101
|
Guerra San Juan I, Nash LA, Smith KS, Leyton-Jaimes MF, Qian M, Klim JR, Limone F, Dorr AB, Couto A, Pintacuda G, Joseph BJ, Whisenant DE, Noble C, Melnik V, Potter D, Holmes A, Burberry A, Verhage M, Eggan K. Loss of mouse Stmn2 function causes motor neuropathy. Neuron 2022; 110:1671-1688.e6. [PMID: 35294901 PMCID: PMC9119928 DOI: 10.1016/j.neuron.2022.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/01/2021] [Accepted: 02/15/2022] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by motor neuron degeneration accompanied by aberrant accumulation and loss of function of the RNA-binding protein TDP43. Thus far, it remains unresolved to what extent TDP43 loss of function directly contributes to motor system dysfunction. Here, we employed gene editing to find whether the mouse ortholog of the TDP43-regulated gene STMN2 has an important function in maintaining the motor system. Both mosaic founders and homozygous loss-of-function Stmn2 mice exhibited neuromuscular junction denervation and fragmentation, resulting in muscle atrophy and impaired motor behavior, accompanied by an imbalance in neuronal microtubule dynamics in the spinal cord. The introduction of human STMN2 through BAC transgenesis was sufficient to rescue the motor phenotypes observed in Stmn2 mutant mice. Collectively, our results demonstrate that disrupting the ortholog of a single TDP43-regulated RNA is sufficient to cause substantial motor dysfunction, indicating that disruption of TDP43 function is likely a contributor to ALS.
Collapse
Affiliation(s)
- Irune Guerra San Juan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands; Human Genetics, Amsterdam University Medical Center, 1081 HV Amsterdam, the Netherlands
| | - Leslie A Nash
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Kevin S Smith
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Marcel F Leyton-Jaimes
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Menglu Qian
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Joseph R Klim
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Francesco Limone
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Alexander B Dorr
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Alexander Couto
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Greta Pintacuda
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brian J Joseph
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - D Eric Whisenant
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Caroline Noble
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Veronika Melnik
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Deirdre Potter
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Amie Holmes
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Aaron Burberry
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands; Human Genetics, Amsterdam University Medical Center, 1081 HV Amsterdam, the Netherlands
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
102
|
Transcriptional Profiling of Hippocampus Identifies Network Alterations in Alzheimer’s Disease. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by rapid brain cell degeneration affecting different areas of the brain. Hippocampus is one of the earliest involved brain regions in the disease. Modern technologies based on high-throughput data have identified transcriptional profiling of several neurological diseases, including AD, for a better comprehension of genetic mechanisms of the disease. In this study, we investigated differentially expressed genes (DEGs) from six Gene Expression Omnibus (GEO) datasets of hippocampus of AD patients. The identified DEGs were submitted to Weighted correlation network analysis (WGCNA) and ClueGo to explore genes with a higher degree centrality and to comprehend their biological role. Subsequently, MCODE was used to identify subnetworks of interconnected DEGs. Our study found 40 down-regulated genes and 36 up-regulated genes as consensus DEGs. Analysis of the co-expression network revealed ACOT7, ATP8A2, CDC42, GAD1, GOT1, INA, NCALD, and WWTR1 to be genes with a higher degree centrality. ClueGO revealed the pathways that were mainly enriched, such as clathrin coat assembly, synaptic vesicle endocytosis, and DNA damage response signal transduction by p53 class mediator. In addition, we found a subnetwork of 12 interconnected genes (AMPH, CA10, CALY, NEFL, SNAP25, SNAP91, SNCB, STMN2, SV2B, SYN2, SYT1, and SYT13). Only CA10 and CALY are targets of known drugs while the others could be potential novel drug targets.
Collapse
|
103
|
Akiyama T, Koike Y, Petrucelli L, Gitler AD. Cracking the cryptic code in amyotrophic lateral sclerosis and frontotemporal dementia: Towards therapeutic targets and biomarkers. Clin Transl Med 2022; 12:e818. [PMID: 35567447 PMCID: PMC9098226 DOI: 10.1002/ctm2.818] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/19/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two devastating human neurodegenerative diseases. A hallmark pathological feature of both diseases is the depletion of the RNA-binding protein TDP-43 from the nucleus in the brain and spinal cord of patients. A major function of TDP-43 is to repress the inclusion of cryptic exons during RNA splicing. When it becomes depleted from the nucleus in disease, this function is lost, and recently, several key cryptic splicing targets of TDP-43 have emerged, including STMN2, UNC13A, and others. UNC13A is a major ALS/FTD risk gene, and the genetic variations that increase the risk for disease seem to do so by making the gene more susceptible to cryptic exon inclusion when TDP-43 function is impaired. Here, we discuss the prospects and challenges of harnessing these cryptic splicing events as novel therapeutic targets and biomarkers. Deciphering this new cryptic code may be a touchstone for ALS and FTD diagnosis and treatment.
Collapse
Affiliation(s)
- Tetsuya Akiyama
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Yuka Koike
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.,Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
104
|
Imaizumi K, Ideno H, Sato T, Morimoto S, Okano H. Pathogenic Mutation of TDP-43 Impairs RNA Processing in a Cell Type-Specific Manner: Implications for the Pathogenesis of ALS/FTLD. eNeuro 2022; 9:ENEURO.0061-22.2022. [PMID: 35641224 PMCID: PMC9186108 DOI: 10.1523/eneuro.0061-22.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
Transactivating response element DNA-binding protein of 43 kDa (TDP-43), which is encoded by the TARDBP gene, is an RNA-binding protein with fundamental RNA processing activities, and its loss-of-function (LOF) has a central role in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). TARDBP mutations are postulated to inactivate TDP-43 functions, leading to impaired RNA processing. However, it has not been fully examined how mutant TDP-43 affects global RNA regulation, especially in human cell models. Here, we examined global RNA processing in forebrain cortical neurons derived from human induced pluripotent stem cells (iPSCs) with a pathogenic TARDBP mutation encoding the TDP-43K263E protein. In neurons expressing mutant TDP-43, we detected disrupted RNA regulation, including global changes in gene expression, missplicing, and aberrant polyadenylation, all of which were highly similar to those induced by TDP-43 knock-down. This mutation-induced TDP-43 LOF was not because of the cytoplasmic mislocalization of TDP-43. Intriguingly, in nonneuronal cells, including iPSCs and neural progenitor cells (NPCs), we did not observe impairments in RNA processing, thus indicating that the K263E mutation results in neuron-specific LOF of TDP-43. This study characterizes global RNA processing impairments induced by mutant TDP-43 and reveals the unprecedented cell type specificity of TDP-43 LOF in ALS/FTLD pathogenesis.
Collapse
Affiliation(s)
- Kent Imaizumi
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Hirosato Ideno
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Tsukika Sato
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
105
|
Šušnjar U, Škrabar N, Brown AL, Abbassi Y, Phatnani H, Cortese A, Cereda C, Bugiardini E, Cardani R, Meola G, Ripolone M, Moggio M, Romano M, Secrier M, Fratta P, Buratti E. Cell environment shapes TDP-43 function with implications in neuronal and muscle disease. Commun Biol 2022; 5:314. [PMID: 35383280 PMCID: PMC8983780 DOI: 10.1038/s42003-022-03253-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
TDP-43 (TAR DNA-binding protein 43) aggregation and redistribution are recognised as a hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. As TDP-43 inclusions have recently been described in the muscle of inclusion body myositis patients, this highlights the need to understand the role of TDP-43 beyond the central nervous system. Using RNA-seq, we directly compare TDP-43-mediated RNA processing in muscle (C2C12) and neuronal (NSC34) mouse cells. TDP-43 displays a cell-type-characteristic behaviour targeting unique transcripts in each cell-type, which is due to characteristic expression of RNA-binding proteins, that influence TDP-43's performance and define cell-type specific splicing. Among splicing events commonly dysregulated in both cell lines, we identify some that are TDP-43-dependent also in human cells. Inclusion levels of these alternative exons are altered in tissues of patients suffering from FTLD and IBM. We therefore propose that TDP-43 dysfunction contributes to disease development either in a common or a tissue-specific manner.
Collapse
Affiliation(s)
- Urša Šušnjar
- Molecular Pathology Lab, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Neva Škrabar
- Tumour Virology Lab, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Generatio GmbH, Center for Animal, Genetics, Tübingen, Germany
| | - Anna-Leigh Brown
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Yasmine Abbassi
- Molecular Pathology Lab, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, USA
| | - Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Department of Brain and Behaviour Sciences, University of Pavia, Pavia, Italy
| | - Cristina Cereda
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Enrico Bugiardini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Rosanna Cardani
- BioCor Biobank, UOC SMEL-1 of Clinical Pathology, IRCCS-Policlinico San Donato, San Donato Milanese, Italy
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Emanuele Buratti
- Molecular Pathology Lab, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
106
|
Stathmins and Motor Neuron Diseases: Pathophysiology and Therapeutic Targets. Biomedicines 2022; 10:biomedicines10030711. [PMID: 35327513 PMCID: PMC8945549 DOI: 10.3390/biomedicines10030711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Motor neuron diseases (MNDs) are a group of fatal, neurodegenerative disorders with different etiology, clinical course and presentation, caused by the loss of upper and lower motor neurons (MNs). MNs are highly specialized cells equipped with long, axonal processes; axonal defects are some of the main players underlying the pathogenesis of these disorders. Microtubules are key components of the neuronal cytoskeleton characterized by dynamic instability, switching between rapid polymerization and shrinkage. Proteins of the stathmin family affect microtubule dynamics regulating the assembly and the dismantling of tubulin. Stathmin-2 (STMN2) is one of the most abundantly expressed genes in MNs. Following axonal injury, STMN2 expression is upregulated, and the protein is transported toward the growth cones of regenerating axons. STMN2 has a critical role in axonal maintenance, and its dysregulation plays an important role in neurodegenerative processes. Stathmin-1 (STMN1) is a ubiquitous protein that is highly expressed during the development of the nervous system, and its phosphorylation controls microtubule dynamics. In the present review, we summarize what is currently known about the involvement of stathmin alterations in MNDs and the potential therapeutic effect of their modulation, with a specific focus on the most common forms of MND, amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA).
Collapse
|
107
|
Brown AL, Wilkins OG, Keuss MJ, Hill SE, Zanovello M, Lee WC, Bampton A, Lee FCY, Masino L, Qi YA, Bryce-Smith S, Gatt A, Hallegger M, Fagegaltier D, Phatnani H, Newcombe J, Gustavsson EK, Seddighi S, Reyes JF, Coon SL, Ramos D, Schiavo G, Fisher EMC, Raj T, Secrier M, Lashley T, Ule J, Buratti E, Humphrey J, Ward ME, Fratta P. TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature 2022; 603:131-137. [PMID: 35197628 PMCID: PMC8891020 DOI: 10.1038/s41586-022-04436-3] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
Variants of UNC13A, a critical gene for synapse function, increase the risk of amyotrophic lateral sclerosis and frontotemporal dementia1-3, two related neurodegenerative diseases defined by mislocalization of the RNA-binding protein TDP-434,5. Here we show that TDP-43 depletion induces robust inclusion of a cryptic exon in UNC13A, resulting in nonsense-mediated decay and loss of UNC13A protein. Two common intronic UNC13A polymorphisms strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia risk overlap with TDP-43 binding sites. These polymorphisms potentiate cryptic exon inclusion, both in cultured cells and in brains and spinal cords from patients with these conditions. Our findings, which demonstrate a genetic link between loss of nuclear TDP-43 function and disease, reveal the mechanism by which UNC13A variants exacerbate the effects of decreased TDP-43 function. They further provide a promising therapeutic target for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Anna-Leigh Brown
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Oscar G Wilkins
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
- The Francis Crick Institute, London, UK
| | - Matthew J Keuss
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Sarah E Hill
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Matteo Zanovello
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Weaverly Colleen Lee
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Alexander Bampton
- Queen Square Brain Bank, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Flora C Y Lee
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
- The Francis Crick Institute, London, UK
| | | | - Yue A Qi
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Sam Bryce-Smith
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Ariana Gatt
- Queen Square Brain Bank, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Martina Hallegger
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
- The Francis Crick Institute, London, UK
| | - Delphine Fagegaltier
- Center for Genomics of Neurodegenerative Disease, New York Genome Center (NYGC), New York, NY, USA
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease, New York Genome Center (NYGC), New York, NY, USA
| | - Jia Newcombe
- NeuroResource, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Emil K Gustavsson
- Queen Square Brain Bank, UCL Queen Square Institute of Neurology, University College London, London, UK
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK
| | - Sahba Seddighi
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel F Reyes
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Steven L Coon
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Daniel Ramos
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Giampietro Schiavo
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
- UK Dementia Research Institute, University College London, London, UK
| | - Elizabeth M C Fisher
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Towfique Raj
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Secrier
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jernej Ule
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
- The Francis Crick Institute, London, UK
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Emanuele Buratti
- Molecular Pathology Lab, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Jack Humphrey
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK.
| |
Collapse
|
108
|
Boeve BF, Boxer AL, Kumfor F, Pijnenburg Y, Rohrer JD. Advances and controversies in frontotemporal dementia: diagnosis, biomarkers, and therapeutic considerations. Lancet Neurol 2022; 21:258-272. [DOI: 10.1016/s1474-4422(21)00341-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/16/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022]
|
109
|
Ma XR, Prudencio M, Koike Y, Vatsavayai SC, Kim G, Harbinski F, Briner A, Rodriguez CM, Guo C, Akiyama T, Schmidt HB, Cummings BB, Wyatt DW, Kurylo K, Miller G, Mekhoubad S, Sallee N, Mekonnen G, Ganser L, Rubien JD, Jansen-West K, Cook CN, Pickles S, Oskarsson B, Graff-Radford NR, Boeve BF, Knopman DS, Petersen RC, Dickson DW, Shorter J, Myong S, Green EM, Seeley WW, Petrucelli L, Gitler AD. TDP-43 represses cryptic exon inclusion in the FTD-ALS gene UNC13A. Nature 2022; 603:124-130. [PMID: 35197626 PMCID: PMC8891019 DOI: 10.1038/s41586-022-04424-7] [Citation(s) in RCA: 260] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 01/13/2022] [Indexed: 02/08/2023]
Abstract
A hallmark pathological feature of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the depletion of RNA-binding protein TDP-43 from the nucleus of neurons in the brain and spinal cord1. A major function of TDP-43 is as a repressor of cryptic exon inclusion during RNA splicing2-4. Single nucleotide polymorphisms in UNC13A are among the strongest hits associated with FTD and ALS in human genome-wide association studies5,6, but how those variants increase risk for disease is unknown. Here we show that TDP-43 represses a cryptic exon-splicing event in UNC13A. Loss of TDP-43 from the nucleus in human brain, neuronal cell lines and motor neurons derived from induced pluripotent stem cells resulted in the inclusion of a cryptic exon in UNC13A mRNA and reduced UNC13A protein expression. The top variants associated with FTD or ALS risk in humans are located in the intron harbouring the cryptic exon, and we show that they increase UNC13A cryptic exon splicing in the face of TDP-43 dysfunction. Together, our data provide a direct functional link between one of the strongest genetic risk factors for FTD and ALS (UNC13A genetic variants), and loss of TDP-43 function.
Collapse
Affiliation(s)
- X Rosa Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Yuka Koike
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Sarat C Vatsavayai
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Garam Kim
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Adam Briner
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, Queensland, Australia
| | - Caitlin M Rodriguez
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Caiwei Guo
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tetsuya Akiyama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - H Broder Schmidt
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | | - Gemechu Mekonnen
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Laura Ganser
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Jack D Rubien
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Casey N Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Sarah Pickles
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | | | | | | | | | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sua Myong
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | | | - William W Seeley
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA.
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
110
|
Buciuc M, Martin PR, Tosakulwong N, Murray ME, Petrucelli L, Senjem ML, Spychalla AJ, Knopman DS, Boeve BF, Petersen RC, Parisi JE, Reichard RR, Dickson DW, Jack CR, Whitwell JL, Josephs KA. TDP-43-associated atrophy in brains with and without frontotemporal lobar degeneration. Neuroimage Clin 2022; 34:102954. [PMID: 35168140 PMCID: PMC8850800 DOI: 10.1016/j.nicl.2022.102954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 11/29/2022]
Abstract
Transactive response DNA-binding protein of ∼43 kDa (TDP-43), a primary pathologic substrate in tau-negative frontotemporal lobar degeneration (FTLD), is also often found in the brains of elderly individuals without FTLD and is a key player in the process of neurodegeneration in brains with and without FTLD. It is unknown how rates and trajectories of TDP-43-associated brain atrophy compare between these two groups. Additionally, non-FTLD TDP-43 inclusions are not homogeneous and can be divided into two morphologic types: type-α and neurofibrillary tangle-associated type-β. Therefore, we explored whether neurodegeneration also varies due to the morphologic type. In this longitudinal retrospective study of 293 patients with 843 MRI scans spanning over ∼10 years, we used a Bayesian hierarchical linear model to quantify similarities and differences between the non-FTLD TDP-43 (type-α/type-β) and FTLD-TDP (n = 68) in both regional volume at various timepoints before death and annualized rate of atrophy. Since Alzheimer's disease (AD) is a frequent co-pathology in non-FTLD TDP-43, we further divided types α/β based on presence/absence of intermediate-high likelihood AD: AD-TDP type-β (n = 90), AD-TDP type-α (n = 104), and Pure-TDP (n = 31, all type-α). FTLD-TDP was associated with faster atrophy rates in the inferior temporal lobe and temporal pole compared to all non-FTLD TDP-43 groups. The atrophy rate in the frontal lobe was modulated by age with younger FTLD-TDP having the fastest rates. Older FTLD-TDP showed a limbic predominant pattern of neurodegeneration. AD-TDP type-α showed faster rates of hippocampal atrophy and smaller volumes of amygdala, temporal pole, and inferior temporal lobe compared to AD-TDP type-β. Pure-TDP was associated with slowest rates and less atrophy in all brain regions. The results suggest that there are differences and similarities in longitudinal brain volume loss between FTLD-TDP and non-FTLD TDP-43. Within FTLD-TDP age plays a role in which brain regions are the most affected. Additionally, brain atrophy regional rates also vary by non-FTLD TDP-43 type.
Collapse
Affiliation(s)
- Marina Buciuc
- Department of Neurology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Peter R Martin
- Department of Quantitative Health Sciences, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Nirubol Tosakulwong
- Department of Quantitative Health Sciences, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA.
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA.
| | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Anthony J Spychalla
- Department of Radiology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - David S Knopman
- Department of Neurology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - R Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA.
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Jennifer L Whitwell
- Department of Radiology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, 200 1(st) Street NW, Rochester, MN 55905, USA.
| |
Collapse
|
111
|
Reyes-Leiva D, Dols-Icardo O, Sirisi S, Cortés-Vicente E, Turon-Sans J, de Luna N, Blesa R, Belbin O, Montal V, Alcolea D, Fortea J, Lleó A, Rojas-García R, Illán-Gala I. Pathophysiological Underpinnings of Extra-Motor Neurodegeneration in Amyotrophic Lateral Sclerosis: New Insights From Biomarker Studies. Front Neurol 2022; 12:750543. [PMID: 35115992 PMCID: PMC8804092 DOI: 10.3389/fneur.2021.750543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) lie at opposing ends of a clinical, genetic, and neuropathological continuum. In the last decade, it has become clear that cognitive and behavioral changes in patients with ALS are more frequent than previously recognized. Significantly, these non-motor features can impact the diagnosis, prognosis, and management of ALS. Partially overlapping neuropathological staging systems have been proposed to describe the distribution of TAR DNA-binding protein 43 (TDP-43) aggregates outside the corticospinal tract. However, the relationship between TDP-43 inclusions and neurodegeneration is not absolute and other pathophysiological processes, such as neuroinflammation (with a prominent role of microglia), cortical hyperexcitability, and synaptic dysfunction also play a central role in ALS pathophysiology. In the last decade, imaging and biofluid biomarker studies have revealed important insights into the pathophysiological underpinnings of extra-motor neurodegeneration in the ALS-FTLD continuum. In this review, we first summarize the clinical and pathophysiological correlates of extra-motor neurodegeneration in ALS. Next, we discuss the diagnostic and prognostic value of biomarkers in ALS and their potential to characterize extra-motor neurodegeneration. Finally, we debate about how biomarkers could improve the diagnosis and classification of ALS. Emerging imaging biomarkers of extra-motor neurodegeneration that enable the monitoring of disease progression are particularly promising. In addition, a growing arsenal of biofluid biomarkers linked to neurodegeneration and neuroinflammation are improving the diagnostic accuracy and identification of patients with a faster progression rate. The development and validation of biomarkers that detect the pathological aggregates of TDP-43 in vivo are notably expected to further elucidate the pathophysiological underpinnings of extra-motor neurodegeneration in ALS. Novel biomarkers tracking the different aspects of ALS pathophysiology are paving the way to precision medicine approaches in the ALS-FTLD continuum. These are essential steps to improve the diagnosis and staging of ALS and the design of clinical trials testing novel disease-modifying treatments.
Collapse
Affiliation(s)
- David Reyes-Leiva
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Oriol Dols-Icardo
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Sonia Sirisi
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Elena Cortés-Vicente
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Janina Turon-Sans
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Noemi de Luna
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Rafael Blesa
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Olivia Belbin
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Victor Montal
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Ricard Rojas-García
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Ignacio Illán-Gala
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
- *Correspondence: Ignacio Illán-Gala
| |
Collapse
|
112
|
Theunissen F, Flynn LL, Anderton RS, Akkari PA. Short structural variants as informative genetic markers for ALS disease risk and progression. BMC Med 2022; 20:11. [PMID: 35034660 PMCID: PMC8762977 DOI: 10.1186/s12916-021-02206-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
There is considerable variability in disease progression for patients with amyotrophic lateral sclerosis (ALS) including the age of disease onset, site of disease onset, and survival time. There is growing evidence that short structural variations (SSVs) residing in frequently overlooked genomic regions can contribute to complex disease mechanisms and can explain, in part, the phenotypic variability in ALS patients. Here, we discuss SSVs recently characterized by our laboratory and how these discoveries integrate into the current literature on ALS, particularly in the context of application to future clinical trials. These markers may help to identify and differentiate patients for clinical trials that have a similar ALS disease mechanism(s), thereby reducing the impact of participant heterogeneity. As evidence accumulates for the genetic markers discovered in SQSTM1, SCAF4, and STMN2, we hope to improve the outcomes of future ALS clinical trials.
Collapse
Affiliation(s)
- Frances Theunissen
- Perron Institute for Neurological and Translational Science, First floor, RR block, QEII Medical Centre, 8 Verdun St, Nedlands, WA, 6009, Australia.
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia.
| | - Loren L Flynn
- Perron Institute for Neurological and Translational Science, First floor, RR block, QEII Medical Centre, 8 Verdun St, Nedlands, WA, 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Black Swan Pharmaceuticals, Wake Forrest, NC, USA
| | - Ryan S Anderton
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
- Faculty of Medicine, Nursing, Midwifery and Health Sciences, University of Notre Dame Australia, Fremantle, WA, 6160, Australia
| | - P Anthony Akkari
- Perron Institute for Neurological and Translational Science, First floor, RR block, QEII Medical Centre, 8 Verdun St, Nedlands, WA, 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Black Swan Pharmaceuticals, Wake Forrest, NC, USA
- Division of Neurology, Duke University Medical Centre, Duke University, Durham, NC, USA
| |
Collapse
|
113
|
Rochat C, Bernard-Marissal N, Källstig E, Pradervand S, Perrin FE, Aebischer P, Raoul C, Schneider BL. Astrocyte-targeting RNA interference against mutated superoxide dismutase 1 induces motoneuron plasticity and protects fast-fatigable motor units in a mouse model of amyotrophic lateral sclerosis. Glia 2022; 70:842-857. [PMID: 34978340 PMCID: PMC9303637 DOI: 10.1002/glia.24140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022]
Abstract
In amyotrophic lateral sclerosis (ALS) caused by SOD1 gene mutations, both cell‐autonomous and noncell‐autonomous mechanisms lead to the selective degeneration of motoneurons (MN). Here, we evaluate the therapeutic potential of gene therapy targeting mutated SOD1 in mature astrocytes using mice expressing the mutated SOD1G93A protein. An AAV‐gfaABC1D vector encoding an artificial microRNA is used to deliver RNA interference against mutated SOD1 selectively in astrocytes. The treatment leads to the progressive rescue of neuromuscular junction occupancy, to the recovery of the compound muscle action potential in the gastrocnemius muscle, and significantly improves neuromuscular function. In the spinal cord, gene therapy targeting astrocytes protects a small pool of the most vulnerable fast‐fatigable MN until disease end stage. In the gastrocnemius muscle of the treated SOD1G93A mice, the fast‐twitch type IIB muscle fibers are preserved from atrophy. Axon collateral sprouting is observed together with muscle fiber type grouping indicative of denervation/reinnervation events. The transcriptome profiling of spinal cord MN shows changes in the expression levels of factors regulating the dynamics of microtubules. Gene therapy delivering RNA interference against mutated SOD1 in astrocytes protects fast‐fatigable motor units and thereby improves neuromuscular function in ALS mice.
Collapse
Affiliation(s)
- Cylia Rochat
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Brain Mind Institute, Lausanne
| | - Nathalie Bernard-Marissal
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Brain Mind Institute, Lausanne.,INSERM, MMG, Aix-Marseille University, Marseille, France
| | - Emma Källstig
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Brain Mind Institute, Lausanne.,Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva
| | - Sylvain Pradervand
- Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland
| | | | - Patrick Aebischer
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Brain Mind Institute, Lausanne
| | - Cédric Raoul
- INM, Université Montpellier, INSERM, Montpellier, France
| | - Bernard L Schneider
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Brain Mind Institute, Lausanne.,Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva
| |
Collapse
|
114
|
Pampalakis G, Angelis G, Zingkou E, Vekrellis K, Sotiropoulou G. A chemogenomic approach is required for effective treatment of amyotrophic lateral sclerosis. Clin Transl Med 2022; 12:e657. [PMID: 35064780 PMCID: PMC8783349 DOI: 10.1002/ctm2.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 11/10/2022] Open
Abstract
ALS is a fatal untreatable disease involving degeneration of motor neurons. Μultiple causative genes encoding proteins with versatile functions have been identified indicating that diverse biological pathways lead to ALS. Chemical entities still represent a promising choice to delay ALS progression, attenuate symptoms and/or increase life expectancy, but also gene-based and stem cell-based therapies are in the process of development, and some are tested in clinical trials. Various compounds proved effective in transgenic models overexpressing distinct ALS causative genes unfortunately though, they showed no efficacy in clinical trials. Notably, while animal models provide a uniform genetic background for preclinical testing, ALS patients are not stratified, and the distinct genetic forms of ALS are treated as one group, which could explain the observed discrepancies between treating genetically homogeneous mice and quite heterogeneous patient cohorts. We suggest that chemical entity-genotype correlation should be exploited to guide patient stratification for pharmacotherapy, that is administered drugs should be selected based on the ALS genetic background.
Collapse
Affiliation(s)
- Georgios Pampalakis
- Department of Pharmacology - Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Angelis
- Department of Pharmacology - Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Kostas Vekrellis
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| |
Collapse
|
115
|
Genetic architecture of motor neuron diseases. J Neurol Sci 2021; 434:120099. [PMID: 34965490 DOI: 10.1016/j.jns.2021.120099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022]
Abstract
Motor neuron diseases (MNDs) are rare and frequently fatal neurological disorders in which motor neurons within the brainstem and spinal cord regions slowly die. MNDs are primarily caused by genetic mutations, and > 100 different mutant genes in humans have been discovered thus far. Given the fact that many more MND-related genes have yet to be discovered, the growing body of genetic evidence has offered new insights into the diverse cellular and molecular mechanisms involved in the aetiology and pathogenesis of MNDs. This search may aid in the selection of potential candidate genes for future investigation and, eventually, may open the door to novel interventions to slow down disease progression. In this review paper, we have summarized detailed existing research findings of different MNDs, such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), spinal bulbar muscle atrophy (SBMA) and hereditary spastic paraplegia (HSP) in relation to their complex genetic architecture.
Collapse
|
116
|
Elsadany M, Elghaish RA, Khalil AS, Ahmed AS, Mansour RH, Badr E, Elserafy M. Transcriptional Analysis of Nuclear-Encoded Mitochondrial Genes in Eight Neurodegenerative Disorders: The Analysis of Seven Diseases in Reference to Friedreich’s Ataxia. Front Genet 2021; 12:749792. [PMID: 34987545 PMCID: PMC8721009 DOI: 10.3389/fgene.2021.749792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are challenging to understand, diagnose, and treat. Revealing the genomic and transcriptomic changes in NDDs contributes greatly to the understanding of the diseases, their causes, and development. Moreover, it enables more precise genetic diagnosis and novel drug target identification that could potentially treat the diseases or at least ease the symptoms. In this study, we analyzed the transcriptional changes of nuclear-encoded mitochondrial (NEM) genes in eight NDDs to specifically address the association of these genes with the diseases. Previous studies show strong links between defects in NEM genes and neurodegeneration, yet connecting specific genes with NDDs is not well studied. Friedreich’s ataxia (FRDA) is an NDD that cannot be treated effectively; therefore, we focused first on FRDA and compared the outcome with seven other NDDs, including Alzheimer’s disease, amyotrophic lateral sclerosis, Creutzfeldt–Jakob disease, frontotemporal dementia, Huntington’s disease, multiple sclerosis, and Parkinson’s disease. First, weighted correlation network analysis was performed on an FRDA RNA-Seq data set, focusing only on NEM genes. We then carried out differential gene expression analysis and pathway enrichment analysis to pinpoint differentially expressed genes that are potentially associated with one or more of the analyzed NDDs. Our findings propose a strong link between NEM genes and NDDs and suggest that our identified candidate genes can be potentially used as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Muhammad Elsadany
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Reem A. Elghaish
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Aya S. Khalil
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Alaa S. Ahmed
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Rana H. Mansour
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Eman Badr
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt
- *Correspondence: Eman Badr, ; Menattallah Elserafy,
| | - Menattallah Elserafy
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- *Correspondence: Eman Badr, ; Menattallah Elserafy,
| |
Collapse
|
117
|
Ramic M, Andrade NS, Rybin MJ, Esanov R, Wahlestedt C, Benatar M, Zeier Z. Epigenetic Small Molecules Rescue Nucleocytoplasmic Transport and DNA Damage Phenotypes in C9ORF72 ALS/FTD. Brain Sci 2021; 11:brainsci11111543. [PMID: 34827542 PMCID: PMC8616043 DOI: 10.3390/brainsci11111543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 01/04/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease with available treatments only marginally slowing progression or improving survival. A hexanucleotide repeat expansion mutation in the C9ORF72 gene is the most commonly known genetic cause of both sporadic and familial cases of ALS and frontotemporal dementia (FTD). The C9ORF72 expansion mutation produces five dipeptide repeat proteins (DPRs), and while the mechanistic determinants of DPR-mediated neurotoxicity remain incompletely understood, evidence suggests that disruption of nucleocytoplasmic transport and increased DNA damage contributes to pathology. Therefore, characterizing these disturbances and determining the relative contribution of different DPRs is needed to facilitate the development of novel therapeutics for C9ALS/FTD. To this end, we generated a series of nucleocytoplasmic transport “biosensors”, composed of the green fluorescent protein (GFP), fused to different classes of nuclear localization signals (NLSs) and nuclear export signals (NESs). Using these biosensors in conjunction with automated microscopy, we investigated the role of the three most neurotoxic DPRs (PR, GR, and GA) on seven nuclear import and two export pathways. In addition to other DPRs, we found that PR had pronounced inhibitory effects on the classical nuclear export pathway and several nuclear import pathways. To identify compounds capable of counteracting the effects of PR on nucleocytoplasmic transport, we developed a nucleocytoplasmic transport assay and screened several commercially available compound libraries, totaling 2714 compounds. In addition to restoring nucleocytoplasmic transport efficiencies, hits from the screen also counteract the cytotoxic effects of PR. Selected hits were subsequently tested for their ability to rescue another C9ALS/FTD phenotype—persistent DNA double strand breakage. Overall, we found that DPRs disrupt multiple nucleocytoplasmic transport pathways and we identified small molecules that counteract these effects—resulting in increased viability of PR-expressing cells and decreased DNA damage markers in patient-derived motor neurons. Several HDAC inhibitors were validated as hits, supporting previous studies that show that HDAC inhibitors confer therapeutic effects in neurodegenerative models.
Collapse
Affiliation(s)
- Melina Ramic
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
| | - Nadja S. Andrade
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
| | - Matthew J. Rybin
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
| | - Rustam Esanov
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
| | - Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, 1120 NW 14th St., Miami, FL 33136, USA;
| | - Zane Zeier
- Center for Therapeutic Innovation, Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, USA; (M.R.); (N.S.A.); (M.J.R.); (R.E.); (C.W.)
- Correspondence: ; Tel.: +1-305-243-1367
| |
Collapse
|
118
|
Li J, Lim RG, Kaye JA, Dardov V, Coyne AN, Wu J, Milani P, Cheng A, Thompson TG, Ornelas L, Frank A, Adam M, Banuelos MG, Casale M, Cox V, Escalante-Chong R, Daigle JG, Gomez E, Hayes L, Holewenski R, Lei S, Lenail A, Lima L, Mandefro B, Matlock A, Panther L, Patel-Murray NL, Pham J, Ramamoorthy D, Sachs K, Shelley B, Stocksdale J, Trost H, Wilhelm M, Venkatraman V, Wassie BT, Wyman S, Yang S, Van Eyk JE, Lloyd TE, Finkbeiner S, Fraenkel E, Rothstein JD, Sareen D, Svendsen CN, Thompson LM. An integrated multi-omic analysis of iPSC-derived motor neurons from C9ORF72 ALS patients. iScience 2021; 24:103221. [PMID: 34746695 PMCID: PMC8554488 DOI: 10.1016/j.isci.2021.103221] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/29/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are challenging for systems biology because of the lack of reliable animal models or patient samples at early disease stages. Induced pluripotent stem cells (iPSCs) could address these challenges. We investigated DNA, RNA, epigenetics, and proteins in iPSC-derived motor neurons from patients with ALS carrying hexanucleotide expansions in C9ORF72. Using integrative computational methods combining all omics datasets, we identified novel and known dysregulated pathways. We used a C9ORF72 Drosophila model to distinguish pathways contributing to disease phenotypes from compensatory ones and confirmed alterations in some pathways in postmortem spinal cord tissue of patients with ALS. A different differentiation protocol was used to derive a separate set of C9ORF72 and control motor neurons. Many individual -omics differed by protocol, but some core dysregulated pathways were consistent. This strategy of analyzing patient-specific neurons provides disease-related outcomes with small numbers of heterogeneous lines and reduces variation from single-omics to elucidate network-based signatures.
Collapse
Affiliation(s)
- Jonathan Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ryan G. Lim
- UCI MIND, University of California, Irvine, CA 92697, USA
| | - Julia A. Kaye
- Center for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Victoria Dardov
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
- Advanced Clinical Biosystems Research Institute, The Barbra Streisand Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alyssa N. Coyne
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
- Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Pamela Milani
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrew Cheng
- Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
| | | | - Loren Ornelas
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Aaron Frank
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Miriam Adam
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maria G. Banuelos
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Malcolm Casale
- UCI MIND, University of California, Irvine, CA 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Veerle Cox
- Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
| | - Renan Escalante-Chong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J. Gavin Daigle
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
- Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
| | - Emilda Gomez
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Lindsey Hayes
- Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
| | - Ronald Holewenski
- Advanced Clinical Biosystems Research Institute, The Barbra Streisand Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Susan Lei
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Alex Lenail
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leandro Lima
- Center for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Berhan Mandefro
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Andrea Matlock
- Advanced Clinical Biosystems Research Institute, The Barbra Streisand Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lindsay Panther
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | | | - Jacqueline Pham
- Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
| | - Divya Ramamoorthy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Karen Sachs
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brandon Shelley
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Jennifer Stocksdale
- UCI MIND, University of California, Irvine, CA 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Hannah Trost
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Mark Wilhelm
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
| | - Vidya Venkatraman
- Advanced Clinical Biosystems Research Institute, The Barbra Streisand Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brook T. Wassie
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stacia Wyman
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA 92697, USA
| | - Stephanie Yang
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
| | | | - Jennifer E. Van Eyk
- Advanced Clinical Biosystems Research Institute, The Barbra Streisand Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Thomas E. Lloyd
- Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
- Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeffrey D. Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
- Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
- Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
| | - Dhruv Sareen
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Clive N. Svendsen
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Leslie M. Thompson
- UCI MIND, University of California, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA 92697, USA
| |
Collapse
|
119
|
New perspectives on cytoskeletal dysregulation and mitochondrial mislocalization in amyotrophic lateral sclerosis. Transl Neurodegener 2021; 10:46. [PMID: 34789332 PMCID: PMC8597313 DOI: 10.1186/s40035-021-00272-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective, early degeneration of motor neurons in the brain and spinal cord. Motor neurons have long axonal projections, which rely on the integrity of neuronal cytoskeleton and mitochondria to regulate energy requirements for maintaining axonal stability, anterograde and retrograde transport, and signaling between neurons. The formation of protein aggregates which contain cytoskeletal proteins, and mitochondrial dysfunction both have devastating effects on the function of neurons and are shared pathological features across several neurodegenerative conditions, including ALS, Alzheimer's disease, Parkinson's disease, Huntington's disease and Charcot-Marie-Tooth disease. Furthermore, it is becoming increasingly clear that cytoskeletal integrity and mitochondrial function are intricately linked. Therefore, dysregulations of the cytoskeletal network and mitochondrial homeostasis and localization, may be common pathways in the initial steps of neurodegeneration. Here we review and discuss known contributors, including variants in genetic loci and aberrant protein activities, which modify cytoskeletal integrity, axonal transport and mitochondrial localization in ALS and have overlapping features with other neurodegenerative diseases. Additionally, we explore some emerging pathways that may contribute to this disruption in ALS.
Collapse
|
120
|
Ito D. Promise of Nucleic Acid Therapeutics for Amyotrophic Lateral Sclerosis. Ann Neurol 2021; 91:13-20. [PMID: 34704267 DOI: 10.1002/ana.26259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Nucleic acid therapeutics have been attracting attention as novel drug discovery modalities for intractable diseases, including amyotrophic lateral sclerosis. This review provides an overview of the current status and prospects of antisense oligonucleotide treatment for amyotrophic lateral sclerosis. Recently, the results of a phase I/II study using the antisense oligonucleotides Tofersen to treat familial amyotrophic lateral sclerosis with superoxide dismutase 1 mutation have been reported. Intrathecal Tofersen administration resulted in a 36% reduction in superoxide dismutase 1 level in the cerebrospinal fluid. Another report described 2 patients with mutant superoxide dismutase 1 treated with an adeno-associated virus encoding a microRNA targeting superoxide dismutase 1. The first patient, who possessed the fast progressive mutant A5V, received a single intrathecal infusion. Although the patient died of respiratory arrest 16 months after treatment, autopsy findings showed a reduction of >90% in superoxide dismutase 1 level in the spinal cord. Clinical trials on antisense oligonucleotide therapies targeting other major amyotrophic lateral sclerosis-causative genes, fused in sarcoma and chromosome 9 open reading frame 72, are ongoing. To attenuate the pathology of TDP-43, strategies targeting regulators of TDP-43 (ataxin 2) and proteins downstream of TDP-43 (stathmin 2) by antisense oligonucleotides are being developed. The advent of nucleic acid therapeutics has enabled to specifically attack the molecules in the amyotrophic lateral sclerosis pathological cascade, expanding the options for therapeutic targets. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Daisuke Ito
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
121
|
Smith AST, Chun C, Hesson J, Mathieu J, Valdmanis PN, Mack DL, Choi BO, Kim DH, Bothwell M. Human Induced Pluripotent Stem Cell-Derived TDP-43 Mutant Neurons Exhibit Consistent Functional Phenotypes Across Multiple Gene Edited Lines Despite Transcriptomic and Splicing Discrepancies. Front Cell Dev Biol 2021; 9:728707. [PMID: 34660586 PMCID: PMC8511491 DOI: 10.3389/fcell.2021.728707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022] Open
Abstract
Gene editing technologies hold great potential to enhance our ability to model inheritable neurodegenerative diseases. Specifically, engineering multiple amyotrophic lateral sclerosis (ALS) mutations into isogenic cell populations facilitates determination of whether different causal mutations cause pathology via shared mechanisms, and provides the capacity to separate these mechanisms from genotype-specific effects. As gene-edited, cell-based models of human disease become more commonplace, there is an urgent need to verify that these models constitute consistent and accurate representations of native biology. Here, commercially sourced, induced pluripotent stem cell-derived motor neurons from Cellular Dynamics International, edited to express the ALS-relevant mutations TDP-43M337V and TDP-43Q331K were compared with in-house derived lines engineered to express the TDP-43Q331K mutation within the WTC11 background. Our results highlight electrophysiological and mitochondrial deficits in these edited cells that correlate with patient-derived cells, suggesting a consistent cellular phenotype arising from TDP-43 mutation. However, significant differences in the transcriptomic profiles and splicing behavior of the edited cells underscores the need for careful comparison of multiple lines when attempting to use these cells as a means to better understand the onset and progression of ALS in humans.
Collapse
Affiliation(s)
- Alec S T Smith
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Changho Chun
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Jennifer Hesson
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.,Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.,Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Paul N Valdmanis
- Division of Medical Genetics, University of Washington, Seattle, WA, United States
| | - David L Mack
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.,Department of Bioengineering, University of Washington, Seattle, WA, United States.,Department of Rehabilitation Medicine, University of Washington, Seattle, WA, United States
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea.,Department of Health Sciences and Technology, The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark Bothwell
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
122
|
HnRNP K mislocalisation is a novel protein pathology of frontotemporal lobar degeneration and ageing and leads to cryptic splicing. Acta Neuropathol 2021; 142:609-627. [PMID: 34274995 PMCID: PMC8423707 DOI: 10.1007/s00401-021-02340-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 02/08/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins (HnRNPs) are a group of ubiquitously expressed RNA-binding proteins implicated in the regulation of all aspects of nucleic acid metabolism. HnRNP K is a member of this highly versatile hnRNP family. Pathological redistribution of hnRNP K to the cytoplasm has been linked to the pathogenesis of several malignancies but, until now, has been underexplored in the context of neurodegenerative disease. Here we show hnRNP K mislocalisation in pyramidal neurons of the frontal cortex to be a novel neuropathological feature that is associated with both frontotemporal lobar degeneration and ageing. HnRNP K mislocalisation is mutually exclusive to TDP-43 and tau pathological inclusions in neurons and was not observed to colocalise with mitochondrial, autophagosomal or stress granule markers. De-repression of cryptic exons in RNA targets following TDP-43 nuclear depletion is an emerging mechanism of potential neurotoxicity in frontotemporal lobar degeneration and the mechanistically overlapping disorder amyotrophic lateral sclerosis. We silenced hnRNP K in neuronal cells to identify the transcriptomic consequences of hnRNP K nuclear depletion. Intriguingly, by performing RNA-seq analysis we find that depletion of hnRNP K induces 101 novel cryptic exon events. We validated cryptic exon inclusion in an SH-SY5Y hnRNP K knockdown and in FTLD brain exhibiting hnRNP K nuclear depletion. We, therefore, present evidence for hnRNP K mislocalisation to be associated with FTLD and for this to induce widespread changes in splicing.
Collapse
|
123
|
Benarroch E. What Is the Role of Stathmin-2 in Axonal Biology and Degeneration? Neurology 2021; 97:330-333. [PMID: 34400561 DOI: 10.1212/wnl.0000000000012419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 11/15/2022] Open
|
124
|
Coyne AN, Baskerville V, Zaepfel BL, Dickson DW, Rigo F, Bennett F, Lusk CP, Rothstein JD. Nuclear accumulation of CHMP7 initiates nuclear pore complex injury and subsequent TDP-43 dysfunction in sporadic and familial ALS. Sci Transl Med 2021; 13:eabe1923. [PMID: 34321318 PMCID: PMC9022198 DOI: 10.1126/scitranslmed.abe1923] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/02/2021] [Accepted: 06/09/2021] [Indexed: 01/29/2023]
Abstract
Alterations in the components [nucleoporins (Nups)] and function of the nuclear pore complex (NPC) have been implicated as contributors to the pathogenesis of genetic forms of neurodegeneration including C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD). We hypothesized that Nup alterations and the consequential loss of NPC function may lie upstream of TDP-43 dysfunction and mislocalization widely observed in ALS, FTD, and related neurodegenerative diseases. Here, we provide evidence that CHMP7, a critical mediator of NPC quality control, is increased in nuclei of C9orf72 and sporadic ALS induced pluripotent stem cell (iPSC)-derived spinal neurons (iPSNs) and postmortem human motor cortex before the emergence of Nup alterations. Inhibiting the nuclear export of CHMP7 triggered Nup reduction and TDP-43 dysfunction and pathology in human neurons. Knockdown of CHMP7 alleviated disease-associated Nup alterations, deficits in Ran GTPase localization, defects in TDP-43-associated mRNA expression, and downstream glutamate-induced neuronal death. Thus, our data support a role for altered CHMP7-mediated Nup homeostasis as a prominent initiating pathological mechanism for familial and sporadic ALS and highlight the potential for CHMP7 as therapeutic target.
Collapse
Affiliation(s)
- Alyssa N Coyne
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Victoria Baskerville
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin L Zaepfel
- Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | | | - C Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
125
|
Sanchez II, Nguyen TB, England WE, Lim RG, Vu AQ, Miramontes R, Byrne LM, Markmiller S, Lau AL, Orellana I, Curtis MA, Faull RLM, Yeo GW, Fowler CD, Reidling JC, Wild EJ, Spitale RC, Thompson LM. Huntington's disease mice and human brain tissue exhibit increased G3BP1 granules and TDP43 mislocalization. J Clin Invest 2021; 131:140723. [PMID: 33945510 DOI: 10.1172/jci140723] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Chronic cellular stress associated with neurodegenerative disease can result in the persistence of stress granule (SG) structures, membraneless organelles that form in response to cellular stress. In Huntington's disease (HD), chronic expression of mutant huntingtin generates various forms of cellular stress, including activation of the unfolded protein response and oxidative stress. However, it has yet to be determined whether SGs are a feature of HD neuropathology. We examined the miRNA composition of extracellular vesicles (EVs) present in the cerebrospinal fluid (CSF) of patients with HD and show that a subset of their target mRNAs were differentially expressed in the prefrontal cortex. Of these targets, SG components were enriched, including the SG-nucleating Ras GTPase-activating protein-binding protein 1 (G3BP1). We investigated localization and levels of G3BP1 and found a significant increase in the density of G3BP1-positive granules in the cortex and hippocampus of R6/2 transgenic mice and in the superior frontal cortex of the brains of patients with HD. Intriguingly, we also observed that the SG-associated TAR DNA-binding protein 43 (TDP43), a nuclear RNA/DNA binding protein, was mislocalized to the cytoplasm of G3BP1 granule-positive HD cortical neurons. These findings suggest that G3BP1 SG dynamics may play a role in the pathophysiology of HD.
Collapse
Affiliation(s)
| | | | | | - Ryan G Lim
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Anthony Q Vu
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | - Ricardo Miramontes
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Lauren M Byrne
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, United Kingdom
| | - Sebastian Markmiller
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | - Alice L Lau
- Department of Psychiatry & Human Behavior, and
| | - Iliana Orellana
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, California, USA
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, and.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Richard Lewis Maxwell Faull
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, and.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | | | - Jack C Reidling
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Edward J Wild
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, United Kingdom
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, and.,Department of Chemistry, University of California, Irvine, California, USA
| | - Leslie M Thompson
- Department of Neurobiology & Behavior.,Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA.,Department of Psychiatry & Human Behavior, and.,Sue and Bill Gross Stem Cell Center, University of California, Irvine, California, USA
| |
Collapse
|
126
|
Xie Y, Luo X, He H, Tang M. Novel Insight Into the Role of Immune Dysregulation in Amyotrophic Lateral Sclerosis Based on Bioinformatic Analysis. Front Neurosci 2021; 15:657465. [PMID: 33994932 PMCID: PMC8119763 DOI: 10.3389/fnins.2021.657465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of motor neurons. The causative pathogenic mechanisms in ALS remain unclear, limiting the development of treatment strategies. Neuroinflammation and immune dysregulation were involved in the disease onset and progression of several neurodegenerative disorders, including ALS. In this study, we carried out a bioinformatic analysis using publicly available datasets from Gene Expression Omnibus (GEO) to investigate the role of immune cells and genes alterations in ALS. Single-sample gene set enrichment analysis revealed that the infiltration of multiple types of immune cells, including macrophages, type-1/17 T helper cells, and activated CD4 + /CD8 + T cells, was higher in ALS patients than in controls. Weighted gene correlation network analysis identified immune genes associated with ALS. The Gene Ontology analysis revealed that receptor and cytokine activities were the most highly enriched terms. Pathway analysis showed that these genes were enriched not only in immune-related pathways, such as cytokine-cytokine receptor interaction, but also in PI3K-AKT and MAPK signaling pathways. Nineteen immune-related genes (C3AR1, CCR1, CCR5, CD86, CYBB, FCGR2B, FCGR3A, HCK, ITGB2, PTPRC, TLR1, TLR2, TLR7, TLR8, TYROBP, VCAM1, CD14, CTSS, and FCER1G) were identified as hub genes based on least absolute shrinkage and selection operator analysis. This gene signature could differentiate ALS patients from non-neurological controls (p < 0.001) and predict disease occurrence (AUC = 0.829 in training set; AUC = 0.862 in test set). In conclusion, our study provides potential biomarkers of ALS for disease diagnosis and therapeutic monitoring.
Collapse
Affiliation(s)
- Yongzhi Xie
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ximei Luo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Haiqing He
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Tang
- Department of Geriatrics, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
127
|
Klim JR, Pintacuda G, Nash LA, Guerra San Juan I, Eggan K. Connecting TDP-43 Pathology with Neuropathy. Trends Neurosci 2021; 44:424-440. [PMID: 33832769 DOI: 10.1016/j.tins.2021.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/04/2021] [Accepted: 02/24/2021] [Indexed: 01/22/2023]
Abstract
Transactive response DNA-binding protein 43 kDa (TDP-43), a multifunctional nucleic acid-binding protein, is a primary component of insoluble aggregates associated with several devastating nervous system disorders; mutations in TARDBP, its encoding gene, are a cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we review established and emerging roles of TDP-43 and consider how its dysfunction impinges on RNA homeostasis in the nervous system, thereby contributing to neural degeneration. Notably, improper splicing of the axonal growth-associated factor STMN2 has recently been connected to TDP-43 dysfunction, providing a mechanistic link between TDP-43 proteinopathies and neuropathy. This review highlights how a deep understanding of the function of TDP-43 in the brain might be leveraged to develop new targeted therapies for several neurological disorders.
Collapse
Affiliation(s)
- Joseph R Klim
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Greta Pintacuda
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Leslie A Nash
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Irune Guerra San Juan
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
128
|
Tziortzouda P, Van Den Bosch L, Hirth F. Triad of TDP43 control in neurodegeneration: autoregulation, localization and aggregation. Nat Rev Neurosci 2021; 22:197-208. [PMID: 33654312 DOI: 10.1038/s41583-021-00431-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 01/31/2023]
Abstract
Cytoplasmic aggregation of TAR DNA-binding protein 43 (TDP43; also known as TARDBP or TDP-43) is a key pathological feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP43 typically resides in the nucleus but can shuttle between the nucleus and the cytoplasm to exert its multiple functions, which include regulation of the splicing, trafficking and stabilization of RNA. Cytoplasmic mislocalization and nuclear loss of TDP43 have both been associated with ALS and FTD, suggesting that calibrated levels and correct localization of TDP43 - achieved through an autoregulatory loop and tightly controlled nucleocytoplasmic transport - safeguard its normal function. Furthermore, TDP43 can undergo phase transitions, including its dispersion into liquid droplets and its accumulation into irreversible cytoplasmic aggregates. Thus, autoregulation, nucleocytoplasmic transport and phase transition are all part of an intrinsic control system regulating the physiological levels and localization of TDP43, and together are essential for the cellular homeostasis that is affected in neurodegenerative disease.
Collapse
Affiliation(s)
- Paraskevi Tziortzouda
- Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
| | - Frank Hirth
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
129
|
Theunissen F, Anderton RS, Mastaglia FL, Flynn LL, Winter SJ, James I, Bedlack R, Hodgetts S, Fletcher S, Wilton SD, Laing NG, MacShane M, Needham M, Saunders A, Mackay-Sim A, Melamed Z, Ravits J, Cleveland DW, Akkari PA. Novel STMN2 Variant Linked to Amyotrophic Lateral Sclerosis Risk and Clinical Phenotype. Front Aging Neurosci 2021; 13:658226. [PMID: 33841129 PMCID: PMC8033025 DOI: 10.3389/fnagi.2021.658226] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 12/19/2022] Open
Abstract
Objective There is a critical need to establish genetic markers that explain the complex phenotypes and pathogenicity of ALS. This study identified a polymorphism in the Stathmin-2 gene and investigated its association with sporadic ALS (sALS) disease risk, age-of onset and survival duration. Methods The candidate CA repeat was systematically analyzed using PCR, Sanger sequencing and high throughput capillary separation for genotyping. Stathmin-2 expression was investigated using RT-PCR in patient olfactory neurosphere-derived (ONS) cells and RNA sequencing in laser-captured spinal motor neurons. Results In a case-control analysis of a combined North American sALS cohort (n = 321) and population control group (n = 332), long/long CA genotypes were significantly associated with disease risk (p = 0.042), and most strongly when one allele was a 24 CA repeat (p = 0.0023). In addition, longer CA allele length was associated with earlier age-of-onset (p = 0.039), and shorter survival duration in bulbar-onset cases (p = 0.006). In an Australian longitudinal sALS cohort (n = 67), ALS functional rating scale scores were significantly lower in carriers of the long/long genotype (p = 0.034). Stathmin-2 mRNA expression was reduced in sporadic patient ONS cells. Additionally, sALS patients and controls exhibited variable expression of Stathmin-2 mRNA according to CA genotype in laser-captured spinal motor neurons. Conclusions We report a novel non-coding CA repeat in Stathmin-2 which is associated with sALS disease risk and has disease modifying effects. The potential value of this variant as a disease marker and tool for cohort enrichment in clinical trials warrants further investigation.
Collapse
Affiliation(s)
- Frances Theunissen
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - Ryan S Anderton
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia.,School of Health Sciences, Institute for Health Research, The University of Notre Dame Australia, Fremantle, WA, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
| | - Loren L Flynn
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
| | - Samantha J Winter
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,School of Health Sciences, Institute for Health Research, The University of Notre Dame Australia, Fremantle, WA, Australia
| | - Ian James
- Institute for Immunology and Infectious Disease, Murdoch University, Perth, WA, Australia
| | - Richard Bedlack
- Department of Neurology, Duke University, Durham, NC, United States
| | - Stuart Hodgetts
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,School of Human Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
| | - Steve D Wilton
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
| | - Nigel G Laing
- Centre for Medical Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Mandi MacShane
- Centre for Medical Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Merrilee Needham
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia.,Faculty of Medicine, The University of Notre Dame Australia, Fremantle, WA, Australia.,Department of Neurology, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Ann Saunders
- Zinfandel Pharmaceuticals, Chapel Hill, NC, United States
| | - Alan Mackay-Sim
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Ze'ev Melamed
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - John Ravits
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States.,Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - P Anthony Akkari
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia.,Department of Neurology, Duke University, Durham, NC, United States
| |
Collapse
|
130
|
Glass JD. Stathmin-2: adding another piece to the puzzle of TDP-43 proteinopathies and neurodegeneration. J Clin Invest 2021; 130:5677-5680. [PMID: 33074248 DOI: 10.1172/jci142854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cytoplasmic aggregated proteins are a common neuropathological feature of neurodegenerative diseases. Cytoplasmic mislocalization and aggregation of TAR-DNA binding protein 43 (TDP-43) is found in the majority of patients with amyotrophic lateral sclerosis (ALS) and in approximately 50% of patients dying of frontotemporal lobar degeneration (FTLD). In this issue of the JCI, Prudencio, Humphrey, Pickles, and colleagues investigated the relationship of TDP-43 pathology with the loss of stathmin-2 (STMN2), an essential protein for axonal growth and maintenance. Comparing genetic, cellular, and neuropathological data from patients with TDP-43 proteinopathies (ALS, ALS-frontotemporal dementia [ALS-FTD], and FTLD-TDP-43 [FTLD-TDP]) with data from patients with non-TDP-related neurodegenerations, they demonstrate a direct relationship between TDP-43 pathology and STMN2 reduction. Loss of the normal transcription suppressor function of TDP-43 allowed transcription of an early termination cryptic axon, resulting in truncated, nonfunctional mRNA. The authors suggest that measurement of truncated STMN2 mRNA could be a biomarker for discerning TDP proteinopathies from other pathologies.
Collapse
|
131
|
Pathogenic Genome Signatures That Damage Motor Neurons in Amyotrophic Lateral Sclerosis. Cells 2020; 9:cells9122687. [PMID: 33333804 PMCID: PMC7765192 DOI: 10.3390/cells9122687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most frequent motor neuron disease and a neurodegenerative disorder, affecting the upper and/or lower motor neurons. Notably, it invariably leads to death within a few years of onset. Although most ALS cases are sporadic, familial amyotrophic lateral sclerosis (fALS) forms 10% of the cases. In 1993, the first causative gene (SOD1) of fALS was identified. With rapid advances in genetics, over fifty potentially causative or disease-modifying genes have been found in ALS so far. Accordingly, routine diagnostic tests should encompass the oldest and most frequently mutated ALS genes as well as several new important genetic variants in ALS. Herein, we discuss current literatures on the four newly identified ALS-associated genes (CYLD, S1R, GLT8D1, and KIF5A) and the previously well-known ALS genes including SOD1, TARDBP, FUS, and C9orf72. Moreover, we review the pathogenic implications and disease mechanisms of these genes. Elucidation of the cellular and molecular functions of the mutated genes will bring substantial insights for the development of therapeutic approaches to treat ALS.
Collapse
|