multidrug-resistant tumours, malaria and potentially pathogenic bacteria and fungi.
Collapse
|
122
|
Nam DH, Han JH, Lee TJ, Shishido T, Lim JH, Kim GY, Woo CH. CHOP deficiency prevents methylglyoxal-induced myocyte apoptosis and cardiac dysfunction. J Mol Cell Cardiol 2015; 85:168-77. [PMID: 26027784 DOI: 10.1016/j.yjmcc.2015.05.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 05/05/2015] [Accepted: 05/22/2015] [Indexed: 12/23/2022]
Abstract
Epidemiological studies indicate that methylglyoxal (MGO) plasma levels are closely linked to diabetes and the exacerbation of diabetic cardiovascular complications. Recently, it was established that endoplasmic reticulum (ER) stress importantly contributes to the pathogenesis of diabetes and its cardiovascular complications. The objective of this study was to explore the mechanism by which diabetes instigates cardiomyocyte apoptosis and cardiac dysfunction via MGO-mediated myocyte apoptosis. Intriguingly, the MGO activated unfolded protein response pathway accompanying apoptotic events, such as cleavages of PARP-1 and caspase-3. In addition, Western blot analysis revealed that MGO-induced myocyte apoptosis was inhibited by depletion of CHOP with siRNA against Ddit3, the gene name for rat CHOP. To investigate the physiologic roles of CHOP in vivo, glucose tolerance and cardiac dysfunction were assessed in CHOP-deficient mice. No significant difference was observed between CHOP KO and littermate naïve controls in terms of the MGO-induced impairment of glucose tolerance. In contrast, myocyte apoptosis, inflammation, and cardiac dysfunction were significantly diminished in CHOP KO compared with littermate naïve controls. These results showed that CHOP is the key signal for myocyte apoptosis and cardiac dysfunction induced by MGO. These findings suggest a therapeutic potential of CHOP inhibition in the management of diabetic cardiovascular complications including diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Dae-Hwan Nam
- Department of Pharmacology, Yeungnam University College of Medicine, 317-1 Daemyung-dong, Daegu, Republic of Korea
| | - Jung-Hwa Han
- Department of Pharmacology, Yeungnam University College of Medicine, 317-1 Daemyung-dong, Daegu, Republic of Korea
| | - Tae-Jin Lee
- Department of Anatomy, Yeungnam University College of Medicine, 317-1 Daemyung-dong, Daegu, Republic of Korea
| | - Tetsuro Shishido
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University School of Medicine, 911-1 Mok-dong, Seoul, Republic of Korea
| | - Geun-Young Kim
- Division of Cardiovascular and Rare Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Chang-Hoon Woo
- Department of Pharmacology, Yeungnam University College of Medicine, 317-1 Daemyung-dong, Daegu, Republic of Korea.
| |
Collapse
|
123
|
The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clin Sci (Lond) 2015; 128:839-61. [PMID: 25818485 DOI: 10.1042/cs20140683] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The formation and accumulation of advanced glycation endproducts (AGEs) are related to diabetes and other age-related diseases. Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is the major precursor in the formation of AGEs. MGO is mainly formed as a byproduct of glycolysis. Under physiological circumstances, MGO is detoxified by the glyoxalase system into D-lactate, with glyoxalase I (GLO1) as the key enzyme in the anti-glycation defence. New insights indicate that increased levels of MGO and the major MGO-derived AGE, methylglyoxal-derived hydroimidazolone 1 (MG-H1), and dysfunctioning of the glyoxalase system are linked to several age-related health problems, such as diabetes, cardiovascular disease, cancer and disorders of the central nervous system. The present review summarizes the mechanisms through which MGO is formed, its detoxification by the glyoxalase system and its effect on biochemical pathways in relation to the development of age-related diseases. Although several scavengers of MGO have been developed over the years, therapies to treat MGO-associated complications are not yet available for application in clinical practice. Small bioactive inducers of GLO1 can potentially form the basis for new treatment strategies for age-related disorders in which MGO plays a pivotal role.
Collapse
|
124
|
Chang LH, Chu CH, Lin HD, Kwok CF, Won JGS, Chen HS, Lin LY. The ankle brachial index is associated with prognosis in patients with diabetic kidney disease. Diabetes Res Clin Pract 2015; 108:316-22. [PMID: 25726334 DOI: 10.1016/j.diabres.2015.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/09/2014] [Accepted: 02/03/2015] [Indexed: 11/25/2022]
Abstract
AIMS Peripheral arterial disease (PAD) could be an additional risk factor for the clinical outcomes in different populations. The purpose of this study was to evaluate the influence of PAD on patients with diabetic kidney disease. METHODS 362 persons with type 2 diabetes were followed-up for a mean 4.8 years grouped by ankle brachial index (ABI) (<0.9 vs. ≧0.9) and albuminuria (with or without). Primary and secondary outcomes were composite events (all-cause mortality, hospitalization for coronary artery disease, stroke, re-vascularization, amputation, and diabetic foot) and all-cause mortality. RESULTS Inter-group differences in duration of diabetes, glycated hemoglobin, creatinine, and estimated glomerular filtration rate were significant. During the follow-up period, 53 composite events were recorded (14.7%) and 13 (3.5%) individuals died. Subjects with albuminuria plus ABI<0.9 had higher risk of composite events than those with albuminuria but normal ABI (p<0.05). The only trend difference between the two groups was in all-cause mortality. Albuminuria plus ABI <0.9 was associated with risk of composite events (hazard ratio [HR] 4.20, 95% confidence interval [CI] 1.77-9.92, p=0.001) and all-cause mortality (HR 17.77, 95% CI 1.93-162.20, p=0.011). CONCLUSIONS PAD might be an additional risk factor for adverse outcomes in patients with diabetic kidney disease. Further prospective data are required to validate this conclusion.
Collapse
Affiliation(s)
- Li-Hsin Chang
- Division of Endocrinology and Metabolism, Department of Medicine, Tauyan Branch of Taipei Veterans General Hospital, Tauyuan, Taiwan
| | - Chia-Huei Chu
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Otology, Department of Otorhinolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hong-Da Lin
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Fai Kwok
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Justin G S Won
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Harn-Shen Chen
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Liang-Yu Lin
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
125
|
Li W, Maloney RE, Aw TY. High glucose, glucose fluctuation and carbonyl stress enhance brain microvascular endothelial barrier dysfunction: Implications for diabetic cerebral microvasculature. Redox Biol 2015; 5:80-90. [PMID: 25867911 PMCID: PMC4398791 DOI: 10.1016/j.redox.2015.03.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 12/24/2022] Open
Abstract
We previously demonstrated that in normal glucose (5 mM), methylglyoxal (MG, a model of carbonyl stress) induced brain microvascular endothelial cell (IHEC) dysfunction that was associated with occludin glycation and prevented by N-acetylcysteine (NAC). Herein, we investigated the impact of high glucose and low GSH, conditions that mimicked the diabetic state, on MG-induced IHEC dysfunction. MG-induced loss of transendothelial electrical resistance (TEER) was potentiated in IHECs cultured for 7 or 12 days in 25 mM glucose (hyperglycemia); moreover, barrier function remained disrupted 6 h after cell transfer to normal glucose media (acute glycemic fluctuation). Notably, basal occludin glycation was elevated under these glycemic states. TEER loss was exaggerated by inhibition of glutathione (GSH) synthesis and abrogated by NAC, which corresponded to GSH decreases and increases, respectively. Significantly, glyoxalase II activity was attenuated in hyperglycemic cells. Moreover, hyperglycemia and GSH inhibition increased MG accumulation, consistent with a compromised capacity for MG elimination. α-Oxoaldehydes (MG plus glyoxal) levels were elevated in streptozotocin-induced diabetic rat plasma. Immunohistochemistry revealed a prevalence of MG-positive, but fewer occludin-positive microvessels in the diabetic brain in vivo, and Western analysis confirmed an increase in MG–occludin adducts. These results provide the first evidence that hyperglycemia and acute glucose fluctuation promote MG–occludin formation and exacerbate brain microvascular endothelial dysfunction. Low occludin expression and high glycated-occludin contents in diabetic brain in vivo are factors that would contribute to the dysfunction of the cerebral microvasculature during diabetes.
Methylglyoxal (MG) induced electrical resistance (TEER)loss in brain microvascular endothelial cells. TEER loss was potentiated by hyperglycemia, and low glutathione. TEER loss was correlated with occludin-glycation and was attenuated and exacerbated by NAC and BSO, respectively. Hyperglycemia decreased glyoxalase II activity and promoted free MG accumulation. Diabetic brain in vivo exhibiteda prevalence of MG-positive microvessels and increased occludin–MG adducts.
Collapse
Affiliation(s)
- Wei Li
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Ronald E Maloney
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Tak Yee Aw
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; Center for Cardiovascular Disease and Sciences, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|
126
|
Iotzova-Weiss G, Dziunycz PJ, Freiberger SN, Läuchli S, Hafner J, Vogl T, French LE, Hofbauer GFL. S100A8/A9 stimulates keratinocyte proliferation in the development of squamous cell carcinoma of the skin via the receptor for advanced glycation-end products. PLoS One 2015; 10:e0120971. [PMID: 25811984 PMCID: PMC4374726 DOI: 10.1371/journal.pone.0120971] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/27/2015] [Indexed: 12/20/2022] Open
Abstract
Squamous cell carcinoma (SCC) is the most common neoplasm in organ transplant recipients (OTR) on long-term immunosuppression and occurs 60- to 100-fold more frequently than in the general population. Here, we present the receptor for advanced glycation end products (RAGE) and S100A8/A9 as important factors driving normal and tumor keratinocyte proliferation. RAGE and S100A8/A9 were transcriptionally upregulated in SCC compared to normal epidermis, as well as in OTR compared to immunocompetent patients (IC) with SCC. The proliferation of normal and SCC keratinocytes was induced by exposure to exogenous S100A8/A9 which in turn was abolished by blocking of RAGE. The migratory activities of normal and SCC keratinocytes were also increased upon exposure to S100A8/A9. We demonstrated that exogenous S100A8/A9 induces phosphorylation of p38 and SAPK/JNK followed by activation of ERK1/2. We hypothesize that RAGE and S100A8/A9 contribute to the development of human SCC by modulating keratinocyte growth and migration. These processes do not seem to be impaired by profound drug-mediated immunosuppression in OTR.
Collapse
Affiliation(s)
| | - Piotr J. Dziunycz
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Severin Läuchli
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Jürg Hafner
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Vogl
- Institute of Immunology, University Clinic Münster, Münster, Germany
| | - Lars E. French
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
127
|
Abstract
In healthy individuals, the endothelium plays a fundamental role in normal health in the maintenance of vascular homeostasis. Endothelial cell (EC) dysfunction results in the development of several pathologies. In diabetes, in particular, sustained hyperglycemia, a characteristic of diabetes, contributes to EC dysfunction and consequently mediates the pathogenesis of diabetes-associated micro- and macrovasculopathies. Hyperglycemia-induced EC dysfunction is triggered by elevated levels of oxidative stress derived from several mechanisms, with the mitochondria as a key source, and is exacerbated by a subsequent hyperglycemia-induced self-perpetuating cycle of oxidative stress and aberrant metabolic memory. Recent reports have highlighted the importance of metabolic pathways in EC and suggested the therapeutic potential of targeting EC metabolism. This review focuses on the current knowledge regarding differences in the metabolism of healthy ECs vs. diabetes-associated dysfunctional ECs, and outlines how EC metabolism may be targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Pauline de Zeeuw
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Department of Oncology, University of Leuven, VIB
| | | | | |
Collapse
|
128
|
Suh KS, Rhee SY, Kim YS, Choi EM. Protective effect of liquiritigenin against methylglyoxal cytotoxicity in osteoblastic MC3T3-E1 cells. Food Funct 2015; 5:1432-40. [PMID: 24789098 DOI: 10.1039/c4fo00127c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Methylglyoxal (MG), a reactive dicarbonyl compound, is a metabolic byproduct of glycolysis and elevated MG levels contribute to diabetic complications. Glycation reactions of MG with amino acids can induce oxidative stress, leading to subsequent cytotoxicity. In the present study, the effect of liquiritigenin on MG-induced cytotoxicity was investigated using osteoblastic MC3T3-E1 cells. Pretreatment of MC3T3-E1 cells with liquiritigenin prevented the MG-induced cell death and production of protein adduct, intracellular reactive oxygen species, mitochondrial superoxide, cardiolipin peroxidation, and TNF-α in osteoblastic MC3T3-E1 cells. In addition, liquiritigenin increased the activity of glyoxalase I inhibited by MG. These findings suggest that liquiritigenin provides a protective action against MG-induced cell damage by reducing oxidative stress and by increasing MG detoxification. Pretreatment with liquiritigenin prior to MG exposure reduced MG-induced mitochondrial dysfunction by preventing mitochondrial membrane potential dissipation and adenosine triphosphate loss. Additionally, the nitric oxide and PGC-1α levels were significantly increased by liquiritigenin, suggesting that liquiritigenin may induce mitochondrial biogenesis. Our findings indicate that liquiritigenin might exert its therapeutic effects via enhancement of glyoxalase I activity and mitochondrial function, and anti-oxidant and anti-inflammatory activities. Taken together, liquiritigenin has potential as a preventive agent against the development of diabetic osteopathy related to MG-induced oxidative stress in diabetes.
Collapse
Affiliation(s)
- Kwang Sik Suh
- Research Institute of Endocrinology, Kyung Hee University Hospital, 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-702, Republic of Korea
| | | | | | | |
Collapse
|
129
|
Allaman I, Bélanger M, Magistretti PJ. Methylglyoxal, the dark side of glycolysis. Front Neurosci 2015; 9:23. [PMID: 25709564 PMCID: PMC4321437 DOI: 10.3389/fnins.2015.00023] [Citation(s) in RCA: 381] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/13/2015] [Indexed: 12/05/2022] Open
Abstract
Glucose is the main energy substrate for the brain. There is now extensive evidence indicating that the metabolic profile of neural cells with regard to glucose utilization and glycolysis rate is not homogenous, with a marked propensity for glycolytic glucose processing in astrocytes compared to neurons. Methylglyoxal, a highly reactive dicarbonyl compound, is inevitably formed as a by-product of glycolysis. Methylglyoxal is a major cell-permeant precursor of advanced glycation end-products (AGEs), which are associated with several pathologies including diabetes, aging and neurodegenerative diseases. In normal situations, cells are protected against methylglyoxal toxicity by different mechanisms and in particular the glyoxalase system, which represents the most important pathway for the detoxification of methylglyoxal. While the neurotoxic effects of methylglyoxal and AGEs are well characterized, our understanding the glyoxalase system in the brain is more scattered. Considering the high energy requirements (i.e., glucose) of the brain, one should expect that the cerebral glyoxalase system is adequately fitted to handle methylglyoxal toxicity. This review focuses on our actual knowledge on the cellular aspects of the glyoxalase system in brain cells, in particular with regard to its activity in astrocytes and neurons. A main emerging concept is that these two neural cell types have different and energetically adapted glyoxalase defense mechanisms which may serve as protective mechanism against methylglyoxal-induced cellular damage.
Collapse
Affiliation(s)
- Igor Allaman
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland
| | - Mireille Bélanger
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland
| | - Pierre J Magistretti
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology Thuwal, Saudi Arabia ; Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland
| |
Collapse
|
130
|
Himeno T, Kamiya H, Naruse K, Cheng Z, Ito S, Shibata T, Kondo M, Kato J, Okawa T, Fujiya A, Suzuki H, Kito T, Hamada Y, Oiso Y, Isobe K, Nakamura J. Angioblast Derived from ES Cells Construct Blood Vessels and Ameliorate Diabetic Polyneuropathy in Mice. J Diabetes Res 2015; 2015:257230. [PMID: 25977928 PMCID: PMC4419216 DOI: 10.1155/2015/257230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although numerous reports addressing pathological involvements of diabetic polyneuropathy have been conducted, a universally effective treatment of diabetic polyneuropathy has not yet been established. Recently, regenerative medicine studies in diabetic polyneuropathy using somatic stem/progenitor cell have been reported. However, the effectiveness of these cell transplantations was restricted because of their functional and numerical impairment in diabetic objects. Here, we investigated the efficacy of treatment for diabetic polyneuropathy using angioblast-like cells derived from mouse embryonic stem cells. METHODS AND RESULTS Angioblast-like cells were obtained from mouse embryonic stem cells and transplantation of these cells improved several physiological impairments in diabetic polyneuropathy: hypoalgesia, delayed nerve conduction velocities, and reduced blood flow in sciatic nerve and plantar skin. Furthermore, pathologically, the capillary number to muscle fiber ratios were increased in skeletal muscles of transplanted hindlimbs, and intraepidermal nerve fiber densities were ameliorated in transplanted plantar skin. Transplanted cells maintained their viabilities and differentiated to endothelial cells and smooth muscle cells around the injection sites. Moreover, several transplanted cells constructed chimeric blood vessels with recipient cells. CONCLUSIONS These results suggest that transplantation of angioblast like cells induced from embryonic stem cells appears to be a novel therapeutic strategy for diabetic polyneuropathy.
Collapse
Affiliation(s)
- Tatsuhito Himeno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hideki Kamiya
- Department of Chronic Kidney Disease Initiatives, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 21 Karimata, Yazako, Nagakute, Aichi 480-1195, Japan
- *Hideki Kamiya:
| | - Keiko Naruse
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Zhao Cheng
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Sachiko Ito
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Taiga Shibata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masaki Kondo
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Jiro Kato
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tetsuji Okawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Atsushi Fujiya
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Metabolic Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hirohiko Suzuki
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tetsutaro Kito
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoji Hamada
- Department of Metabolic Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yutaka Oiso
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenichi Isobe
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Jiro Nakamura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 21 Karimata, Yazako, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
131
|
Seo K, Ki SH, Shin SM. Methylglyoxal induces mitochondrial dysfunction and cell death in liver. Toxicol Res 2014; 30:193-8. [PMID: 25343013 PMCID: PMC4206746 DOI: 10.5487/tr.2014.30.3.193] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/14/2014] [Accepted: 06/18/2014] [Indexed: 01/23/2023] Open
Abstract
Degradation of glucose is aberrantly increased in hyperglycemia, which causes various harmful effects on the liver. Methylglyoxal is produced during glucose degradation and the levels of methylglyoxal are increased in diabetes patients. In this study we investigated whether methylglyoxal induces mitochondrial impairment and apoptosis in HepG2 cells and induces liver toxicity in vivo. Methylglyoxal caused apoptotic cell death in HepG2 cells. Moreover, methylglyoxal significantly promoted the production of reactive oxygen species (ROS) and depleted glutathione (GSH) content. Pretreatment with antioxidants caused a marked decrease in methylglyoxal-induced apoptosis, indicating that oxidant species are involved in the apoptotic process. Methylglyoxal treatment induced mitochondrial permeability transition, which represents mitochondrial impairment. However, pretreatment with cyclosporin A, an inhibitor of the formation of the permeability transition pore, partially inhibited methylglyoxal-induced cell death. Furthermore, acute treatment of mice with methylglyoxal increased the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), indicating liver toxicity. Collectively, our results showed that methylglyoxal increases cell death and induces liver toxicity, which results from ROS-mediated mitochondrial dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Kyuhwa Seo
- College of Pharmacy, Chosun University, Gwangju, Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju, Korea
| | - Sang Mi Shin
- College of Pharmacy, Chosun University, Gwangju, Korea
| |
Collapse
|
132
|
Employing in vitro analysis to test the potency of methylglyoxal in inducing the formation of amyloid-like aggregates of caprine brain cystatin. Amino Acids 2014; 47:135-46. [DOI: 10.1007/s00726-014-1848-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
|
133
|
Seo K, Seo S, Han JY, Ki SH, Shin SM. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction. Toxicol Appl Pharmacol 2014; 280:314-22. [DOI: 10.1016/j.taap.2014.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/03/2014] [Accepted: 08/13/2014] [Indexed: 01/14/2023]
|
134
|
Qadri SM, Su Y, Cayabyab FS, Liu L. Endothelial Na+/H+ exchanger NHE1 participates in redox-sensitive leukocyte recruitment triggered by methylglyoxal. Cardiovasc Diabetol 2014; 13:134. [PMID: 25270604 PMCID: PMC4193979 DOI: 10.1186/s12933-014-0134-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/16/2014] [Indexed: 11/17/2022] Open
Abstract
Background Excessive levels of methylglyoxal (MG) encountered in diabetes foster enhanced leukocyte-endothelial cell interactions, mechanisms of which are incompletely understood. MG genomically upregulates endothelial serum- and glucocorticoid-inducible kinase 1 (SGK1) which orchestrates leukocyte recruitment by regulating the activation and expression of transcription factors and adhesion molecules. SGK1 regulates a myriad of ion channels and carriers including the Na+/H+ exchanger NHE1. Here, we explored the effect of MG on SGK1-dependent NHE1 activation and the putative role of NHE1 activation in MG-induced leukocyte recruitment and microvascular hyperpermeability. Methods Using RT-PCR and immunoblotting, we analyzed NHE1 mRNA and protein levels in murine microvascular SVEC4-10EE2 endothelial cells (EE2 ECs). NHE1 phosphorylation was detected using a specific antibody against the 14-3-3 binding motif at phospho-Ser703. SGK in EE2 ECs was silenced using targeted siRNA. ROS production was determined using DCF-dependent fluorescence. Leukocyte recruitment and microvascular permeability in murine cremasteric microvasculature were measured using intravital microscopy. The expression of endothelial adhesion molecules was determined by immunoblotting and confocal imaging analysis. Results MG treatment significantly upregulated NHE1 mRNA and dose-dependently increased total- and phospho-NHE1. Treatment with SGK1 inhibitor GSK650394, antioxidant Tempol and silencing SGK all blunted MG-triggered phospho-NHE1 upregulation in EE2 ECs. NHE1 inhibitor cariporide attenuated MG-triggered ROS production, leukocyte adhesion and emigration and microvascular hyperpermeability, without affecting leukocyte rolling. Cariporide treatment did not alter MG-triggered upregulation of P- and E-selectins, but reduced endothelial ICAM-1 expression. Conclusion MG elicits SGK1-dependent activation of endothelial Na+/H+ exchanger NHE1 which participates in MG-induced ROS production, upregulation of endothelial ICAM-1, leukocyte recruitment and microvascular hyperpermeability. Pharmacological inhibition of NHE1 attenuates the proinflammatory effects of excessive MG and may, thus, be beneficial in diabetes-associated inflammation.
Collapse
|
135
|
Kumar SM, Swaminathan K, Clemens DL, Dey A. Modulation of GSH with exogenous agents leads to changes in glyoxalase 1 enzyme activity in VL-17A cells exposed to chronic alcohol plus high glucose. Food Funct 2014; 5:345-58. [PMID: 24352527 DOI: 10.1039/c3fo60354g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gluthathione (GSH) is a major cellular antioxidant. The present study utilizing VL-17A cells exposed to chronic alcohol plus high glucose investigated the changes in oxidative stress, toxicity, and glyoxalase 1 activity as a detoxification pathway due to changes in GSH level through GSH supplementation with N-acetyl cysteine (NAC) or ursodeoxycholic acid (UDCA) and its depletion through buthionine sulfoximine (BSO) or diethyl maleate (DEM). Glyoxalase 1 plays an important role in detoxification of methylglyoxal which is formed as a precursor of advanced glycated end products formed due to high glucose mediated oxidative stress. Significant changes in glyoxalase 1 activity utilizing methylglyoxal or glyoxal as substrates occurred with NAC or UDCA or BSO or DEM supplementation in chronic alcohol plus high glucose treated VL-17A cells. NAC or UDCA administration in chronic alcohol plus high glucose treated VL-17A cells increased viability and decreased ROS levels, lipid peroxidation and 3-nitrotyrosine adduct formation. Similarly, GSH depletion with BSO or DEM had an opposite effect on the parameters in chronic alcohol plus high glucose treated VL-17A cells. In conclusion, modulation of GSH with NAC or UDCA or BSO or DEM leads to significant changes in oxidative stress, glyoxalase 1 enzyme activity and toxicity in chronic alcohol plus high glucose treated VL-17A cells.
Collapse
Affiliation(s)
- S Mathan Kumar
- Life Science Division, AU-KBC Research Centre, MIT Campus of Anna University, Chromepet, Chennai-600044, India.
| | | | | | | |
Collapse
|
136
|
. P, Anthony MWP, Rahman NA, . N, . S. Hypoglycemic and Antioxidative Effects of Pomegranate (Punica granatum L.) Juice in Streptozotocin Induced Diabetic Rats. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/pjn.2014.567.572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
137
|
Bodiga VL, Eda SR, Bodiga S. Advanced glycation end products: role in pathology of diabetic cardiomyopathy. Heart Fail Rev 2014; 19:49-63. [PMID: 23404649 DOI: 10.1007/s10741-013-9374-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence demonstrates that advanced glycation end products (AGEs) play a pivotal role in the development and progression of diabetic heart failure, although there are numerous other factors that mediate the disease response. AGEs are generated intra- and extracellularly as a result of chronic hyperglycemia. Then, following the interaction with receptors for advanced glycation end products (RAGEs), a series of events leading to vascular and myocardial damage are elicited and sustained, which include oxidative stress, increased inflammation, and enhanced extracellular matrix accumulation resulting in diastolic and systolic dysfunction. Whereas targeting glycemic control and treating additional risk factors, such as obesity, dyslipidemia, and hypertension, are mandatory to reduce chronic complications and prolong life expectancy in diabetic patients, drug therapy tailored to reducing the deleterious effects of the AGE-RAGE interactions is being actively investigated and showing signs of promise in treating diabetic cardiomyopathy and associated heart failure. This review shall discuss the formation of AGEs in diabetic heart tissue, potential targets of glycation in the myocardium, and underlying mechanisms that lead to diabetic cardiomyopathy and heart failure along with the use of AGE inhibitors and breakers in mitigating myocardial injury.
Collapse
Affiliation(s)
- Vijaya Lakshmi Bodiga
- Department of Biotechnology, Krishna University, Machilipatnam, Andhra Pradesh, India
| | | | | |
Collapse
|
138
|
Alkayyali S, Lyssenko V. Genetics of diabetes complications. Mamm Genome 2014; 25:384-400. [PMID: 25169573 DOI: 10.1007/s00335-014-9543-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 08/13/2014] [Indexed: 12/11/2022]
Abstract
Chronic hyperglycemia and duration of diabetes are the major risk factors associated with development of micro- and macrovascular complications of diabetes. Although it is believed that hyperglycemia induces damage to the particular cell subtypes, e.g., mesangial cells in the renal glomerulus, capillary endothelial cells in the retina, and neurons and Schwann cells in peripheral nerves, the exact mechanisms underlying these damaging defects are not yet well understood. Clustering of micro- and macrovascular complications in families of patients with diabetes suggests a strong genetic susceptibility. However, until now only a handful number of genetic variants were reported to be associated with either nephropathy (ACE, ELMO1, FRMD3, and AKR1B1) or retinopathy (VEGF, AKR1B1, and EPO), and only a few studies were carried out for genetic susceptibility to cardiovascular diseases (ADIPOQ, GLUL) in patients with diabetes. It is, therefore, obvious that the accumulation of more data from larger studies and better phenotypically characterized cohorts is needed to facilitate genetic discoveries and unravel novel insights into the pathogenesis of diabetic complications.
Collapse
Affiliation(s)
- Sami Alkayyali
- Department of Clinical Sciences, Diabetes and Endocrinology, CRC, Lund University, Lund, Sweden,
| | | |
Collapse
|
139
|
Mori K, Kitazawa R, Kondo T, Mori M, Hamada Y, Nishida M, Minami Y, Haraguchi R, Takahashi Y, Kitazawa S. Diabetic osteopenia by decreased β-catenin signaling is partly induced by epigenetic derepression of sFRP-4 gene. PLoS One 2014; 9:e102797. [PMID: 25036934 PMCID: PMC4103869 DOI: 10.1371/journal.pone.0102797] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 05/27/2014] [Indexed: 11/18/2022] Open
Abstract
In diabetics, methylglyoxal (MG), a glucose-derived metabolite, plays a noxious role by inducing oxidative stress, which causes and exacerbates a series of complications including low-turnover osteoporosis. In the present study, while MG treatment of mouse bone marrow stroma-derived ST2 cells rapidly suppressed the expression of osteotrophic Wnt-targeted genes, including that of osteoprotegerin (OPG, a decoy receptor of the receptor activator of NF-kappaB ligand (RANKL)), it significantly enhanced that of secreted Frizzled-related protein 4 (sFRP-4, a soluble inhibitor of Wnts). On the assumption that upregulated sFRP-4 is a trigger that downregulates Wnt-related genes, we sought out the molecular mechanism whereby oxidative stress enhanced the sFRP-4 gene. Sodium bisulfite sequencing revealed that the sFRP-4 gene was highly methylated around the sFRP-4 gene basic promoter region, but was not altered by MG treatment. Electrophoretic gel motility shift assay showed that two continuous CpG loci located five bases upstream of the TATA-box were, when methylated, a target of methyl CpG binding protein 2 (MeCP2) that was sequestered upon induction of 8-hydroxy-2-deoxyguanosine, a biomarker of oxidative damage to DNA. These in vitro data suggest that MG-derived oxidative stress (not CpG demethylation) epigenetically and rapidly derepress sFRP-4 gene expression. We speculate that under persistent oxidative stress, as in diabetes and during aging, osteopenia and ultimately low-turnover osteoporosis become evident partly due to osteoblastic inactivation by suppressed Wnt signaling of mainly canonical pathways through the derepression of sFRP-4 gene expression.
Collapse
Affiliation(s)
- Kiyoshi Mori
- Department of Pathology, Division of Diagnostic Molecular Pathology, Kobe University Graduate School of Medicine, Kobe City, Japan
- Department of Pathology, National Hospital Organization, Osaka National Hospital, Hoenzaka, Chuo-ku, Osaka City, Japan
| | - Riko Kitazawa
- Department of Pathology, Division of Diagnostic Molecular Pathology, Kobe University Graduate School of Medicine, Kobe City, Japan
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, Japan
- Department of Diagnostic Pathology, Ehime University Hospital, Shitsukawa, Toon City, Ehime, Japan
| | - Takeshi Kondo
- Department of Pathology, Division of Diagnostic Molecular Pathology, Kobe University Graduate School of Medicine, Kobe City, Japan
- Department of Legal Medicine, Kobe University Graduate School of Medicine, Kobe City, Japan
| | - Michiko Mori
- Department of Pathology, Division of Diagnostic Molecular Pathology, Kobe University Graduate School of Medicine, Kobe City, Japan
| | - Yasuhiro Hamada
- Department of Therapeutic Nutrition, Institute of Health Bioscience, The University of Tokushima, Tokushima City, Japan
| | - Michiru Nishida
- Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe City, Japan
| | - Yasuhiro Minami
- Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe City, Japan
| | - Ryuma Haraguchi
- Department of Diagnostic Pathology, Ehime University Hospital, Shitsukawa, Toon City, Ehime, Japan
| | - Yutaka Takahashi
- Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe City, Japan
| | - Sohei Kitazawa
- Department of Pathology, Division of Diagnostic Molecular Pathology, Kobe University Graduate School of Medicine, Kobe City, Japan
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, Japan
- Department of Diagnostic Pathology, Ehime University Hospital, Shitsukawa, Toon City, Ehime, Japan
- * E-mail:
| |
Collapse
|
140
|
Nigro C, Raciti GA, Leone A, Fleming TH, Longo M, Prevenzano I, Fiory F, Mirra P, D'Esposito V, Ulianich L, Nawroth PP, Formisano P, Beguinot F, Miele C. Methylglyoxal impairs endothelial insulin sensitivity both in vitro and in vivo. Diabetologia 2014; 57:1485-94. [PMID: 24759959 DOI: 10.1007/s00125-014-3243-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS Insulin exerts a direct action on vascular cells, thereby affecting the outcome and progression of diabetic vascular complications. However, the mechanism through which insulin signalling is impaired in the endothelium of diabetic individuals remains unclear. In this work, we have evaluated the role of the AGE precursor methylglyoxal (MGO) in generating endothelial insulin resistance both in cells and in animal models. METHODS Time course experiments were performed on mouse aortic endothelial cells (MAECs) incubated with 500 μmol/l MGO. The glyoxalase-1 inhibitor S-p-bromobenzylglutathione-cyclopentyl-diester (SpBrBzGSHCp2) was used to increase the endogenous levels of MGO. For the in vivo study, an MGO solution was administrated i.p. to C57BL/6 mice for 7 weeks. RESULTS MGO prevented the insulin-dependent activation of the IRS1/protein kinase Akt/endothelial nitric oxide synthase (eNOS) pathway, thereby blunting nitric oxide (NO) production, while extracellular signal-regulated kinase (ERK1/2) activation and endothelin-1 (ET-1) release were increased by MGO in MAECs. Similar results were obtained in MAECs treated with SpBrBzGSHCp2. In MGO- and SpBrBzGSHCp2-exposed cells, inhibition of ERK1/2 decreased IRS1 phosphorylation on S616 and rescued insulin-dependent Akt activation and NO generation, indicating that MGO inhibition of the IRS1/Akt/eNOS pathway is mediated, at least in part, by ERK1/2. Chronic administration of MGO to C57BL/6 mice impaired whole-body insulin sensitivity and induced endothelial insulin resistance. CONCLUSIONS/INTERPRETATION MGO impairs the action of insulin on the endothelium both in vitro and in vivo, at least in part through an ERK1/2-mediated mechanism. These findings may be instrumental in developing novel strategies for preserving endothelial function in diabetes.
Collapse
Affiliation(s)
- Cecilia Nigro
- Institute of Experimental Endocrinology and Oncology 'G. Salvatore', National Council of Research, Via Pansini 5, 80131, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Höhn A, Jung T, Grune T. Pathophysiological importance of aggregated damaged proteins. Free Radic Biol Med 2014; 71:70-89. [PMID: 24632383 DOI: 10.1016/j.freeradbiomed.2014.02.028] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/28/2014] [Accepted: 02/28/2014] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) are formed continuously in the organism even under physiological conditions. If the level of ROS in cells exceeds the cellular defense capacity, components such as RNA/DNA, lipids, and proteins are damaged and modified, thus affecting the functionality of organelles as well. Proteins are especially prominent targets of various modifications such as oxidation, glycation, or conjugation with products of lipid peroxidation, leading to the alteration of their biological function, nonspecific interactions, and the production of high-molecular-weight protein aggregates. To ensure the maintenance of cellular functions, two proteolytic systems are responsible for the removal of oxidized and modified proteins, especially the proteasome and organelles, mainly the autophagy-lysosomal systems. Furthermore, increased protein oxidation and oxidation-dependent impairment of proteolytic systems lead to an accumulation of oxidized proteins and finally to the formation of nondegradable protein aggregates. Accordingly, the cellular homeostasis cannot be maintained and the cellular metabolism is negatively affected. Here we address the current knowledge of protein aggregation during oxidative stress, aging, and disease.
Collapse
Affiliation(s)
- Annika Höhn
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Tobias Jung
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
| |
Collapse
|
142
|
Gray SP, Jandeleit-Dahm K. The pathobiology of diabetic vascular complications--cardiovascular and kidney disease. J Mol Med (Berl) 2014; 92:441-52. [PMID: 24687627 DOI: 10.1007/s00109-014-1146-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/03/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023]
Abstract
With the increasing incidence of obesity and type 2 diabetes, it is predicted that more than half of Americans will have diabetes or pre-diabetes by 2020. Diabetic patients develop vascular complications at a much faster rate in comparison to non-diabetic individuals, and cardiovascular risk is increased up to tenfold. With the increasing incidence of diabetes across the world, the development of vascular complications will become an increasing medical burden. Diabetic vascular complications affect the micro- and macro-vasculature leading to kidney disease often requiring dialysis and transplantation or cardiovascular disease increasing the risk for myocardial infarction, stroke and amputations as well as leading to premature mortality. It has been suggested that many complex pathways contribute to the pathobiology of diabetic complications including hyperglycaemia itself, the production of advanced glycation end products (AGEs) and interaction with the receptors for AGEs such as the receptor for advanced glycation end products (RAGE), as well as the activation of vasoactive systems such as the renin-angiotensin aldosterone system (RAAS) and the endothelin system. More recently, it has been hypothesised that reactive oxygen species derived from NAD(P)H oxidases (Nox) may represent a common downstream mediator of vascular injury in diabetes. Current standard treatment of care includes the optimization of blood glucose and blood pressure usually including inhibitors of the renin-angiotensin system. Although these interventions are able to delay progression, they fail to prevent the development of complications. Thus, there is an urgent medical need to identify novel targets in diabetic vascular complications which may include the blockade of Nox-derived ROS formation, as well as blockade of AGE formation and inhibitors of RAGE activation. These strategies may provide superior protection against the deleterious effects of diabetes on the vasculature.
Collapse
Affiliation(s)
- Stephen P Gray
- Diabetes Complications Division, Baker IDI Heart & Diabetes Research Institute, PO Box 6492, St Kilda Rd, Melbourne, VIC, 8008, Australia,
| | | |
Collapse
|
143
|
The proinflammatory cytokine high-mobility group box-1 mediates retinal neuropathy induced by diabetes. Mediators Inflamm 2014; 2014:746415. [PMID: 24733965 PMCID: PMC3964896 DOI: 10.1155/2014/746415] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 01/13/2014] [Accepted: 01/28/2014] [Indexed: 01/15/2023] Open
Abstract
To test the hypothesis that increased expression of proinflammatory cytokine high-mobility group box-1 (HMGB1) in epiretinal membranes and vitreous fluid from patients with proliferative diabetic retinopathy and in retinas of diabetic rats plays a pathogenetic role in mediating diabetes-induced retinal neuropathy. Retinas of 1-month diabetic rats and HMGB1 intravitreally injected normal rats were studied using Western blot analysis, RT-PCR and glutamate assay. In addition, we studied the effect of the HMGB1 inhibitor glycyrrhizin on diabetes-induced biochemical changes in the retina. Diabetes and intravitreal injection of HMGB1 in normal rats induced significant upregulation of HMGB1 protein and mRNA, activated extracellular signal-regulated kinase 1 and 2 (ERK1/2), cleaved caspase-3 and glutamate; and significant downregulation of synaptophysin, tyrosine hydroxylase, glutamine synthetase, and glyoxalase 1. Constant glycyrrhizin intake from the onset of diabetes did not affect the metabolic status of the diabetic rats, but it significantly attenuated diabetes-induced upregulation of HMGB1 protein and mRNA, activated ERK1/2, cleaved caspase-3, and glutamate. In the glycyrrhizin-fed diabetic rats, the decrease in synaptophysin, tyrosine hydroxylase, and glyoxalase 1 caused by diabetes was significantly attenuated. These findings suggest that early retinal neuropathy of diabetes involves upregulated expression of HMGB1 and can be ameliorated by inhibition of HMGB1.
Collapse
|
144
|
Hassan W, Silva CEB, Mohammadzai IU, da Rocha JBT, Landeira-Fernandez J. Association of oxidative stress to the genesis of anxiety: implications for possible therapeutic interventions. Curr Neuropharmacol 2014; 12:120-39. [PMID: 24669207 PMCID: PMC3964744 DOI: 10.2174/1570159x11666131120232135] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 06/16/2013] [Accepted: 11/02/2013] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress caused by reactive species, including reactive oxygen species, reactive nitrogen species, and unbound, adventitious metal ions (e.g., iron [Fe] and copper [Cu]), is an underlying cause of various neurodegenerative diseases. These reactive species are an inevitable by-product of cellular respiration or other metabolic processes that may cause the oxidation of lipids, nucleic acids, and proteins. Oxidative stress has recently been implicated in depression and anxiety-related disorders. Furthermore, the manifestation of anxiety in numerous psychiatric disorders, such as generalized anxiety disorder, depressive disorder, panic disorder, phobia, obsessive-compulsive disorder, and posttraumatic stress disorder, highlights the importance of studying the underlying biology of these disorders to gain a better understanding of the disease and to identify common biomarkers for these disorders. Most recently, the expression of glutathione reductase 1 and glyoxalase 1, which are genes involved in antioxidative metabolism, were reported to be correlated with anxiety-related phenotypes. This review focuses on direct and indirect evidence of the potential involvement of oxidative stress in the genesis of anxiety and discusses different opinions that exist in this field. Antioxidant therapeutic strategies are also discussed, highlighting the importance of oxidative stress in the etiology, incidence, progression, and prevention of psychiatric disorders.
Collapse
Affiliation(s)
- Waseem Hassan
- Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | | - Imdad Ullah Mohammadzai
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Joao Batista Teixeira da Rocha
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | |
Collapse
|
145
|
Temporal dynamics of glyoxalase 1 in secondary neuronal injury. PLoS One 2014; 9:e87364. [PMID: 24498315 PMCID: PMC3911945 DOI: 10.1371/journal.pone.0087364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 12/21/2013] [Indexed: 12/11/2022] Open
Abstract
Background Enhanced glycolysis leads to elevated levels of the toxic metabolite methylglyoxal which contributes to loss of protein-function, metabolic imbalance and cell death. Neurons were shown being highly susceptible to methylglyoxal toxicity. Glyoxalase 1 as an ubiquitous enzyme reflects the main detoxifying enzyme of methylglyoxal and underlies changes during aging and neurodegeneration. However, little is known about dynamics of Glyoxalase 1 following neuronal lesions so far. Methods To determine a possible involvement of Glyoxalase 1 in acute brain injury, we analysed the temporal dynamics of Glyoxalase 1 distribution and expression by immunohistochemistry and Western Blot analysis. Organotypic hippocampal slice cultures were excitotoxically (N-methyl-D-aspartate, 50 µM for 4 hours) lesioned in vitro (5 minutes to 72 hours). Additionally, permanent middle cerebral artery occlusion was performed (75 minutes to 60 days). Results We found (i) a predominant localisation of Glyoxalase 1 in endothelial cells in non-lesioned brains (ii) a time-dependent up-regulation and re-distribution of Glyoxalase 1 in neurons and astrocytes and (iii) a strong increase in Glyoxalase 1 dimers after neuronal injury (24 hours to 72 hours) when compared to monomers of the protein. Conclusions The high dynamics of Glyoxalase 1 expression and distribution following neuronal injury may indicate a novel role of Glyoxalase 1.
Collapse
|
146
|
Shin MJ, Kim DW, Lee YP, Ahn EH, Jo HS, Kim DS, Kwon OS, Kang TC, Cho YJ, Park J, Eum WS, Choi SY. Tat-glyoxalase protein inhibits against ischemic neuronal cell damage and ameliorates ischemic injury. Free Radic Biol Med 2014; 67:195-210. [PMID: 24252591 DOI: 10.1016/j.freeradbiomed.2013.10.815] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/08/2013] [Accepted: 10/18/2013] [Indexed: 01/20/2023]
Abstract
Methylglyoxal (MG), a metabolite of glucose, is the major precursor of protein glycation and induces apoptosis. MG is associated with neurodegeneration, including oxidative stress and impaired glucose metabolism, and is efficiently metabolized to S-D-lactoylglutathione by glyoxalase (GLO). Although GLO has been implicated as being crucial in various diseases including ischemia, its detailed functions remain unclear. Therefore, we investigated the protective effect of GLO (GLO1 and GLO2) in neuronal cells and an animal ischemia model using Tat-GLO proteins. Purified Tat-GLO protein efficiently transduced into HT-22 neuronal cells and protected cells against MG- and H2O2-induced cell death, DNA fragmentation, and activation of caspase-3 and mitogen-activated protein kinase. In addition, transduced Tat-GLO protein increased D-lactate in MG- and H2O2-treated cells whereas glycation end products (AGE) and MG levels were significantly reduced in the same cells. Gerbils treated with Tat-GLO proteins displayed delayed neuronal cell death in the CA1 region of the hippocampus compared with a control. Furthermore, the combined neuroprotective effects of Tat-GLO1 and Tat-GLO2 proteins against ischemic damage were significantly higher than those of each individual protein. Those results demonstrate that transduced Tat-GLO protein protects neuronal cells by inhibiting MG- and H2O2-mediated cytotoxicity in vitro and in vivo. Therefore, we suggest that Tat-GLO proteins could be useful as a therapeutic agent for various human diseases related to oxidative stress including brain diseases.
Collapse
Affiliation(s)
- Min Jea Shin
- Department of Biomedical Sciences and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung 210-702, Korea
| | - Yeom Pyo Lee
- Department of Biomedical Sciences and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Eun Hee Ahn
- Department of Biomedical Sciences and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Hyo Sang Jo
- Department of Biomedical Sciences and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-si 330-090, Korea
| | - Oh-Shin Kwon
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Taegu 702-702, Republic of Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon, Kangwon-Do 200-702, Republic of Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, College of Medicine, Hallym University, Chunchon, Kangwon-Do 200-702, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Sciences and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Won Sik Eum
- Department of Biomedical Sciences and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea.
| | - Soo Young Choi
- Department of Biomedical Sciences and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea.
| |
Collapse
|
147
|
Bhatwadekar A, Stitt AW. AGE and RAGE inhibitors in the treatment of diabetic retinopathy. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/17469899.2.1.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
148
|
Zhou Y, Guo T, Li X, Dong Y, Galatsis P, Johnson DS, Pan Z. Discovery of selective 2,4-diaminopyrimidine-based photoaffinity probes for glyoxalase I. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00286a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
L1-Bpyne was discovered as a potent inhibitor and cell permeable probe of glyoxalase I.
Collapse
Affiliation(s)
- Yiqing Zhou
- Key laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University
- Xili University Town
- Shenzhen
| | - Tianlin Guo
- Key laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University
- Xili University Town
- Shenzhen
| | - Xitao Li
- Key laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University
- Xili University Town
- Shenzhen
| | - Yi Dong
- Key laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University
- Xili University Town
- Shenzhen
| | - Paul Galatsis
- Neuroscience Medicinal Chemistry and Chemical Biology
- Pfizer Worldwide Research and Development
- Cambridge
- USA
| | - Douglas S. Johnson
- Neuroscience Medicinal Chemistry and Chemical Biology
- Pfizer Worldwide Research and Development
- Cambridge
- USA
| | - Zhengying Pan
- Key laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University
- Xili University Town
- Shenzhen
| |
Collapse
|
149
|
Brouwers O, Niessen PMG, Miyata T, Østergaard JA, Flyvbjerg A, Peutz-Kootstra CJ, Sieber J, Mundel PH, Brownlee M, Janssen BJA, De Mey JGR, Stehouwer CDA, Schalkwijk CG. Glyoxalase-1 overexpression reduces endothelial dysfunction and attenuates early renal impairment in a rat model of diabetes. Diabetologia 2014; 57:224-35. [PMID: 24162587 DOI: 10.1007/s00125-013-3088-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 10/02/2013] [Indexed: 02/02/2023]
Abstract
AIMS/HYPOTHESIS In diabetes, advanced glycation end-products (AGEs) and the AGE precursor methylglyoxal (MGO) are associated with endothelial dysfunction and the development of microvascular complications. In this study we used a rat model of diabetes, in which rats transgenically overexpressed the MGO-detoxifying enzyme glyoxalase-I (GLO-I), to determine the impact of intracellular glycation on vascular function and the development of early renal changes in diabetes. METHODS Wild-type and Glo1-overexpressing rats were rendered diabetic for a period of 24 weeks by intravenous injection of streptozotocin. Mesenteric arteries were isolated to study ex vivo vascular reactivity with a wire myograph and kidneys were processed for histological examination. Glycation was determined by mass spectrometry and immunohistochemistry. Markers for inflammation, endothelium dysfunction and renal dysfunction were measured with ELISA-based techniques. RESULTS Diabetes-induced formation of AGEs in mesenteric arteries and endothelial dysfunction were reduced by Glo1 overexpression. Despite the absence of advanced nephrotic lesions, early markers of renal dysfunction (i.e. increased glomerular volume, decreased podocyte number and diabetes-induced elevation of urinary markers albumin, osteopontin, kidney-inflammation-molecule-1 and nephrin) were attenuated by Glo1 overexpression. In line with this, downregulation of Glo1 in cultured endothelial cells resulted in increased expression of inflammation and endothelium dysfunction markers. In fully differentiated cultured podocytes incubation with MGO resulted in apoptosis. CONCLUSIONS/INTERPRETATION This study shows that effective regulation of the GLO-I enzyme is important in the prevention of vascular intracellular glycation, endothelial dysfunction and early renal impairment in experimental diabetes. Modulating the GLO-I pathway therefore may provide a novel approach to prevent vascular complications in diabetes.
Collapse
Affiliation(s)
- Olaf Brouwers
- Laboratory for Metabolism and Vascular Medicine, Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Universiteitssingel 50, P.O. Box 616 (box 14), 6200 MD, Maastricht, the Netherlands,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Affiliation(s)
- Naila Rabbani
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, U.K
| | | |
Collapse
|