101
|
Edwards SKE, Han Y, Liu Y, Kreider BZ, Liu Y, Grewal S, Desai A, Baron J, Moore CR, Luo C, Xie P. Signaling mechanisms of bortezomib in TRAF3-deficient mouse B lymphoma and human multiple myeloma cells. Leuk Res 2015; 41:85-95. [PMID: 26740054 DOI: 10.1016/j.leukres.2015.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 01/30/2023]
Abstract
Bortezomib, a clinical drug for multiple myeloma (MM) and mantle cell lymphoma, exhibits complex mechanisms of action, which vary depending on the cancer type and the critical genetic alterations of each cancer. Here we investigated the signaling mechanisms of bortezomib in mouse B lymphoma and human MM cells deficient in a new tumor suppressor gene, TRAF3. We found that bortezomib consistently induced up-regulation of the cell cycle inhibitor p21(WAF1) and the pro-apoptotic protein Noxa as well as cleavage of the anti-apoptotic protein Mcl-1. Interestingly, bortezomib induced the activation of NF-κB1 and the accumulation of the oncoprotein c-Myc, but inhibited the activation of NF-κB2. Furthermore, we demonstrated that oridonin (an inhibitor of NF-κB1 and NF-κB2) or AD 198 (a drug targeting c-Myc) drastically potentiated the anti-cancer effects of bortezomib in TRAF3-deficient malignant B cells. Taken together, our findings increase the understanding of the mechanisms of action of bortezomib, which would aid the design of novel bortezomib-based combination therapies. Our results also provide a rationale for clinical evaluation of the combinations of bortezomib and oridonin (or other inhibitors of NF-κB1/2) or AD 198 (or other drugs targeting c-Myc) in the treatment of lymphoma and MM, especially in patients containing TRAF3 deletions or relevant mutations.
Collapse
Affiliation(s)
- Shanique K E Edwards
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States; Graduate Program in Molecular Biosciences, Rutgers University, Piscataway, NJ 08854, United States
| | - Yeming Han
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Yingying Liu
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Benjamin Z Kreider
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Yan Liu
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Sukhdeep Grewal
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Anand Desai
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Jacqueline Baron
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Carissa R Moore
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Chang Luo
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States; Member, Rutgers Cancer Institute of New Jersey, United States.
| |
Collapse
|
102
|
Engür S, Dikmen M, Öztürk Y. Comparison of antiproliferative and apoptotic effects of a novel proteasome inhibitor MLN2238 with bortezomib on K562 chronic myeloid leukemia cells. Immunopharmacol Immunotoxicol 2015; 38:87-97. [DOI: 10.3109/08923973.2015.1122616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
103
|
Narita T, Ri M, Masaki A, Mori F, Ito A, Kusumoto S, Ishida T, Komatsu H, Iida S. Lower expression of activating transcription factors 3 and 4 correlates with shorter progression-free survival in multiple myeloma patients receiving bortezomib plus dexamethasone therapy. Blood Cancer J 2015; 5:e373. [PMID: 26636288 PMCID: PMC4735074 DOI: 10.1038/bcj.2015.98] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 09/18/2015] [Accepted: 10/13/2015] [Indexed: 11/13/2022] Open
Abstract
Bortezomib (BTZ), a proteasome inhibitor, is widely used in the treatment of multiple myeloma (MM), but a fraction of patients respond poorly to this agent. To identify factors predicting the duration of progression-free survival (PFS) of MM patients on BTZ treatment, the expression of proteasome and endoplasmic reticulum (ER) stress-related genes was quantified in primary samples from patients receiving a combination of BTZ and dexamethasone (BD). Fifty-six MM patients were stratified into a group with PFS<6 months (n=33) and a second group with PFS⩾6 months (n=23). Of the 15 genes analyzed, the expression of activating transcription factor 3 (ATF3) and ATF4 was significantly lower in patients with shorter PFS (P=0.0157 and P=0.0085, respectively). Chromatin immunoprecipitation analysis showed that these ATFs bind each other and transactivate genes encoding the pro-apoptotic transcription factors, CHOP and Noxa, which promote ER stress-associated apoptosis. When either ATF3 or ATF4 expression was silenced, MM cells partially lost sensitivity to BTZ treatment. This was accompanied by lower levels of Noxa, CHOP and DR5. Thus low basal expression of ATF3 and ATF4 may attenuate BTZ-induced apoptosis. Hence, ATF3 and ATF4 could potentially be used as biomarkers to predict efficacy of BD therapy in patients with MM.
Collapse
Affiliation(s)
- T Narita
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - M Ri
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - A Masaki
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - F Mori
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - A Ito
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - S Kusumoto
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - T Ishida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - H Komatsu
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - S Iida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| |
Collapse
|
104
|
Lawson AP, Long MJC, Coffey RT, Qian Y, Weerapana E, El Oualid F, Hedstrom L. Naturally Occurring Isothiocyanates Exert Anticancer Effects by Inhibiting Deubiquitinating Enzymes. Cancer Res 2015; 75:5130-5142. [PMID: 26542215 DOI: 10.1158/0008-5472.can-15-1544] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/31/2015] [Indexed: 01/09/2023]
Abstract
The anticancer properties of cruciferous vegetables are well known and attributed to an abundance of isothiocyanates such as benzyl isothiocyanate (BITC) and phenethyl isothiocyanate (PEITC). While many potential targets of isothiocyanates have been proposed, a full understanding of the mechanisms underlying their anticancer activity has remained elusive. Here we report that BITC and PEITC effectively inhibit deubiquitinating enzymes (DUB), including the enzymes USP9x and UCH37, which are associated with tumorigenesis, at physiologically relevant concentrations and time scales. USP9x protects the antiapoptotic protein Mcl-1 from degradation, and cells dependent on Mcl-1 were especially sensitive to BITC and PEITC. These isothiocyanates increased Mcl-1 ubiquitination and either isothiocyanate treatment, or RNAi-mediated silencing of USP9x decreased Mcl-1 levels, consistent with the notion that USP9x is a primary target of isothiocyanate activity. These isothiocyanates also increased ubiquitination of the oncogenic fusion protein Bcr-Abl, resulting in degradation under low isothiocyanate concentrations and aggregation under high isothiocyanate concentrations. USP9x inhibition paralleled the decrease in Bcr-Abl levels induced by isothiocyanate treatment, and USP9x silencing was sufficient to decrease Bcr-Abl levels, further suggesting that Bcr-Abl is a USP9x substrate. Overall, our findings suggest that USP9x targeting is critical to the mechanism underpinning the well-established anticancer activity of isothiocyanate. We propose that the isothiocyanate-induced inhibition of DUBs may also explain how isothiocyanates affect inflammatory and DNA repair processes, thus offering a unifying theme in understanding the function and useful application of isothiocyanates to treat cancer as well as a variety of other pathologic conditions.
Collapse
Affiliation(s)
- Ann P Lawson
- Department of Biology, Brandeis University, MS009, 415 South Street, Waltham, MA 02453-9110 USA
| | - Marcus J C Long
- Graduate Program in Biochemistry and Biophysics, Brandeis University, MS009, 415 South Street, Waltham, MA 02453-9110 USA
| | - Rory T Coffey
- Department of Biology, Brandeis University, MS009, 415 South Street, Waltham, MA 02453-9110 USA.,Graduate Program in Molecular and Cellular Biology, Brandeis University, MS008, 415 South St., Waltham MA 02453-9110
| | - Yu Qian
- Department of Chemistry, Merkert Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467-3860 USA
| | - Eranthie Weerapana
- Department of Chemistry, Merkert Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467-3860 USA
| | | | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, MS009, 415 South Street, Waltham, MA 02453-9110 USA.,Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453-9110 USA
| |
Collapse
|
105
|
Huseby NE, Ravuri C, Moens U. The proteasome inhibitor lactacystin enhances GSH synthesis capacity by increased expression of antioxidant components in an Nrf2-independent, but p38 MAPK-dependent manner in rat colorectal carcinoma cells. Free Radic Res 2015; 50:1-13. [PMID: 26530909 DOI: 10.3109/10715762.2015.1100730] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteasome inhibitors may induce ER stress and oxidative stress, disrupt signaling pathways, and trigger apoptosis in several cancer cells. However, they are also reported to increase glutathione (GSH) synthesis and protect cells from oxidative stress. In the present study, we showed that the proteasome inhibitor lactacystin increased reactive oxygen species (ROS) and GSH levels after the treatment of HT-29 colorectal cancer cells. The increased GSH depended upon the activity of glutamate cysteine ligase (GCL), uptake of cystine/cysteine via the cystine/glutamate transporter [Formula: see text], and the activity of γ-glutamyltransferase (GGT). Increased transcription levels of the catalytic subunit of glutamate cysteine ligase (GCLC), the catalytic subunit xCT of [Formula: see text], and GGT were induced by lactacystin, although with different kinetics and stoichiometry. Lactacystin treatment also augmented protein levels of GCLC, xCT, and GGT, but significant levels were not detected until 48 h after initiation of lactacystin treatment. These increases in protein levels were dependent on the p38 MAPK pathway. Studies in cells transfected with siRNA against the transcription factor Nrf2 demonstrated that the promoter activities of xCT and GCLC, but not of GGT, depended on Nrf2. However, depletion of Nrf2 had no effect on lactacystin-induced upregulation of the GGT, GCLC, and xCT mRNA levels. Taken together, our results suggest that oxidative stress provoked by proteasomal inhibition results in the elevation of cellular GSH levels due to increased synthesis of GSH and uptake of cystine/cysteine. Following treatment with lactacystin, enhanced expression of antioxidant components involved in GSH homeostasis is p38 MAPK-dependent, but Nrf2-independent, resulting in increased GSH synthesis capacity.
Collapse
Affiliation(s)
- Nils-Erik Huseby
- a Tumor Biology Research Group, Department of Medical Biology, Faculty of Health Sciences , University of Tromsø , Tromsø , Norway
| | - Chandra Ravuri
- a Tumor Biology Research Group, Department of Medical Biology, Faculty of Health Sciences , University of Tromsø , Tromsø , Norway
| | - Ugo Moens
- b Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences , University of Tromsø , Tromsø , Norway
| |
Collapse
|
106
|
Wang Y, Wu Y, Miao X, Zhu X, Miao X, He Y, Zhong F, Ding L, Liu J, Tang J, Huang Y, Xu X, He S. Silencing of DYRK2 increases cell proliferation but reverses CAM-DR in Non-Hodgkin's Lymphoma. Int J Biol Macromol 2015; 81:809-17. [PMID: 26341817 DOI: 10.1016/j.ijbiomac.2015.08.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/24/2015] [Accepted: 08/28/2015] [Indexed: 12/14/2022]
Abstract
DYRK2, a dual-specificity tyrosine-(Y)-phosphorylation regulated kinase gene, is involved in regulating many processes such as cell proliferation, cell differentiation and cytokinesis. DYRK2 also plays an important role in many cancers, such as breast cancer, non-small cell lung cancer and esophageal adenocarcinomas. In this study, we found that DYRK2 is associated with the proliferation of Non-Hodgkin's lymphoma (NHL) and cell adhesion mediated drug resistance (CAM-DR). Clinically, the mRNA and protein expression levels of DYRK2 are decreased in NHL tissues compared with reactive lymphoid hyperplasia tissues. Immunohistochemical analysis revealed that low expression of DYRK2 is associated with poor prognosis of NHL patients. Interestingly, knockdown of DYRK2 can promote cell proliferation via modulating cell cycle progression. Finally, we demonstrated that DYRK2 plays an important role in CAM-DR by regulating p27(Kip1) expression. Importantly, DYRK2 knockdown reverses CAM-DR in NHL. Our research suggested that DYRK2 may be a novel therapeutic target for NHL.
Collapse
MESH Headings
- Adult
- Aged
- Cell Adhesion
- Cell Cycle/genetics
- Cell Line, Tumor
- Cell Proliferation
- Cyclin-Dependent Kinase Inhibitor p27
- Disease Progression
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Gene Silencing
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Non-Hodgkin/diagnosis
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/metabolism
- Lymphoma, Non-Hodgkin/mortality
- Male
- Middle Aged
- Phenotype
- Phosphorylation
- Prognosis
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- RNA, Small Interfering/genetics
- Dyrk Kinases
Collapse
Affiliation(s)
- Yuchan Wang
- Department of Pathogen, Medical College, Nantong University, Nantong 226001, Jiangsu, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu, China
| | - Yaxun Wu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu, China
| | - Xiaobing Miao
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu, China
| | - Xinghua Zhu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu, China
| | - Xianjing Miao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu, China
| | - Yunhua He
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu, China
| | - Fei Zhong
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu, China
| | - Linlin Ding
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu, China
| | - Jing Liu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu, China
| | - Jie Tang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu, China
| | - Yuejiao Huang
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu, China
| | - Xiaohong Xu
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu, China.
| | - Song He
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong 226361, Jiangsu, China.
| |
Collapse
|
107
|
Abstract
Mantle cell lymphoma (MCL) is a hematological malignancy with unfavorable prognosis. Bortezomib, a potent, selective and reversible inhibitor of the 26S proteasome, was shown to be active in MCL and is currently implemented in therapeutic combinations. Single-agent bortezomib has demonstrated clinical efficacy in relapsed and refractory MCL with objective response in up to 47% of the patients. However, complete remission rates are low and duration of response is relatively short. In previously untreated patients, the addition of bortezomib to induction chemotherapy is also promising. Further evaluation of bortezomib alone or in combination with other drugs for the treatment of MCL is warranted to improve the quality of life and survival of patients. This review explores bortezomib as therapy in patients with MCL.
Collapse
Affiliation(s)
- Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, ul. Ciołkowskiego 2, Poland
| |
Collapse
|
108
|
Postiglione I, Chiaviello A, Barra F, Roscetto E, Soriano AA, Catania MR, Palumbo G, Pierantoni GM. Mitochondrial Malfunctioning, Proteasome Arrest and Apoptosis in Cancer Cells by Focused Intracellular Generation of Oxygen Radicals. Int J Mol Sci 2015; 16:20375-91. [PMID: 26343643 PMCID: PMC4613209 DOI: 10.3390/ijms160920375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/10/2015] [Accepted: 08/21/2015] [Indexed: 12/29/2022] Open
Abstract
Photofrin/photodynamic therapy (PDT) at sub-lethal doses induced a transient stall in proteasome activity in surviving A549 (p53+/+) and H1299 (p53−/−) cells as indicated by the time-dependent decline/recovery of chymotrypsin-like activity. Indeed, within 3 h of incubation, Photofrin invaded the cytoplasm and localized preferentially within the mitochondria. Its light activation determined a decrease in mitochondrial membrane potential and a reversible arrest in proteasomal activity. A similar result is obtained by treating cells with Antimycin and Rotenone, indicating, as a common denominator of this effect, the ATP decrease. Both inhibitors, however, were more toxic to cells as the recovery of proteasomal activity was incomplete. We evaluated whether combining PDT (which is a treatment for killing tumor cells, per se, and inducing proteasome arrest in the surviving ones) with Bortezomib doses capable of sustaining the stall would protract the arrest with sufficient time to induce apoptosis in remaining cells. The evaluation of the mitochondrial membrane depolarization, residual proteasome and mitochondrial enzymatic activities, colony-forming capabilities, and changes in protein expression profiles in A549 and H1299 cells under a combined therapeutic regimen gave results consistent with our hypothesis.
Collapse
Affiliation(s)
- Ilaria Postiglione
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy.
| | - Angela Chiaviello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy.
| | - Federica Barra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy.
| | - Emanuela Roscetto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy.
| | - Amata A Soriano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy.
| | - Maria Rosaria Catania
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy.
| | - Giuseppe Palumbo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy.
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples 80131, Italy.
| |
Collapse
|
109
|
Zhao LL, Liu YF, Peng LJ, Fei AM, Cui W, Miao SC, Hermine O, Gressin R, Khochbin S, Chen SJ, Wang J, Mi JQ. Arsenic trioxide rewires mantle cell lymphoma response to bortezomib. Cancer Med 2015; 4:1754-66. [PMID: 26310857 PMCID: PMC4674002 DOI: 10.1002/cam4.511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/12/2015] [Indexed: 01/20/2023] Open
Abstract
Although most of the mantle cell lymphoma (MCL) patients initially responded well to bortezomib (BTZ), the dose-dependent toxicities have greatly limited the application of BTZ to MCL. To investigate the efficacy and mechanism of arsenic trioxide (ATO) with BTZ in inducing apoptosis of MCL cells, two MCL cell lines, along with primary cells from MCL patients (n = 4), were used. Additionally, the NOD-SCID mice xenograft model of Jeko-1 cells was established to study the anti-MCL mechanisms in an in vivo setting. ATO treatment highly improved BTZ capacity to inhibit proliferation and induce apoptosis of MCL cells. Furthermore, the interaction of Noxa and Mcl-1 leads Bak to release from Mcl-1 or from Bcl-xl, which could further activate Bak and Bax and then induce cell apoptosis. We also found that when lower doses of BTZ were used in combination with ATO, more effective proapoptotic effects in both the cell lines and the primary cells were obtained compared to the effects of BTZ used alone at higher doses. Simultaneously, the combination of these two drugs delayed the tumor growth in mice more effectively than BTZ alone. The cooperative anti-MCL effects of this combination therapy both in vitro and in vivo strongly provided a new strategy to the clinical treatment of MCL.
Collapse
Affiliation(s)
- Ling-Ling Zhao
- State Key Laboratory for Medical Genomics and Department of Hematology, Shanghai Institute of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Clinical Laboratory, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Yuan-Fang Liu
- State Key Laboratory for Medical Genomics and Department of Hematology, Shanghai Institute of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Jun Peng
- State Key Laboratory for Medical Genomics and Department of Hematology, Shanghai Institute of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ai-Mei Fei
- State Key Laboratory for Medical Genomics and Department of Hematology, Shanghai Institute of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Cui
- State Key Laboratory for Medical Genomics and Department of Hematology, Shanghai Institute of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Chao Miao
- State Key Laboratory for Medical Genomics and Department of Hematology, Shanghai Institute of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Olivier Hermine
- Service d'Hématologie Adultes, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, Paris, France
| | - Remy Gressin
- Département d'Onco-Hématologie, Hôpital A Michallon, CHU de Grenoble, Grenoble, France
| | - Saadi Khochbin
- INSERM U823, Institut Albert Bonniot, Faculté de Médecine, Université Grenoble Alpes, La Tronche, France
| | - Sai-Juan Chen
- State Key Laboratory for Medical Genomics and Department of Hematology, Shanghai Institute of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Wang
- State Key Laboratory for Medical Genomics and Department of Hematology, Shanghai Institute of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Qing Mi
- State Key Laboratory for Medical Genomics and Department of Hematology, Shanghai Institute of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
110
|
An Overview of Bortezomib-Induced Neurotoxicity. TOXICS 2015; 3:294-303. [PMID: 29051465 PMCID: PMC5606681 DOI: 10.3390/toxics3030294] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/15/2015] [Accepted: 07/21/2015] [Indexed: 01/01/2023]
Abstract
The boronic acid dipeptide bortezomib, able to induce tumor cell death by degradation of key proteins, is the first proteasome inhibitor drug to enter clinical practice. It is employed as first-line treatment in relapsed or resistant multiple myeloma (MM) patients. However, bortezomib often induces a dose-limiting toxicity in the form of painful sensory neuropathy, which can mainly be reduced by subcutaneous administration or dose modification. In this review we focus on the current understanding of the pathophysiological mechanisms of bortezomib-induced neuropathy to allow further studies in animal models and humans, including analysis of clinical and pharmacogenetic aspects, to optimize the treatment regimens.
Collapse
|
111
|
Clinically used antirheumatic agent auranofin is a proteasomal deubiquitinase inhibitor and inhibits tumor growth. Oncotarget 2015; 5:5453-71. [PMID: 24977961 PMCID: PMC4170648 DOI: 10.18632/oncotarget.2113] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteasomes are attractive emerging targets for anti-cancer therapies. Auranofin
(Aur), a gold-containing compound clinically used to treat rheumatic arthritis, was
recently approved by US Food and Drug Administration for Phase II clinical trial to
treat cancer but its anti-cancer mechanism is poorly understood. Here we report that
(i) Aur shows proteasome-inhibitory effect that is comparable to that of
bortezomib/Velcade (Vel); (ii) different from bortezomib, Aur inhibits
proteasome-associated deubiquitinases (DUBs) UCHL5 and USP14 rather than the 20S
proteasome; (iii) inhibition of the proteasome-associated DUBs is required for
Aur-induced cytotoxicity; and (iv) Aur selectively inhibits tumor growth in
vivo and induces cytotoxicity in cancer cells from acute myeloid leukemia
patients. This study provides important novel insight into understanding the
proteasome-inhibiting property of metal-containing compounds. Although several DUB
inhibitors were reported, this study uncovers the first drug already used in clinic
that can inhibit proteasome-associated DUBs with promising anti-tumor effects.
Collapse
|
112
|
Pal A, Ganguly A, Chowdhuri S, Yousuf M, Ghosh A, Barui AK, Kotcherlakota R, Adhikari S, Banerjee R. Bis-arylidene oxindole-betulinic Acid conjugate: a fluorescent cancer cell detector with potent anticancer activity. ACS Med Chem Lett 2015; 6:612-6. [PMID: 26005543 DOI: 10.1021/acsmedchemlett.5b00095] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 04/13/2015] [Indexed: 01/19/2023] Open
Abstract
Molecules offering simultaneous detection and killing of cancer cells are advantageous. Hybrid of cancer cell-selective, ROS generator betulinic acid and bis-arylidene oxindole with amino propyl-linker is developed. With intrinsic fluorescence, the molecule exhibited cancer cell-specific residence. Further, it generated ROS, triggered apoptosis, and exhibited potent cytotoxicity in cancer cells selectively. We demonstrate the first example and use of isatins as betulinic acid conjugate for selective detection of cancer and subsequent killing of cancer cells via apoptosis.
Collapse
Affiliation(s)
- Abhishek Pal
- Department
of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India
- Department
of Organic Chemistry, Indian Association for Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Anirban Ganguly
- Biomaterials
Group, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Sumit Chowdhuri
- Department
of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India
| | - Md Yousuf
- Department
of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India
| | - Avijit Ghosh
- Department
of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India
| | - Ayan Kumar Barui
- Biomaterials
Group, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Rajesh Kotcherlakota
- Biomaterials
Group, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Susanta Adhikari
- Department
of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India
| | - Rajkumar Banerjee
- Biomaterials
Group, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| |
Collapse
|
113
|
Cillessen SAGM, Hijmering NJ, Moesbergen LM, Vos W, Verbrugge SE, Jansen G, Visser OJ, Oudejans JJ, Meijer CJLM. ALK-negative anaplastic large cell lymphoma is sensitive to bortezomib through Noxa upregulation and release of Bax from Bcl-2. Haematologica 2015; 100:e365-8. [PMID: 25975837 DOI: 10.3324/haematol.2014.118828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
| | | | - Laura M Moesbergen
- Department of Clinical Pathology, VU University Medical Center, Amsterdam
| | - Wim Vos
- Department of Clinical Pathology, VU University Medical Center, Amsterdam
| | | | - Gerrit Jansen
- Department of Rheumatology, VU University Medical Center, Amsterdam
| | - Otto J Visser
- Department of Hematology, VU University Medical Center, Amsterdam
| | - Joost J Oudejans
- Department of Clinical Pathology, VU University Medical Center, Amsterdam Department of Pathology, Diakonessenhuis, Utrecht, The Netherlands
| | - Chris J L M Meijer
- Department of Clinical Pathology, VU University Medical Center, Amsterdam
| |
Collapse
|
114
|
Papanikolaou X, Johnson S, Garg T, Tian E, Tytarenko R, Zhang Q, Stein C, Barlogie B, Epstein J, Heuck C. Artesunate overcomes drug resistance in multiple myeloma by inducing mitochondrial stress and non-caspase apoptosis. Oncotarget 2015; 5:4118-28. [PMID: 24948357 PMCID: PMC4147310 DOI: 10.18632/oncotarget.1847] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although novel drugs have contributed immensely to improving outcomes of patients with multiple myeloma (MM), many patients develop drug resistance and ultimately succumb to MM. Here, we show that artesunate, an anti-malarial drug, reliably induces cell death in vitro in naïve as well as drug-resistant MM cells at concentrations shown to be safe in humans. Artesunate induced apoptosis predominantly through the non-caspase mediated pathway by primarily targeting mitochondria and causing outer mitochondrial membrane permeabilization that led to cytosolic and subsequent nuclear translocation of mitochondrial proteins apoptosis inducing factor (AIF) and endonuclease G (EndoG). Nuclear translocation of AIF and EndoG was accompanied by low levels of reactive oxygen species (ROS) and increased mitochondrial production of superoxide. These effects were present before apoptosis was evident and were related to intracellular levels of bivalent iron (Fe+2). Artesunate's unique mechanism probably was at least partially responsible for, its ability to act synergistically with multiple anti-myeloma agents. Our findings suggest that artesunate acts through iron to affect the mitochondria and induce low ROS and non-caspase-mediated apoptosis. Its potency, toxicity profile, and synergism with other drugs make it an intriguing new candidate for MM treatment.
Collapse
Affiliation(s)
- Xenofon Papanikolaou
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Fico A, Alfano D, Valentino A, Vasta V, Cavalcanti E, Travali S, Patriarca EJ, Caputo E. c-Myc modulation: a key role in melanoma drug response. Cancer Biol Ther 2015; 16:1375-86. [PMID: 25835050 DOI: 10.1080/15384047.2015.1030546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Understanding molecular mechanisms involved in melanoma resistance to drugs is a big challenge. Experimental evidences suggested a correlation between mutational status in B-RAF and melanoma cell susceptibility to drugs, such as paclitaxel, doxorubicin and temozolomide, which generate an accumulation of hydrogen peroxide (H2O2) in the cells. We investigated the survival phenotype and the protein level of c-myc, a B-RAF target molecule, in melanoma cells, carrying a different mutational status in B-RAF, upon paclitaxel, doxorubicin and H2O2 treatment. For the first time, we reported c-myc modulation is critical for melanoma drug response. It appeared drug-specific and post-transcriptionally driven through PP2A; in correlation, cell pre-treatment with okadaic acid (OA), a specific PP2A inhibitor, as well as PP2A silencing of melanoma cells, was able to increase melanoma cell drug-sensitivity and c-myc protein level. This is relevant for designing efficacious therapeutic strategies in melanoma.
Collapse
Affiliation(s)
- Annalisa Fico
- a Institute of Genetics and Biophysics; A Buzzati-Traverso ; Naples , Italy.,d These authors equally contributed to this work
| | - Daniela Alfano
- a Institute of Genetics and Biophysics; A Buzzati-Traverso ; Naples , Italy.,d These authors equally contributed to this work
| | - Anna Valentino
- a Institute of Genetics and Biophysics; A Buzzati-Traverso ; Naples , Italy
| | - Valeria Vasta
- b Università degli Studi di Catania; Dipartimento di Scienze Bio-Mediche ; Catania , Italy
| | | | - Salvatore Travali
- b Università degli Studi di Catania; Dipartimento di Scienze Bio-Mediche ; Catania , Italy
| | | | - Emilia Caputo
- a Institute of Genetics and Biophysics; A Buzzati-Traverso ; Naples , Italy.,b Università degli Studi di Catania; Dipartimento di Scienze Bio-Mediche ; Catania , Italy
| |
Collapse
|
116
|
Obrist F, Manic G, Kroemer G, Vitale I, Galluzzi L. Trial Watch: Proteasomal inhibitors for anticancer therapy. Mol Cell Oncol 2015; 2:e974463. [PMID: 27308423 PMCID: PMC4904962 DOI: 10.4161/23723556.2014.974463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 01/12/2023]
Abstract
The so-called "ubiquitin-proteasome system" (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients.
Collapse
Affiliation(s)
- Florine Obrist
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | | | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
- Department of Biology, University of Rome “Tor Vergata”
| | - Lorenzo Galluzzi
- INSERM, U1138; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
117
|
Antihelminthic benzimidazoles potentiate navitoclax (ABT-263) activity by inducing Noxa-dependent apoptosis in non-small cell lung cancer (NSCLC) cell lines. Cancer Cell Int 2015; 15:5. [PMID: 25685063 PMCID: PMC4326508 DOI: 10.1186/s12935-014-0151-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/19/2014] [Indexed: 11/21/2022] Open
Abstract
Background Evasion of apoptosis is a hallmark of cancer cells. One mechanism to deregulate the apoptotic pathway is by upregulation of the anti-apoptotic Bcl-2 family members. Navitoclax (ABT-263) is a Bcl-2/Bcl-xL inhibitor that restores the ability of cancer cells to undergo apoptosis. Methods In this study we performed a high-throughput screen with 640 FDA-approved drugs to identify potential therapeutic combinations with navitoclax in a non-small cell lung cancer (NSCLC) cell line. Results Other than a panel of cancer compounds such as doxorubicin, camptothecin, and docetaxel, four antihelminthic compounds (benzimidazoles) potentiated navitoclax activity. Treatment with benzimidazoles led to induction of the pro-apoptotic protein Noxa at the mRNA and protein level. Noxa binds and antagonizes antiapoptotic protein Mcl-1. siRNA-mediated knock-down of Noxa completely rescued benzimidazole-potentiated navitoclax activity. In addition, inhibiting caspase 3 and 9 partially rescued benzimidazole-potentiated navitoclax activity. Conclusions We have identified compounds and mechanisms which potentiate navitoclax activity in lung cancer cell lines. Further validation of the benzimidazole-potentiated navitoclax effect in vivo is required to evaluate the potential for translating this observation into clinical benefit. Electronic supplementary material The online version of this article (doi:10.1186/s12935-014-0151-3) contains supplementary material, which is available to authorized users.
Collapse
|
118
|
Zhang J, Gao G, Chen L, Li J, Deng X, Zhao QS, Huang C. Hydrogen peroxide/ATR-Chk2 activation mediates p53 protein stabilization and anti-cancer activity of cheliensisin A in human cancer cells. Oncotarget 2015; 5:841-52. [PMID: 24553354 PMCID: PMC3996661 DOI: 10.18632/oncotarget.1780] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cheliensisine A (Chel A) as a novel styryl-lactone isolated from Goniothalamus cheliensis Hu has been indicated to be a chemotherapeutic agent in Leukemia HL-60 cells. However, its potential for cancer treatment and the underlying mechanisms are not deeply investigated to the best of our knowledge. Current studies showed that Chel A could trigger p53-mediated apoptosis, accompanied with dramatically inhibition of anchorage-independent growth of human colon cancer HCT116 cells. Further studies found that Chel A treatment resulted in p53 protein stabilization and accumulation via the induction of its phosphorylation at Ser20 and Ser15. Moreover, Chel A-induced p53 protein accumulation and activation required ATR/Chk2 axis, which is distinct from the mechanism that we have most recently identified the Chk1/p53-dependent apoptotic response by Chel A in normal mouse epidermal Cl41 cells. In addition, our results demonstrated that hydrogen peroxide generation induced by Chel A acted as a precursor for all these signaling events and downstream biological effects. Taken together, we have identified the Chel A as a new therapeutic agent, which highlights its potential for cancer therapeutic effect.
Collapse
Affiliation(s)
- Jingjie Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
The debut of the proteasome inhibitor bortezomib (Btz; Velcade®) radically and immediately improved the treatment of multiple myeloma (MM), an incurable malignancy of the plasma cell. Therapeutic resistance is unavoidable, however, and represents a major obstacle to maximizing the clinical potential of the drug. To address this challenge, studies have been conducted to uncover the molecular mechanisms driving Btz resistance and to discover new targeted therapeutic strategies and combinations that restore Btz activity. This review discusses the literature describing molecular adaptations that confer Btz resistance with a primary disease focus on MM. Also discussed are the most recent advances in therapeutic strategies that overcome resistance, approaches that include redox-modulating agents, murine double minute 2 inhibitors, therapeutic monoclonal antibodies, and new epigenetic-targeted drugs like bromodomain and extra terminal domain inhibitors.
Collapse
Affiliation(s)
- Nathan G Dolloff
- Department of Cellular and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
120
|
|
121
|
Niewerth D, Jansen G, Assaraf YG, Zweegman S, Kaspers GJ, Cloos J. Molecular basis of resistance to proteasome inhibitors in hematological malignancies. Drug Resist Updat 2015; 18:18-35. [DOI: 10.1016/j.drup.2014.12.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 11/28/2014] [Accepted: 12/03/2014] [Indexed: 12/25/2022]
|
122
|
Paniagua Soriano G, De Bruin G, Overkleeft HS, Florea BI. Toward understanding induction of oxidative stress and apoptosis by proteasome inhibitors. Antioxid Redox Signal 2014; 21:2419-43. [PMID: 24437477 DOI: 10.1089/ars.2013.5794] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Proteasome inhibitors (PIs) are used in the clinic for the treatment of hematopoietic malignancies. PI inhibitors induce endoplasmatic reticulum (ER) stress and oxidative stress, disruption of signaling pathways, mitochondrial dysfunction, and, eventually, cell death by apoptosis. PIs designated as clinical candidates include natural product derivatives and compounds developed by rational design and feature a wide diversity of structural elements. The vast amount of literature on this topic underscores PIs significance in driving basic research alongside therapeutic benefit. RECENT ADVANCES Research in recent years has brought an in-depth insight into the molecular mechanisms of PI-induced apoptosis. However, there are some paradoxes and controversies in the literature. In this review, the advances and uncertainties, in particular on the time course events that make cells commit to apoptosis, are discussed. In addition, some mechanisms of evolved PI resistance are presented, and speculations on the difference in sensitivity between cell or tumor types are brought forward. The review concludes by giving an outlook of recent methods that may be employed to describe the system biology of how PIs impact cell survival decisions. CRITICAL ISSUES The biology of ER stress, reactive oxygen species (ROS) production, and apoptosis as induced by PIs is not well understood. Absorbed by the strong focus on PIs, one might overlook the importance of proteasome activity activators or modulators and the study of enzymatic pathways that lie up- or downstream from the proteasome function. FUTURE DIRECTIONS An increased understanding of the systems biology at mRNA and protein levels and the kinetics behind the interaction between PIs and cells is imperative. The design and synthesis of subunit specific inhibitors for each of the seven known proteasome activities and for the enzymes associated to proteasomes will aid in unraveling biology of the ubiquitin-proteasome system in relation to ER stress, ROS production, and apoptosis and will generate leads for therapeutic intervention.
Collapse
Affiliation(s)
- Guillem Paniagua Soriano
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre , Leiden, The Netherlands
| | | | | | | |
Collapse
|
123
|
Brnjic S, Mazurkiewicz M, Fryknäs M, Sun C, Zhang X, Larsson R, D'Arcy P, Linder S. Induction of tumor cell apoptosis by a proteasome deubiquitinase inhibitor is associated with oxidative stress. Antioxid Redox Signal 2014; 21:2271-85. [PMID: 24011031 PMCID: PMC4241954 DOI: 10.1089/ars.2013.5322] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIMS b-AP15 is a recently described inhibitor of the USP14/UCHL5 deubiquitinases (DUBs) of the 19S proteasome. Exposure to b-AP15 results in blocking of proteasome function and accumulation of polyubiquitinated protein substrates in cells. This novel mechanism of proteasome inhibition may potentially be exploited for cancer therapy, in particular for treatment of malignancies resistant to currently used proteasome inhibitors. The aim of the present study was to characterize the cellular response to b-AP15-mediated proteasome DUB inhibition. RESULTS We report that b-AP15 elicits a similar, but yet distinct, cellular response as the clinically used proteasome inhibitor bortezomib. b-AP15 induces a rapid apoptotic response, associated with enhanced induction of oxidative stress and rapid activation of Jun-N-terminal kinase 1/2 (JNK)/activating protein-1 signaling. Scavenging of reactive oxygen species and pharmacological inhibition of JNK reduced b-AP15-induced apoptosis. We further report that endoplasmic reticulum (ER) stress is induced by b-AP15 and is involved in apoptosis induction. In contrast to bortezomib, ER stress is associated with induction of α-subunit of eukaryotic initiation factor 2 phosphorylation. INNOVATION The findings establish that different modes of proteasome inhibition result in distinct cellular responses, a finding of potential therapeutic importance. CONCLUSION Our data show that enhanced oxidative stress and ER stress are major determinants of the strong apoptotic response elicited by the 19S DUB inhibitor b-AP15.
Collapse
Affiliation(s)
- Slavica Brnjic
- 1 Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institute , Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
124
|
CAO DEDONG, JIN LU, ZHOU HAO, YU WEN, HU YU, GUO TAO. Inhibition of PGC-1α after chemotherapy-mediated insult confines multiple myeloma cell survival by affecting ROS accumulation. Oncol Rep 2014; 33:899-904. [DOI: 10.3892/or.2014.3635] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/07/2014] [Indexed: 11/06/2022] Open
|
125
|
Proteasome inhibitors induce auditory hair cell death through peroxisome dysfunction. Biochem Biophys Res Commun 2014; 456:269-74. [PMID: 25446082 DOI: 10.1016/j.bbrc.2014.11.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 11/18/2014] [Indexed: 11/21/2022]
Abstract
Even though bortezomib, a proteasome inhibitor, is a powerful chemotherapeutic agent used to treat multiple myeloma (MM) and other lymphoma cells, recent clinical reports suggest that the proteasome inhibitor therapy may be associated with severe bilateral hearing loss. We herein investigated the adverse effect of proteasome inhibitor on auditory hair cells. Treatment of a proteasome inhibitor destroys stereocilia bundles of hair cells resulting in the disarray of stereocilia in the organ of Corti explants. Since proteasome activity may be potentially important for biogenesis and function of the peroxisome, we tested whether proteasome activity is necessary for maintaining functional peroxisomes. Our results showed that treatment of a proteasome inhibitor significantly decreases both the number of peroxisomes and expression of peroxisomal proteins such as PMP70 and Catalase. In addition, we also found that proteasome inhibitor impairs the import pathway of PTS1-peroxisome matrix proteins. Taken together, our findings support recent clinical reports of hearing loss associated with proteasome inhibition. Mechanistically, peroxisome dysfunction may contribute to hair cell damage and hearing loss in response to the treatment of a proteasome inhibitor.
Collapse
|
126
|
Rath S, Das L, Kokate SB, Pratheek BM, Chattopadhyay S, Goswami C, Chattopadhyay R, Crowe SE, Bhattacharyya A. Regulation of Noxa-mediated apoptosis in Helicobacter pylori-infected gastric epithelial cells. FASEB J 2014; 29:796-806. [PMID: 25404713 DOI: 10.1096/fj.14-257501] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Helicobacter pylori induces the antiapoptotic protein myeloid cell leukemia 1 (Mcl1) in human gastric epithelial cells (GECs). Apoptosis of oncogenic protein Mcl1-expressing cells is mainly regulated by Noxa-mediated degradation of Mcl1. We wanted to elucidate the status of Noxa in H. pylori-infected GECs. For this, various GECs such as AGS, MKN45, and KATO III were either infected with H. pylori or left uninfected. The effect of infection was examined by immunoblotting, immunoprecipitation, chromatin immunoprecipitation assay, in vitro binding assay, flow cytometry, and confocal microscopy. Infected GECs, surgical samples collected from patients with gastric adenocarcinoma as well as biopsy samples from patients infected with H. pylori showed significant up-regulation of both Mcl1 and Noxa compared with noninfected samples. Coexistence of Mcl1 and Noxa was indicative of an impaired Mcl-Noxa interaction. We proved that Noxa was phosphorylated at Ser(13) residue by JNK in infected GECs, which caused cytoplasmic retention of Noxa. JNK inhibition enhanced Mcl1-Noxa interaction in the mitochondrial fraction of infected cells, whereas overexpression of nonphosphorylatable Noxa resulted in enhanced mitochondria-mediated apoptosis in the infected epithelium. Because phosphorylation-dephosphorylation can regulate the apoptotic function of Noxa, this could be a potential target molecule for future treatment approaches for H. pylori-induced gastric cancer.
Collapse
Affiliation(s)
- Suvasmita Rath
- *National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; and Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Lopamudra Das
- *National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; and Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Shrikant Babanrao Kokate
- *National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; and Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - B M Pratheek
- *National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; and Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Subhasis Chattopadhyay
- *National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; and Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Chandan Goswami
- *National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; and Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Ranajoy Chattopadhyay
- *National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; and Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Sheila Eileen Crowe
- *National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; and Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Asima Bhattacharyya
- *National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; and Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
127
|
Koschny R, Boehm C, Sprick MR, Haas TL, Holland H, Xu LX, Krupp W, Mueller WC, Bauer M, Koschny T, Keller M, Sinn P, Meixensberger J, Walczak H, Ganten TM. Bortezomib sensitizes primary meningioma cells to TRAIL-induced apoptosis by enhancing formation of the death-inducing signaling complex. J Neuropathol Exp Neurol 2014; 73:1034-46. [PMID: 25289891 DOI: 10.1097/nen.0000000000000129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A meningioma is the most common primary intracranial tumor in adults. Here, we investigated the therapeutic potential of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in 37 meningiomas. Freshly isolated primary meningioma cells were treated with TRAIL with or without different sensitizing protocols, and apoptotic cell death was then quantified. Mechanisms of TRAIL sensitization were determined by a combination of Western blotting, flow cytometry, receptor complex immunoprecipitation, and siRNA-mediated knockdown experiments. Tumor necrosis factor-related apoptosis-inducing ligand receptor expression was analyzed using immunohistochemistry and quantified by an automated software-based algorithm. Primary tumor cells from 11 (29.7%) tumor samples were sensitive to TRAIL-induced apoptosis, 12 (32.4%) were intermediate TRAIL resistant, and 14 (37.8%) were completely TRAIL resistant. We tested synergistic apoptosis-inducing cotreatment strategies and determined that only the proteasome inhibitor bortezomib potently enhanced expression of the TRAIL receptors TRAIL-R1 and/or TRAIL-R2, the formation of the TRAIL death-inducing signaling complex, and activation of caspases; this treatment resulted in sensitization of all TRAIL-resistant meningioma samples to TRAIL-induced apoptosis. Bortezomib pretreatment induced NOXA expression and downregulated c-FLIP, neither of which caused the TRAIL-sensitizing effect. Native TRAIL receptor expression could not predict primary TRAIL sensitivity. This first report on TRAIL sensitivity of primary meningioma cells demonstrates that TRAIL/bortezomib cotreatment may represent a novel therapeutic option for meningiomas.
Collapse
Affiliation(s)
- Ronald Koschny
- From the Department of Gastroenterology, Heidelberg University Hospital (RK, TMG); German Cancer Research Center, Division of Signaling and Functional Genomics (CB); Department of Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg University (CB); and HI-STEM gGmbH/German Cancer Research Center Heidelberg (MRS), Heidelberg, Germany; National Cancer Institute Regina Elena (TLH), Rome, Italy; Translational Centre for Regenerative Medicine Leipzig and Faculty of Medicine (HH, L-XX) and Departments of Neurosurgery (L-XX, WK, JM) and Neuropathology (WCM, MB), University of Leipzig, Leipzig, Germany; Ames Laboratory-US DOE, and Department of Physics and Astronomy, Iowa State University, Ames, Iowa (TK); Departments of Cardiology (MK) and Pathology (PS), University Hospital Heidelberg, Heidelberg, Germany; and Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, London, United Kingdom (HW)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
INTRODUCTION Bortezomib , the first proteasome inhibitor (PI) to be evaluated in humans, is approved in the USA and Europe for the treatment of patients with multiple myeloma, and in the USA for patients with relapsed mantle cell lymphoma (MCL). AREAS COVERED This review examines the role of bortezomib in the therapy of non-Hodgkin's lymphoma (NHL). Bortezomib may be particularly effective against the NF-κB-dependent activated B-cell subtype of diffuse large B-cell lymphoma. The combination of bortezomib with rituximab and dexamethasone represents a standard approach for the treatment of Waldenström's macroglobulinemia, and that with bendamustine and rituximab has demonstrated excellent efficacy in follicular lymphoma. Combinations with other novel agents, such as inhibitors of cyclin-dependent kinases or histone deacetylases, also hold substantial promise in NHL. Unmet needs in NHL, competitor compounds, chemistry, pharmacokinetics, pharmacodynamics and safety and tolerability of bortezomib are also discussed. EXPERT OPINION The success of bortezomib in MCL has validated the proteasome as a therapeutic target in NHL. Rational combinations, for example, with Bruton's tyrosine kinase inhibitors or BH3-mimetics, may hold the key to optimizing the therapeutic potential of PIs in NHL. Future trials are likely to involve newer agents with improved pharmacodynamic (e.g., carfilzomib, marizomib) or pharmacokinetic (e.g., ixazomib, oprozomib) properties.
Collapse
Affiliation(s)
- Prithviraj Bose
- Virginia Commonwealth University, Massey Cancer Center, Richmond, VA, USA
- Virginia Commonwealth University, Department of Internal Medicine, Richmond, VA, USA
| | - Michael S. Batalo
- Virginia Commonwealth University, Department of Internal Medicine, Richmond, VA, USA
| | - Beata Holkova
- Virginia Commonwealth University, Massey Cancer Center, Richmond, VA, USA
- Virginia Commonwealth University, Department of Internal Medicine, Richmond, VA, USA
| | - Steven Grant
- Virginia Commonwealth University, Massey Cancer Center, Richmond, VA, USA
- Virginia Commonwealth University, Department of Internal Medicine, Richmond, VA, USA
- Virginia Commonwealth University, Department of Microbiology and Immunology, Richmond, VA, USA
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, Richmond, VA, USA
- Virginia Commonwealth University, Department of Human and Molecular Genetics, Richmond, VA, USA
- Virginia Commonwealth University, Institute for Molecular Medicine, 401 College Street, P.O. Box 980035, Richmond, VA 23298, USA Tel: +1 804 828 5211
| |
Collapse
|
129
|
Sun D, Smith MR. Bortezomib for the treatment of mantle cell lymphoma. Expert Opin Orphan Drugs 2014. [DOI: 10.1517/21678707.2014.974553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
130
|
Dasmahapatra G, Patel H, Friedberg J, Quayle SN, Jones SS, Grant S. In vitro and in vivo interactions between the HDAC6 inhibitor ricolinostat (ACY1215) and the irreversible proteasome inhibitor carfilzomib in non-Hodgkin lymphoma cells. Mol Cancer Ther 2014; 13:2886-97. [PMID: 25239935 DOI: 10.1158/1535-7163.mct-14-0220] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Interactions between the HDAC6 inhibitor ricolinostat (ACY1215) and the irreversible proteasome inhibitor carfilzomib were examined in non-Hodgkin lymphoma (NHL) models, including diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), and double-hit lymphoma cells. Marked in vitro synergism was observed in multiple cell types associated with activation of cellular stress pathways (e.g., JNK1/2, ERK1/2, and p38) accompanied by increases in DNA damage (γH2A.X), G2-M arrest, and the pronounced induction of mitochondrial injury and apoptosis. Combination treatment with carfilzomib and ricolinostat increased reactive oxygen species (ROS), whereas the antioxidant TBAP attenuated DNA damage, JNK activation, and cell death. Similar interactions occurred in bortezomib-resistant and double-hit DLBCL, MCL, and primary DLBCL cells, but not in normal CD34(+) cells. However, ricolinostat did not potentiate inhibition of chymotryptic activity by carfilzomib. shRNA knockdown of JNK1 (but not MEK1/2), or pharmacologic inhibition of p38, significantly reduced carfilzomib-ricolinostat lethality, indicating a functional contribution of these stress pathways to apoptosis. Combined exposure to carfilzomib and ricolinostat also markedly downregulated the cargo-loading protein HR23B. Moreover, HR23B knockdown significantly increased carfilzomib- and ricolinostat-mediated lethality, suggesting a role for this event in cell death. Finally, combined in vivo treatment with carfilzomib and ricolinostat was well tolerated and significantly suppressed tumor growth and increased survival in an MCL xenograft model. Collectively, these findings indicate that carfilzomib and ricolinostat interact synergistically in NHL cells through multiple stress-related mechanisms, and suggest that this strategy warrants further consideration in NHL.
Collapse
Affiliation(s)
- Girija Dasmahapatra
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Hiral Patel
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Johnathan Friedberg
- James T. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York. Department of Medicine, University of Rochester Medical Center, Rochester, New York. Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York
| | | | - Simon S Jones
- Acetylon Pharmaceuticals Inc., Boston, Massachusetts
| | - Steven Grant
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia. Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia. Virginia Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
131
|
Goda AE, Erikson RL, Sakai T, Ahn JS, Kim BY. Preclinical evaluation of bortezomib/dipyridamole novel combination as a potential therapeutic modality for hematologic malignancies. Mol Oncol 2014; 9:309-22. [PMID: 25245324 DOI: 10.1016/j.molonc.2014.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 10/24/2022] Open
Abstract
Novel combinations aiming at maximizing the efficacy of bortezomib are highly valued in the clinic. Therefore the current study investigated the outcomes of combining bortezomib with dipyridamole, a well-known antiplatelet. The co-treatment exerted a synergistic lethality in a panel of human leukemia/lymphoma cell lines of different origin. Mechanistically, dipyridamole did not modulate the proteasome inhibitory activity of bortezomib. However, dipyridamole triggered an endoplasmic reticulum (ER) stress, and co-treatment with bortezomib resulted in higher levels of ER stress than either monotherapies. Relieving ER stress with the protein translation inhibitor, cycloheximide suppressed cell death. Moreover, the enhanced ER stress by the co-treatment was associated with an aggravation of reactive oxygen species (ROS) generation and glutathione (GSH) depletion. Replenishing GSH pools significantly scavenged ROS and rescued the cells. Importantly, the cytotoxicity of the co-treatment was executed mainly via the mitochondrial apoptotic pathway with an efficient suppression of the key anti-apoptotic regulators, Mcl-1, Bcl-xl, Bcl-2 and XIAP, driving the independence of the co-treatment-induced apoptosis of a single apoptotic trigger. Furthermore, the intrinsic potential of bortezomib to inhibit important pro-survival pathways was enhanced by dipyridamole in a GSH/ROS-dependent manner. Interestingly, dipyridamole abrogated JAK2 phosphorylation indirectly and selectively in cancer cells, and the co-treatment-induced cytotoxicity was preserved in a model of stromal-mediated chemoresistance. In nude mice, the antitumor activity of the co-treatment surpassed that of bortezomib monotherapy despite that synergy was lacking. In summary, findings of the present study provided a preclinical rationale which warrants further clinical evaluation of bortezomib/dipyridamole novel combination in hematologic malignancies.
Collapse
Affiliation(s)
- Ahmed E Goda
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 685-2 Ochang, Cheongwon 363-883, Republic of Korea; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Raymond L Erikson
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 685-2 Ochang, Cheongwon 363-883, Republic of Korea; Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA
| | - Toshiyuki Sakai
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jong-Seog Ahn
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Republic of Korea
| | - Bo-Yeon Kim
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 685-2 Ochang, Cheongwon 363-883, Republic of Korea.
| |
Collapse
|
132
|
Gu D, Wang S, Kuiatse I, Wang H, He J, Dai Y, Jones RJ, Bjorklund CC, Yang J, Grant S, Orlowski RZ. Inhibition of the MDM2 E3 Ligase induces apoptosis and autophagy in wild-type and mutant p53 models of multiple myeloma, and acts synergistically with ABT-737. PLoS One 2014; 9:e103015. [PMID: 25181509 PMCID: PMC4151993 DOI: 10.1371/journal.pone.0103015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/25/2014] [Indexed: 02/05/2023] Open
Abstract
Intracellular proteolytic pathways have been validated as rational targets in multiple myeloma with the approval of two proteasome inhibitors in this disease, and with the finding that immunomodulatory agents work through an E3 ubiquitin ligase containing Cereblon. Another E3 ligase that could be a rational target is the murine double minute (MDM) 2 protein, which plays a role in p53 turnover. A novel inhibitor of this complex, MI-63, was found to induce apoptosis in p53 wild-type myeloma models in association with activation of a p53-mediated cell death program. MI-63 overcame adhesion-mediated drug resistance, showed anti-tumor activity in vivo, enhanced the activity of bortezomib and lenalidomide, and also overcame lenalidomide resistance. In mutant p53 models, inhibition of MDM2 with MI-63 also activated apoptosis, albeit at higher concentrations, and this was associated with activation of autophagy. When MI-63 was combined with the BH3 mimetic ABT-737, enhanced activity was seen in both wild-type and mutant p53 models. Finally, this regimen showed efficacy against primary plasma cells from patients with newly diagnosed and relapsed/refractory myeloma. These findings support the translation of novel MDM2 inhibitors both alone, and in combination with other novel agents, to the clinic for patients with multiple myeloma.
Collapse
Affiliation(s)
- Dongmin Gu
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Shuhong Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Isere Kuiatse
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Hua Wang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jin He
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Yun Dai
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Richard J. Jones
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Chad C. Bjorklund
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jing Yang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Steven Grant
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Robert Z. Orlowski
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
133
|
Bose P, Dai Y, Grant S. Histone deacetylase inhibitor (HDACI) mechanisms of action: emerging insights. Pharmacol Ther 2014; 143:323-36. [PMID: 24769080 PMCID: PMC4117710 DOI: 10.1016/j.pharmthera.2014.04.004] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/10/2014] [Indexed: 02/05/2023]
Abstract
Initially regarded as "epigenetic modifiers" acting predominantly through chromatin remodeling via histone acetylation, HDACIs, alternatively referred to as lysine deacetylase or simply deacetylase inhibitors, have since been recognized to exert multiple cytotoxic actions in cancer cells, often through acetylation of non-histone proteins. Some well-recognized mechanisms of HDACI lethality include, in addition to relaxation of DNA and de-repression of gene transcription, interference with chaperone protein function, free radical generation, induction of DNA damage, up-regulation of endogenous inhibitors of cell cycle progression, e.g., p21, and promotion of apoptosis. Intriguingly, this class of agents is relatively selective for transformed cells, at least in pre-clinical studies. In recent years, additional mechanisms of action of these agents have been uncovered. For example, HDACIs interfere with multiple DNA repair processes, as well as disrupt cell cycle checkpoints, critical to the maintenance of genomic integrity in the face of diverse genotoxic insults. Despite their pre-clinical potential, the clinical use of HDACIs remains restricted to certain subsets of T-cell lymphoma. Currently, it appears likely that the ultimate role of these agents will lie in rational combinations, only a few of which have been pursued in the clinic to date. This review focuses on relatively recently identified mechanisms of action of HDACIs, with particular emphasis on those that relate to the DNA damage response (DDR), and discusses synergistic strategies combining HDACIs with several novel targeted agents that disrupt the DDR or antagonize anti-apoptotic proteins that could have implications for the future use of HDACIs in patients with cancer.
Collapse
Affiliation(s)
- Prithviraj Bose
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yun Dai
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven Grant
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA; Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA; Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
134
|
Fribley AM, Miller JR, Brownell AL, Garshott DM, Zeng Q, Reist TE, Narula N, Cai P, Xi Y, Callaghan MU, Kodali V, Kaufman RJ. Celastrol induces unfolded protein response-dependent cell death in head and neck cancer. Exp Cell Res 2014; 330:412-422. [PMID: 25139619 DOI: 10.1016/j.yexcr.2014.08.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/06/2014] [Accepted: 08/09/2014] [Indexed: 11/29/2022]
Abstract
The survival rate for patients with oral squamous cell carcinoma (OSCC) has not seen marked improvement in recent decades despite enhanced efforts in prevention and the introduction of novel therapies. We have reported that pharmacological exacerbation of the unfolded protein response (UPR) is an effective approach to killing OSCC cells. The UPR is executed via distinct signaling cascades whereby an initial attempt to restore folding homeostasis in the endoplasmic reticulum during stress is complemented by an apoptotic response if the defect cannot be resolved. To identify novel small molecules able to overwhelm the adaptive capacity of the UPR in OSCC cells, we engineered a complementary cell-based assay to screen a broad spectrum of chemical matter. Stably transfected CHO-K1 cells that individually report (luciferase) on the PERK/eIF2α/ATF4/CHOP (apoptotic) or the IRE1/XBP1 (adaptive) UPR pathways, were engineered [1]. The triterpenoids dihydrocelastrol and celastrol were identified as potent inducers of UPR signaling and cell death in a primary screen and confirmed in a panel of OSCC cells and other cancer cell lines. Biochemical and genetic assays using OSCC cells and modified murine embryonic fibroblasts demonstrated that intact PERK-eIF2-ATF4-CHOP signaling is required for pro-apoptotic UPR and OSCC death following celastrol treatment.
Collapse
Affiliation(s)
- Andrew M Fribley
- Carmen and Ann Adams Department of Pediatrics, Children׳s Hospital of Michigan, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA; Wayne State University School of Medicine, Detroit, MI, USA.
| | - Justin R Miller
- Carmen and Ann Adams Department of Pediatrics, Children׳s Hospital of Michigan, Detroit, MI 48201, USA; Wayne State University School of Medicine, Detroit, MI, USA
| | - Amy L Brownell
- Carmen and Ann Adams Department of Pediatrics, Children׳s Hospital of Michigan, Detroit, MI 48201, USA; Wayne State University School of Medicine, Detroit, MI, USA
| | - Danielle M Garshott
- Carmen and Ann Adams Department of Pediatrics, Children׳s Hospital of Michigan, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Qinghua Zeng
- Carmen and Ann Adams Department of Pediatrics, Children׳s Hospital of Michigan, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA; Wayne State University School of Medicine, Detroit, MI, USA
| | - Tyler E Reist
- The Undergraduate Research Opportunities Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Neha Narula
- Wayne State University School of Medicine, Detroit, MI, USA
| | - Peter Cai
- Wayne State University School of Medicine, Detroit, MI, USA
| | - Yue Xi
- Carmen and Ann Adams Department of Pediatrics, Children׳s Hospital of Michigan, Detroit, MI 48201, USA; Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael U Callaghan
- Carmen and Ann Adams Department of Pediatrics, Children׳s Hospital of Michigan, Detroit, MI 48201, USA; Wayne State University School of Medicine, Detroit, MI, USA
| | - Vamsi Kodali
- Degenerative Disease Research Center, Sanford
- Burnham Medical Research Institute La Jolla, CA 92037, USA
| | - Randal J Kaufman
- Degenerative Disease Research Center, Sanford
- Burnham Medical Research Institute La Jolla, CA 92037, USA
| |
Collapse
|
135
|
Albert MC, Brinkmann K, Kashkar H. Noxa and cancer therapy: Tuning up the mitochondrial death machinery in response to chemotherapy. Mol Cell Oncol 2014; 1:e29906. [PMID: 27308315 PMCID: PMC4905168 DOI: 10.4161/mco.29906] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 06/24/2014] [Accepted: 07/02/2014] [Indexed: 12/12/2022]
Abstract
Biochemical analyses have characterized the BH3-only protein family member Noxa as a “sensitizer” with weak pro-apoptotic activity. Investigations into cancer cell responses to chemotherapeutic agents have identified Noxa as a pivotal factor mediating the cytotoxic effect of a plethora of anticancer treatments independent of its own pro-apoptotic activity. Accumulating evidence now suggests that tumor cells exert a number of strategies to counteract Noxa function by exploiting diverse cellular regulatory circuits that normally govern Noxa expression during cellular stress responses. Here, we summarize data concerning the role of Noxa in cancer chemosensitivity and highlight the potential of this enigmatic BH3-only protein family member in current and novel anticancer therapies.
Collapse
Affiliation(s)
- Marie-Christine Albert
- Centre for Molecular Medicine Cologne (CMMC); Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne, Köln, Germany; Institute for Medical Microbiology, Immunology and Hygiene (IMMIH); University of Cologne, Köln, Germany
| | - Kerstin Brinkmann
- Centre for Molecular Medicine Cologne (CMMC); Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne, Köln, Germany; Institute for Medical Microbiology, Immunology and Hygiene (IMMIH); University of Cologne, Köln, Germany
| | - Hamid Kashkar
- Centre for Molecular Medicine Cologne (CMMC); Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne, Köln, Germany; Institute for Medical Microbiology, Immunology and Hygiene (IMMIH); University of Cologne, Köln, Germany
| |
Collapse
|
136
|
Mantle cell lymphoma: taking therapeutic advantage of new insights into the biology. Curr Hematol Malig Rep 2014; 9:254-61. [PMID: 25023397 DOI: 10.1007/s11899-014-0221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mantle cell lymphoma (MCL) is an uncommon, incurable B-cell non-Hodgkin's lymphoma that afflicts the elderly. There is no standard course of treatment, with options varying from observation in asymptomatic patients to aggressive induction/consolidation regimens in younger patients with rapidly progressive disease. Emerging data regarding the role of the ubiquitin-proteasome system, B-cell receptor and mTOR signaling pathways, cell cycle regulation, and epigenetic and immune-modulation in the pathogenesis of MCL have resulted in the development of novel therapies, with a shift away from conventional cytotoxic chemotherapy to relatively less toxic, more targeted treatment. The challenge now is to determine the optimal sequence and combination of the various available and emerging therapies for use in patients with MCL.
Collapse
|
137
|
Wang H, Guan F, Chen D, Dou QP, Yang H. An analysis of the safety profile of proteasome inhibitors for treating various cancers. Expert Opin Drug Saf 2014; 13:1043-54. [PMID: 25005844 DOI: 10.1517/14740338.2014.939953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Emerging evidence demonstrates that the ubiquitin-proteasome pathway is a promising target for cancer therapy. Bortezomib (Velcade) exhibits great efficacy against multiple myeloma (MM) since the first clinical application. However, there are still several limitations associated with the use of bortezomib, including severe toxicities. To overcome bortezomib's shortcomings and to improve its safety profile, several second-generation proteasome inhibitors, for example, carfilzomib, ixazomib, oprozomib and marizomib, have been developed and currently tested in various clinical trials. AREAS COVERED A literature search was carried out using PubMed and Google Scholar. The activity and safety profiling of proteasome inhibitors in treatment of various cancers were reviewed. EXPERT OPINION Bortezomib, as a single or in combination therapy, demonstrates efficacy against MM or other hematological malignancies in clinical settings. However, it encounters two major problems, the acquired resistance and the severe side effects. Future direction in bortezomib-based therapy should focus on how to increase or retain its efficacy but improve its safety profile through, for example, rational combination therapies. Second-generation proteasome inhibitors have shown benefits in both overcoming bortezomib resistance and reducing related side effects, although these encouraging results should be further confirmed in a larger clinic population.
Collapse
Affiliation(s)
- Hui Wang
- Harbin Institute of Technology, School of Life Science and Technology , 303 Building 2E, 2 Yikuang Street, Harbin, Heilongjiang Province, 150001 , PR China +86 0451 86403616 ;
| | | | | | | | | |
Collapse
|
138
|
Jia L, Liu FT. Why bortezomib cannot go with 'green'? Cancer Biol Med 2014; 10:206-13. [PMID: 24349830 PMCID: PMC3860349 DOI: 10.7497/j.issn.2095-3941.2013.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 10/16/2013] [Indexed: 11/23/2022] Open
Abstract
Eat more ‘green’ or eat ‘five a day’ is one of the most important healthy lifestyle behaviours in the 21 century. Aiming to fight cancer effectively, more than half patients use vitamins or herbs concurrently with conventional anticancer treatment. Flavonoids or polyphenols existing in vegetables, fruits and green tea are common plant pigments with antioxidant properties and considered acting as cancer preventing or anti-cancer agents. Recently it was found that some flavonoids and vitamin C in diet or supplements have antagonistic effect with the anti-cancer drug bortezomib. Bortezomib is a specific inhibitor for proteasome and is currently used for treatment of relapsed and refractory multiple myeloma. Despite its successful rates in treating multiple myeloma and other solid tumors, it is unable to kill leukemic cells in the blood. It was recently revealed that some flavonoids and vitamin C present in green leaves and green teas in the blood can neutralize bortezomib by directly interaction between two chemicals. Here we summarize why dietary flavonoids should be avoided in patients who take bortezomib as chemotherapeutic drug.
Collapse
Affiliation(s)
- Li Jia
- Center for Hemato-Oncology, Barts Cancer Institute, St Bartholomew's Hospital, Barts Health NHS Trust, Queen Mary University of London, London E1 4NS, UK
| | - Feng-Ting Liu
- Division of Hemato-Oncology, St Bartholomew's Hospital, Barts Health NHS Trust, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
139
|
Goy A, Hernandez-Ilzaliturri FJ, Kahl B, Ford P, Protomastro E, Berger M. A phase I/II study of the pan Bcl-2 inhibitor obatoclax mesylate plus bortezomib for relapsed or refractory mantle cell lymphoma. Leuk Lymphoma 2014; 55:2761-8. [PMID: 24679008 DOI: 10.3109/10428194.2014.907891] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Obatoclax, a BH3 mimetic inhibitor of anti-apoptotic Bcl-2 proteins, demonstrates synergy with bortezomib in preclinical models of mantle cell lymphoma (MCL). This phase I/II study assessed obatoclax plus bortezomib in patients with relapsed/refractory MCL. Twenty-three patients received obatoclax 30 or 45 mg plus bortezomib 1.0 or 1.3 mg/m(2), administered intravenously on days 1, 4, 8 and 11 of a 21-day cycle. In phase I, the combination was feasible at all doses. Obatoclax 45 mg plus bortezomib 1.3 mg/m(2) was selected for phase II study. Common adverse events were somnolence (87%), fatigue (61%) and euphoric mood (57%), all primarily grade 1/2. Grade 3/4 events included thrombocytopenia (21%), anemia (13%) and fatigue (13%). Objective responses occurred in 4/13 (31%) evaluable patients (three complete and one partial response). Six patients (46%) had stable disease lasting ≥ 8 weeks. Obatoclax plus bortezomib was feasible, but the synergy demonstrated in preclinical models was not confirmed.
Collapse
Affiliation(s)
- André Goy
- John Theurer Cancer Center, Hackensack University Medical Center , Hackensack, NJ , USA
| | | | | | | | | | | |
Collapse
|
140
|
Niggemann J, Bozko P, Bruns N, Wodtke A, Gieseler MT, Thomas K, Jahns C, Nimtz M, Reupke I, Brüser T, Auling G, Malek N, Kalesse M. Baceridin, a cyclic hexapeptide from an epiphytic bacillus strain, inhibits the proteasome. Chembiochem 2014; 15:1021-9. [PMID: 24692199 DOI: 10.1002/cbic.201300778] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Indexed: 11/05/2022]
Abstract
A new cyclic hexapeptide, baceridin (1), was isolated from the culture medium of a plant-associated Bacillus strain. The structure of 1 was elucidated by HR-HPLC-MS and 1D and 2D NMR experiments and confirmed by ESI MS/MS sequence analysis of the corresponding linear hexapeptide 2. The absolute configurations of the amino acid residues were determined after derivatization by GC-MS and Marfey's method. The cyclopeptide 1 consists partially of nonribosomal-derived D- and allo-D-configured amino acids. The order of the D- and L-leucine residues within the sequence cyclo(-L-Trp-D-Ala-D-allo-Ile-L-Val-D-Leu-L-Leu-) was assigned by total synthesis of the two possible stereoisomers. Baceridin (1) was tested for antimicrobial and cytotoxic activity and displayed moderate cytotoxicity (1-2 μg mL(-1)) as well as weak activity against Staphylococcus aureus. However, it was identified to be a proteasome inhibitor that inhibits cell cycle progression and induces apoptosis in tumor cells by a p53-independent pathway.
Collapse
Affiliation(s)
- Jutta Niggemann
- Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig (Germany)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Antiapoptotic potency of Bcl-2 proteins primarily relies on their stability, not binding selectivity. Blood 2014; 123:2806-15. [PMID: 24622325 DOI: 10.1182/blood-2013-08-519470] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All 6 human prosurvival Bcl-2 proteins can drive cancer development and contribute to therapy resistance. However, their relative abilities to protect cells against cancer therapy were not examined previously. We report that Bcl-2, Bcl-xL, or Bcl-w consistently protected leukemic cells better than Bcl-B, Bfl-1, or Mcl-1 against a wide variety of anticancer regimens. Current thinking would attribute this to differences in their ability to bind to BH3-only proteins, Bax, and Bak. To address this, we established the first complete, quantitative cellular interaction profile of all human prosurvival Bcl-2 proteins with all their proapoptotic relatives. Binding was unexpectedly promiscuous, except for Bad and Noxa, and did not explain the differential antiapoptotic capacity of the Bcl-2 proteins. Rather, Bcl-B, Bfl-1, or Mcl-1 proved less potent due to steady-state or drug-induced proteasomal degradation. All 6 Bcl-2 proteins similarly protected against the diverse anticancer regimens when expressed at equal protein levels, in agreement with their broad interaction profile. Therefore, clinical diagnostics should include all family members and should be performed at the protein rather than at the messenger RNA level. In drug development, targeting the ubiquitination machinery of prosurvival Bcl-2 proteins will complement and potentially improve on targeting Bcl-2 protein interactions with BH3 mimetics.
Collapse
|
142
|
Targeting the mitochondrial apoptotic pathway: a preferred approach in hematologic malignancies? Cell Death Dis 2014; 5:e1098. [PMID: 24603326 PMCID: PMC3973243 DOI: 10.1038/cddis.2014.61] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 02/05/2023]
Abstract
Acquired resistance toward apoptosis represents one of the hallmarks of human cancer and a major cause of the inefficacy of most anticancer treatment regimens. Based on its ability to inhibit apoptosis, the B-cell lymphoma/leukemia 2 (Bcl-2) protein family has garnered the most attention as a promising therapeutic target in cancer. Accordingly, efforts have lately been focused on the development of drugs targeting Bcl-2 proteins with considerable therapeutic success, particularly in hematologic malignancies. Here, we review the previous studies and highlight the pivotal role of the Bcl-2 protein family in the homeostasis of hematologic tissue compartment. This knowledge provides more insight into why some cancers are more sensitive to Bcl-2 targeting than others and will foster the clinical evaluation of Bcl-2-targeting strategies in cancer by avoiding severe on-target side effects in the development of healthy tissues.
Collapse
|
143
|
Paulus A, Masood A, Miller KC, Khan ANMNH, Akhtar D, Advani P, Foran J, Rivera C, Roy V, Colon-Otero G, Chitta K, Chanan-Khan A. The investigational agent MLN2238 induces apoptosis and is cytotoxic to CLL cells in vitro, as a single agent and in combination with other drugs. Br J Haematol 2014; 165:78-88. [PMID: 24467634 DOI: 10.1111/bjh.12731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/13/2013] [Indexed: 12/21/2022]
Abstract
Chronic lymphocytic leukaemia (CLL) is the most common haematological malignancy in the U.S. The course of the disease has been shown to be negatively impacted by increased levels of BCL2. Strategies to downregulate BCL2 and shift the balance towards cellular demise are actively being explored. Therefore, we examined whether the investigational agent MLN2238 could inhibit the proteasomal machinery and induce CLL cell death while also downregulating BCL2. MLN2238-induced cell death was studied in peripheral blood mononuclear cells from 28 CLL patients. MLN2238 produced a dose-dependent reduction in BCL2 and CLL cell viability with maximum cell death observed at a 50 nmol/l concentration by 48 h. Annexin-V staining, PARP1 and caspase-3 cleavage along with an increase in mitochondrial membrane permeability were noted after cells were treated with MLN2238; however, apoptosis was only partially blocked by the pan-caspase inhibitor z-VAD.fmk. Furthermore, we observed enhanced anti-CLL effects in tumour cells treated with either a combination of MLN2238 and the BH3 mimetic AT-101 or MLN2238 and fludarabine. Together, our data suggest the potential for proteasome inhibitor based therapy in CLL and the rationale design of drug combination strategies based on CLL biology.
Collapse
Affiliation(s)
- Aneel Paulus
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA; Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Dengler MA, Weilbacher A, Gutekunst M, Staiger AM, Vöhringer MC, Horn H, Ott G, Aulitzky WE, van der Kuip H. Discrepant NOXA (PMAIP1) transcript and NOXA protein levels: a potential Achilles' heel in mantle cell lymphoma. Cell Death Dis 2014; 5:e1013. [PMID: 24457957 PMCID: PMC4040662 DOI: 10.1038/cddis.2013.552] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 01/08/2023]
Abstract
Mantle cell lymphoma (MCL) is an aggressive lymphoid neoplasm with transient response to conventional chemotherapy. We here investigated the role of the Bcl-2 homology domain 3-only protein NOXA for life–death decision in MCL. Surprisingly, NOXA (PMAIP1) mRNA and NOXA protein levels were extremely discrepant in MCL cells: NOXA mRNA was found to be highly expressed whereas NOXA protein levels were low. Chronic active B-cell receptor signaling and to a minor degree cyclin D1 overexpression contributed to high NOXA mRNA expression levels in MCL cells. The phoshatidyl-inositol-3 kinase/AKT/mammalian target of rapamycin pathway was identified as the major downstream signaling pathway involved in the maintenance of NOXA gene expression. Interestingly, MCL cells adapt to this constitutive pro-apoptotic signal by extensive ubiquitination and rapid proteasomal degradation of NOXA protein (T½∼15–30 min). In addition to the proteasome inhibitor Bortezomib, we identified the neddylation inhibitor MLN4924 and the fatty acid synthase inhibitor Orlistat as potent inducers of NOXA protein expression leading to apoptosis in MCL. All inhibitors targeted NOXA protein turnover. In contrast to Bortezomib, MLN4924 and Orlistat interfered with the ubiquitination process of NOXA protein thereby offering new strategies to kill Bortezomib-resistant MCL cells. Our data, therefore, highlight a critical role of NOXA in the balance between life and death in MCL. The discrepancy between NOXA transcript and protein levels is essential for sensitivity of MCL to ubiquitin-proteasome system inhibitors and could therefore provide a druggable Achilles' heel of MCL cells.
Collapse
Affiliation(s)
- M A Dengler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Auerbachstr. 112, Stuttgart 70376, Germany
| | - A Weilbacher
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Auerbachstr. 112, Stuttgart 70376, Germany
| | - M Gutekunst
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Auerbachstr. 112, Stuttgart 70376, Germany
| | - A M Staiger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Auerbachstr. 112, Stuttgart 70376, Germany
| | - M C Vöhringer
- Second Department of Internal Medicine, Oncology and Hematology, Robert-Bosch-Hospital, Auerbachstr. 110, Stuttgart 70376, Germany
| | - H Horn
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Auerbachstr. 112, Stuttgart 70376, Germany
| | - G Ott
- Department of Clinical Pathology, Robert-Bosch-Hospital, Auerbachstr. 110, Stuttgart 70376, Germany
| | - W E Aulitzky
- Second Department of Internal Medicine, Oncology and Hematology, Robert-Bosch-Hospital, Auerbachstr. 110, Stuttgart 70376, Germany
| | - H van der Kuip
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Auerbachstr. 112, Stuttgart 70376, Germany
| |
Collapse
|
145
|
Wang M, Zhou Y, Zhang L, Nguyen CA, Romaguera J. Use of bortezomib in B-cell non-Hodgkin’s lymphoma. Expert Rev Anticancer Ther 2014; 6:983-91. [PMID: 16831071 DOI: 10.1586/14737140.6.7.983] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ubiquitin-proteasome pathway plays a critical role in the regulated degradation of proteins involved in cell cycle control and tumor growth. Bortezomib (Velcade, formerly known as PS-341) is a potent proteasome inhibitor. In preclinical studies, bortezomib has demonstrated activity against a variety of B-cell malignancies by inducing apoptosis and sensitizing tumor cells to radiation or chemotherapy. Based on these findings, clinical trials have been conducted with bortezomib in B-cell non-Hodgkin's lymphoma. In these studies, bortezomib was generally well tolerated with manageable toxicities and showed promising clinical activity. Mantle cell lymphoma was significantly more sensitive to bortezomib than other non-Hodgkin's lymphomas. Bortezomib may have far-reaching potential in the treatment of B-cell non-Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Michael Wang
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 429, Houston, TX 77030-4009, USA.
| | | | | | | | | |
Collapse
|
146
|
Haglund C, Mohanty C, Fryknäs M, D'Arcy P, Larsson R, Linder S, Rickardson L. Identification of an inhibitor of the ubiquitin–proteasome system that induces accumulation of polyubiquitinated proteins in the absence of blocking of proteasome function. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00386h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ubiquitin–proteasome system (UPS) represents one of the most promising therapeutic targets in oncology to emerge in recent years.
Collapse
Affiliation(s)
- Caroline Haglund
- Department of Medical Sciences (Division of Clinical Pharmacology)
- Uppsala University
- SE-751 85 Uppsala
- Sweden
| | - Chitralekha Mohanty
- Department of Oncology-Pathology
- Karolinska Institutet
- SE-171 76 Stockholm
- Sweden
| | - Mårten Fryknäs
- Department of Medical Sciences (Division of Clinical Pharmacology)
- Uppsala University
- SE-751 85 Uppsala
- Sweden
| | - Padraig D'Arcy
- Department of Oncology-Pathology
- Karolinska Institutet
- SE-171 76 Stockholm
- Sweden
| | - Rolf Larsson
- Department of Medical Sciences (Division of Clinical Pharmacology)
- Uppsala University
- SE-751 85 Uppsala
- Sweden
| | - Stig Linder
- Department of Medical Sciences (Division of Clinical Pharmacology)
- Uppsala University
- SE-751 85 Uppsala
- Sweden
- Department of Oncology-Pathology
| | - Linda Rickardson
- Department of Medical Sciences (Division of Clinical Pharmacology)
- Uppsala University
- SE-751 85 Uppsala
- Sweden
| |
Collapse
|
147
|
Cottier KE, Fogle EM, Fox DA, Ahmed S. Noxa in rheumatic diseases: present understanding and future impact. Rheumatology (Oxford) 2013; 53:1539-46. [PMID: 24352336 DOI: 10.1093/rheumatology/ket408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Impaired programmed cell death is an important contributing mechanism in the development of chronic inflammatory and autoimmune diseases. Overexpression of Bcl-2 family proteins in such diseases has led to the concept of targeted suppression of these proteins as a primary therapeutic strategy. However, limited success with this approach has prompted pharmacologists to look at the other side of the coin, with the aim of reactivating jeopardized pro-apoptotic proteins that may neutralize Bcl-2 or other anti-apoptotic molecules. In this effort, BH3-only proteins have gained recent attention as endogenous molecules for the sensitization of resistant cells to undergo apoptosis. Among the BH3-only family, Noxa stands out as exceptional for its specificity to bind Mcl-1 and Bcl-2 and blunt their biological properties. Noxa is now being tested as a promising therapeutic target in cancer biology. Nonetheless, its role and clinical application still lack validation in autoimmune diseases, including rheumatic conditions. This is partly attributed to the significant gap in our understanding of its regulatory role and how either overexpression of Noxa or delivery of BH3 mimetics could be therapeutically exploited. In this review we highlight some recent studies in RA, OA, SLE and SS suggesting that Noxa may be used as a potential therapeutic target to circumvent invasive and tissue destructive processes in these rheumatic diseases.
Collapse
Affiliation(s)
- Karissa E Cottier
- Department of Pharmacology, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH and Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Elise M Fogle
- Department of Pharmacology, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH and Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David A Fox
- Department of Pharmacology, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH and Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Salahuddin Ahmed
- Department of Pharmacology, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH and Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
148
|
Bergamo P, Cocca E, Palumbo R, Gogliettino M, Rossi M, Palmieri G. RedOx status, proteasome and APEH: insights into anticancer mechanisms of t10,c12-conjugated linoleic acid isomer on A375 melanoma cells. PLoS One 2013; 8:e80900. [PMID: 24260504 PMCID: PMC3834215 DOI: 10.1371/journal.pone.0080900] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/17/2013] [Indexed: 01/06/2023] Open
Abstract
This study describes the investigation of the efficiency of conjugated linoleic acid (CLA) isomers in reducing cancer cells viability exploring the role of the oxidative stress and acylpeptide hydrolase (APEH)/proteasome mediated pathways on pro-apoptotic activity of the isomer trans10,cis12 (t10,c12)-CLA. The basal activity/expression levels of APEH and proteasome (β-5 subunit) were preliminarily measured in eight cancer cell lines and the functional relationship between these enzymes was clearly demonstrated through their strong positive correlation. t10,c12-CLA efficiently inhibited the activity of APEH and proteasome isoforms in cell-free assays and the negative correlation between cell viability and caspase 3 activity confirmed the pro-apoptotic role of this isomer. Finally, modulatory effects of t10,c12-CLA on cellular redox status (intracellular glutathione, mRNA levels of antioxidant/detoxifying enzymes activated through NF-E2-related factor 2, Nrf2, pathway) and on APEH/β-5 activity/expression levels, were investigated in A375 melanoma cells. Dose- and time-dependent variations of the considered parameters were established and the resulting pro-apoptotic effects were shown to be associated with an alteration of the redox status and a down-regulation of APEH/proteasome pathway. Therefore, our results support the idea that these events are involved in ROS-dependent apoptosis of t10,c12-CLA-treated A375 cells. The combined inhibition, triggered by t10,c12-CLA, via the modulation of APEH/proteasome and Nrf2 pathway for treating melanoma, is suggested as a subject for further in vivo studies.
Collapse
Affiliation(s)
- Paolo Bergamo
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - Ennio Cocca
- Institute of Protein Biochemistry, National Research Council (CNR-IBP), Napoli, Italy
| | - Rosanna Palumbo
- Institute of Biostructure and Bioimaging, National Research Council (CNR-IBB), Napoli, Italy
| | - Marta Gogliettino
- Institute of Protein Biochemistry, National Research Council (CNR-IBP), Napoli, Italy
| | - Mose Rossi
- Institute of Protein Biochemistry, National Research Council (CNR-IBP), Napoli, Italy
| | - Gianna Palmieri
- Institute of Protein Biochemistry, National Research Council (CNR-IBP), Napoli, Italy
- * E-mail:
| |
Collapse
|
149
|
Rae C, Tesson M, Babich JW, Boyd M, Mairs RJ. Radiosensitization of noradrenaline transporter-expressing tumour cells by proteasome inhibitors and the role of reactive oxygen species. EJNMMI Res 2013; 3:73. [PMID: 24219987 PMCID: PMC3828419 DOI: 10.1186/2191-219x-3-73] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/01/2013] [Indexed: 12/24/2022] Open
Abstract
Background The radiopharmaceutical 131I-metaiodobenzylguanidine (131I-MIBG) is used for the targeted radiotherapy of noradrenaline transporter (NAT)-expressing neuroblastoma. Enhancement of 131I-MIBG's efficacy is achieved by combination with the topoisomerase I inhibitor topotecan - currently being evaluated clinically. Proteasome activity affords resistance of tumour cells to radiation and topoisomerase inhibitors. Therefore, the proteasome inhibitor bortezomib was evaluated with respect to its cytotoxic potency as a single agent and in combination with 131I-MIBG and topotecan. Since elevated levels of reactive oxygen species (ROS) are induced by bortezomib, the role of ROS in tumour cell kill was determined following treatment with bortezomib or the alternative proteasome inhibitor, MG132. Methods Clonogenic assay and growth of tumour xenografts were used to investigate the effects of proteasome inhibitors alone or in combination with radiation treatment. Synergistic interactions in vitro were evaluated by combination index analysis. The dependency of proteasome inhibitor-induced clonogenic kill on ROS generation was assessed using antioxidants. Results Bortezomib, in the dose range 1 to 30 nM, decreased clonogenic survival of both SK-N-BE(2c) and UVW/NAT cells, and this was prevented by antioxidants. It also acted as a sensitizer in vitro when administered with X-radiation, with 131I-MIBG, or with 131I-MIBG and topotecan. Moreover, bortezomib enhanced the delay of the growth of human tumour xenografts in athymic mice when administered in combination with 131I-MIBG and topotecan. MG132 and bortezomib had similar radiosensitizing potency, but only bortezomib-induced cytotoxicity was ROS-dependent. Conclusions Proteasome inhibition shows promise for the treatment of neuroblastoma in combination with 131I-MIBG and topotecan. Since the cytotoxicity of MG132, unlike that of bortezomib, was not ROS-dependent, the latter proteasome inhibitor may have a favourable toxicity profile in normal tissues.
Collapse
Affiliation(s)
| | | | | | | | - Robert J Mairs
- Radiation Oncology, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1BD, Scotland.
| |
Collapse
|
150
|
Masood A, Azmi AS, Mohammad RM. Small molecule inhibitors of bcl-2 family proteins for pancreatic cancer therapy. Cancers (Basel) 2013; 3:1527-49. [PMID: 21760983 PMCID: PMC3134295 DOI: 10.3390/cancers3021527] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer (PC) has a complex etiology and displays a wide range of cellular escape pathways that allow it to resist different treatment modalities. Crucial signaling molecules that function downstream of the survival pathways, particularly at points where several of these pathways crosstalk, provide valuable targets for the development of novel anti-cancer drugs. Bcl-2 family member proteins are anti-apoptotic molecules that are known to be overexpressed in most cancers including PC. The anti-apoptotic machinery has been linked to the observed resistance developed to chemotherapy and radiation and therefore is important from the targeted drug development point of view. Over the past ten years, our group has extensively studied a series of small molecule inhibitors of Bcl-2 against PC and provide solid preclinical platform for testing such novel drugs in the clinic. This review examines the efficacy, potency, and function of several small molecule inhibitor drugs targeted to the Bcl-2 family of proteins and their preclinical progress against PC. This article further focuses on compounds that have been studied the most and also discusses the anti-cancer potential of newer class of Bcl-2 drugs.
Collapse
Affiliation(s)
- Ashiq Masood
- Department of Internal Medicine/Pathology, Karmanos Cancer Institute, Wayne State University, 4100 John R, HWCRC 732, Detroit, MI 48201, USA; E-Mail:
| | - Asfar S. Azmi
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, 4100 John R, HWCRC 732, Detroit MI 48201, USA; E-Mail:
| | - Ramzi M. Mohammad
- Department of Internal Medicine/Pathology, Karmanos Cancer Institute, Wayne State University, 4100 John R, HWCRC 732, Detroit, MI 48201, USA; E-Mail:
- Department of Oncology, Karmanos Cancer Institute, 4100 John R, HWCRC 732, Detroit, MI 48201, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-313-576-8329; Fax: +1-313-576-8389
| |
Collapse
|