101
|
Repression of Mcl-1 expression by the CDC7/CDK9 inhibitor PHA-767491 overcomes bone marrow stroma-mediated drug resistance in AML. Sci Rep 2018; 8:15752. [PMID: 30361682 PMCID: PMC6202320 DOI: 10.1038/s41598-018-33982-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 10/03/2018] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukaemia (AML) is an aggressive cancer with 50-75% of patients relapsing even after successful chemotherapy. The role of the bone marrow microenvironment (BMM) in protecting AML cells from chemotherapeutics and causing consequent relapse is increasingly recognised. However the role that the anti-apoptotic Bcl-2 proteins play as effectors of BMM-mediated drug resistance are less understood. Here we show that bone marrow mesenchymal stromal cells (BMSC) provide resistance to AML cells against BH3-mimetics, cytarabine and daunorubicin, but this is not mediated by Bcl-2 and/or Bcl-XL as previously thought. Instead, BMSCs induced Mcl-1 expression over Bcl-2 and/or Bcl-XL in AML cells and inhibition of Mcl-1 with a small-molecule inhibitor, A1210477, or repressing its expression with the CDC7/CDK9 dual-inhibitor, PHA-767491 restored sensitivity to BH3-mimetics. Furthermore, combined inhibition of Bcl-2/Bcl-XL and Mcl-1 could revert BMSC-mediated resistance against cytarabine + daunorubicin. Importantly, the CD34+/CD38- leukemic stem cell-encompassing population was equally sensitive to the combination of PHA-767491 and ABT-737. These results indicate that Bcl-2/Bcl-XL and Mcl-1 act in a redundant fashion as effectors of BMM-mediated AML drug resistance and highlight the potential of Mcl-1-repression to revert BMM-mediated drug resistance in the leukemic stem cell population, thus, prevent disease relapse and ultimately improve patient survival.
Collapse
|
102
|
CDKI-73: an orally bioavailable and highly efficacious CDK9 inhibitor against acute myeloid leukemia. Invest New Drugs 2018; 37:625-635. [PMID: 30194564 DOI: 10.1007/s10637-018-0661-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia with dismal long-term prognosis with age. The most aggressive subtype of AML is MLL-AML that is characterized by translocations of the mixed-lineage leukemia gene (MLL) and resistance to conventional chemotherapy. Cyclin dependent kinase 9 (CDK9) plays a crucial role in the MLL-driven oncogenic transcription, and hence, inhibiting activity of CDK9 has been proposed as a promising strategy for treatment of AML. We investigated the therapeutic potential of CDKI-73, one of the most potent CDK9 inhibitors, against a panel of AML cell lines and samples derived from 97 patients. CDKI-73 induced cancer cells undergoing apoptosis through transcriptional downregulation of anti-apoptotic proteins Bcl-2, Mcl-1 and XIAP by majorly targeting CDK9. Contrastively, it was relatively low toxic to the bone marrow cells of healthy donors. In MV4-11 xenograft mouse models, oral administration of CDKI-73 resulted in a marked inhibition of tumor growth (p < 0.0001) and prolongation of animal life span (P < 0.001) without causing body weight loss and other overt toxicities. The study suggests that CDKI-73 can be developed as a highly efficacious and orally deliverable therapeutic agent for treatment of AML.
Collapse
|
103
|
Ishiguro K, Kitajima H, Niinuma T, Ishida T, Maruyama R, Ikeda H, Hayashi T, Sasaki H, Wakasugi H, Nishiyama K, Shindo T, Yamamoto E, Kai M, Sasaki Y, Tokino T, Nakase H, Suzuki H. DOT1L inhibition blocks multiple myeloma cell proliferation by suppressing IRF4-MYC signaling. Haematologica 2018; 104:155-165. [PMID: 30171029 PMCID: PMC6312027 DOI: 10.3324/haematol.2018.191262] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
Epigenetic alterations play an important role in the pathogenesis in multiple myeloma, but their biological and clinical relevance is not fully understood. Here, we show that DOT1L, which catalyzes methylation of histone H3 lysine 79, is required for myeloma cell survival. DOT1L expression levels were higher in monoclonal gammopathy of undetermined significance and smoldering multiple myeloma than in normal plasma cells. Treatment with a DOT1L inhibitor induced cell cycle arrest and apoptosis in myeloma cells, and strongly suppressed cell proliferation in vitro. The anti-myeloma effect of DOT1L inhibition was confirmed in a mouse xenograft model. Chromatin immunoprecipitation-sequencing and microarray analysis revealed that DOT1L inhibition downregulated histone H3 lysine 79 dimethylation and expression of IRF4-MYC signaling genes in myeloma cells. In addition, DOT1L inhibition upregulated genes associated with immune responses and interferon signaling. Myeloma cells with histone modifier mutations or lower IRF4/MYC expression were less sensitive to DOT1L inhibition, but with prolonged treatment, anti-proliferative effects were achieved in these cells. Our data suggest that DOT1L plays an essential role in the development of multiple myeloma and that DOT1L inhibition may provide new therapies for myeloma treatment.
Collapse
Affiliation(s)
- Kazuya Ishiguro
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine.,Department of Molecular Biology, Sapporo Medical University School of Medicine
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine
| | - Tadao Ishida
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo
| | - Hiroshi Ikeda
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine
| | - Toshiaki Hayashi
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine
| | - Hajime Sasaki
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine
| | - Hideki Wakasugi
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine
| | - Koyo Nishiyama
- Department of Molecular Biology, Sapporo Medical University School of Medicine
| | - Tetsuya Shindo
- Department of Molecular Biology, Sapporo Medical University School of Medicine
| | - Eiichiro Yamamoto
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine.,Department of Molecular Biology, Sapporo Medical University School of Medicine
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine
| | - Yasushi Sasaki
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine and Sapporo Medical University School of Medicine, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine and Sapporo Medical University School of Medicine, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine
| |
Collapse
|
104
|
Gallipoli P, Huntly BJP. Novel epigenetic therapies in hematological malignancies: Current status and beyond. Semin Cancer Biol 2018; 51:198-210. [PMID: 28782607 DOI: 10.1016/j.semcancer.2017.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/10/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Over the last decade transcriptional dysregulation and altered epigenetic programs have emerged as a hallmark in the majority of hematological cancers. Several epigenetic regulators are recurrently mutated in many hematological malignancies. In addition, in those cases that lack epigenetic mutations, altered function of epigenetic regulators has been shown to play a central role in the pathobiology of many hematological neoplasms, through mechanisms that are becoming increasingly understood. This, in turn, has led to the development of small molecule inhibitors of dysregulated epigenetic pathways as novel targeted therapies for hematological malignancies. In this review, we will present the most recent advances in our understanding of the role played by dysregulated epigenetic programs in the development and maintenance of hematological neoplasms. We will describe novel therapeutics targeting altered epigenetic programs and outline their mode of action. We will then discuss their use in specific conditions, identify potential limitations and putative toxicities while also providing an update on their current clinical development. Finally, we will highlight the opportunities presented by epigenetically targeted therapies in hematological malignancies and introduce the challenges that need to be tackled by both the research and clinical communities to best translate these novel therapies into clinical practice and to improve patient outcomes.
Collapse
Affiliation(s)
- Paolo Gallipoli
- Department of Hematology, Cambridge Institute for Medical Research and Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Brian J P Huntly
- Department of Hematology, Cambridge Institute for Medical Research and Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
105
|
Lambert M, Jambon S, Depauw S, David-Cordonnier MH. Targeting Transcription Factors for Cancer Treatment. Molecules 2018; 23:molecules23061479. [PMID: 29921764 PMCID: PMC6100431 DOI: 10.3390/molecules23061479] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Transcription factors are involved in a large number of human diseases such as cancers for which they account for about 20% of all oncogenes identified so far. For long time, with the exception of ligand-inducible nuclear receptors, transcription factors were considered as “undruggable” targets. Advances knowledge of these transcription factors, in terms of structure, function (expression, degradation, interaction with co-factors and other proteins) and the dynamics of their mode of binding to DNA has changed this postulate and paved the way for new therapies targeted against transcription factors. Here, we discuss various ways to target transcription factors in cancer models: by modulating their expression or degradation, by blocking protein/protein interactions, by targeting the transcription factor itself to prevent its DNA binding either through a binding pocket or at the DNA-interacting site, some of these inhibitors being currently used or evaluated for cancer treatment. Such different targeting of transcription factors by small molecules is facilitated by modern chemistry developing a wide variety of original molecules designed to specifically abort transcription factor and by an increased knowledge of their pathological implication through the use of new technologies in order to make it possible to improve therapeutic control of transcription factor oncogenic functions.
Collapse
Affiliation(s)
- Mélanie Lambert
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Samy Jambon
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Sabine Depauw
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Marie-Hélène David-Cordonnier
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| |
Collapse
|
106
|
Kang JY, Kim JY, Kim KB, Park JW, Cho H, Hahm JY, Chae YC, Kim D, Kook H, Rhee S, Ha NC, Seo SB. KDM2B is a histone H3K79 demethylase and induces transcriptional repression via sirtuin-1-mediated chromatin silencing. FASEB J 2018; 32:5737-5750. [PMID: 29763382 DOI: 10.1096/fj.201800242r] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The methylation of histone H3 lysine 79 (H3K79) is an active chromatin marker and is prominent in actively transcribed regions of the genome; however, demethylase of H3K79 remains unknown despite intensive research. Here, we show that KDM2B, also known as FBXL10 and a member of the Jumonji C family of proteins known for its histone H3K36 demethylase activity, is a di- and trimethyl H3K79 demethylase. We demonstrate that KDM2B induces transcriptional repression of HOXA7 and MEIS1 via occupancy of promoters and demethylation of H3K79. Furthermore, genome-wide analysis suggests that H3K79 methylation levels increase when KDM2B is depleted, which indicates that KDM2B functions as an H3K79 demethylase in vivo. Finally, stable KDM2B-knockdown cell lines exhibit displacement of NAD+-dependent deacetylase sirtuin-1 (SIRT1) from chromatin, with concomitant increases in H3K79 methylation and H4K16 acetylation. Our findings identify KDM2B as an H3K79 demethylase and link its function to transcriptional repression via SIRT1-mediated chromatin silencing.-Kang, J.-Y., Kim, J.-Y., Kim, K.-B., Park, J. W., Cho, H., Hahm, J. Y., Chae, Y.-C., Kim, D., Kook, H., Rhee, S., Ha, N.-C., Seo, S.-B. KDM2B is a histone H3K79 demethylase and induces transcriptional repression via sirtuin-1-mediated chromatin silencing.
Collapse
Affiliation(s)
- Joo-Young Kang
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea
| | - Ji-Young Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea
| | - Kee-Beom Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea
| | - Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea
| | - Hana Cho
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea
| | - Ja Young Hahm
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea
| | - Yun-Cheol Chae
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea
| | - Daehwan Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea
| | - Hyun Kook
- Department of Pharmacology, Medical Research Center for Gene Regulation, Chonnam National University, Gwangju, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Sangmyeong Rhee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea
| | - Nam-Chul Ha
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
107
|
The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood 2018; 131:2661-2669. [PMID: 29724899 DOI: 10.1182/blood-2017-12-818948] [Citation(s) in RCA: 327] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/13/2018] [Indexed: 12/15/2022] Open
Abstract
Pinometostat (EPZ-5676) is a first-in-class small-molecule inhibitor of the histone methyltransferase disrupter of telomeric silencing 1-like (DOT1L). In this phase 1 study, pinometostat was evaluated for safety and efficacy in adult patients with advanced acute leukemias, particularly those involving mixed lineage leukemia (MLL) gene rearrangements (MLL-r) resulting from 11q23 translocations. Fifty-one patients were enrolled into 6 dose-escalation cohorts (n = 26) and 2 expansion cohorts (n = 25) at pinometostat doses of 54 and 90 mg/m2 per day by continuous intravenous infusion in 28-day cycles. Because a maximum tolerated dose was not established in the dose-escalation phase, the expansion doses were selected based on safety and clinical response data combined with pharmacodynamic evidence of reduction in H3K79 methylation during dose escalation. Across all dose levels, plasma pinometostat concentrations increased in an approximately dose-proportional fashion, reaching an apparent steady-state by 4-8 hours after infusion, and rapidly decreased following treatment cessation. The most common adverse events, of any cause, were fatigue (39%), nausea (39%), constipation (35%), and febrile neutropenia (35%). Overall, 2 patients, both with t(11;19), experienced complete remission at 54 mg/m2 per day by continuous intravenous infusion, demonstrating proof of concept for delivering clinically meaningful responses through targeting DOT1L using the single agent pinometostat in MLL-r leukemia patients. Administration of pinometostat was generally safe, with the maximum tolerated dose not being reached, although efficacy as a single agent was modest. This study demonstrates the therapeutic potential for targeting DOT1L in MLL-r leukemia and lays the groundwork for future combination approaches in this patient population. This clinical trial is registered at www.clinicaltrials.gov as NCT01684150.
Collapse
|
108
|
Li T, Liu Q, Garza N, Kornblau S, Jin VX. Integrative analysis reveals functional and regulatory roles of H3K79me2 in mediating alternative splicing. Genome Med 2018; 10:30. [PMID: 29665865 PMCID: PMC5902843 DOI: 10.1186/s13073-018-0538-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/29/2018] [Indexed: 01/26/2023] Open
Abstract
Background Accumulating evidence suggests alternative splicing (AS) is a co-transcriptional splicing process not only controlled by RNA-binding splicing factors, but also mediated by epigenetic regulators, such as chromatin structure, nucleosome density, and histone modification. Aberrant AS plays an important role in regulating various diseases, including cancers. Methods In this study, we integrated AS events derived from RNA-seq with H3K79me2 ChIP-seq data across 34 different normal and cancer cell types and found the higher enrichment of H3K79me2 in two AS types, skipping exon (SE) and alternative 3′ splice site (A3SS). Results Interestingly, by applying self-organizing map (SOM) clustering, we unveiled two clusters mainly comprised of blood cancer cell types with a strong correlation between H3K79me2 and SE. Remarkably, the expression of transcripts associated with SE was not significantly different from that of those not associated with SE, indicating the involvement of H3K79me2 in splicing has little impact on full mRNA transcription. We further showed that the deletion of DOT1L1, the sole H3K79 methyltransferase, impeded leukemia cell proliferation as well as switched exon skipping to the inclusion isoform in two MLL-rearranged acute myeloid leukemia cell lines. Our data demonstrate H3K79me2 was involved in mediating SE processing, which might in turn influence transformation and disease progression in leukemias. Conclusions Collectively, our work for the first time reveals that H3K79me2 plays functional and regulatory roles through a co-transcriptional splicing mechanism. Electronic supplementary material The online version of this article (10.1186/s13073-018-0538-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tianbao Li
- College of Life Science, Jilin University, Changchun, 130012, China.,Department of Molecular Medicine, University of Texas Health, 8403 Floyd Curl, San Antonio, TX, 78229, USA
| | - Qi Liu
- Department of Molecular Medicine, University of Texas Health, 8403 Floyd Curl, San Antonio, TX, 78229, USA
| | - Nick Garza
- Department of Molecular Medicine, University of Texas Health, 8403 Floyd Curl, San Antonio, TX, 78229, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Steven Kornblau
- Department of Leukemia, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health, 8403 Floyd Curl, San Antonio, TX, 78229, USA.
| |
Collapse
|
109
|
Zhang H, Zhou B, Qin S, Xu J, Harding R, Tempel W, Nayak V, Li Y, Loppnau P, Dou Y, Min J. Structural and functional analysis of the DOT1L-AF10 complex reveals mechanistic insights into MLL-AF10-associated leukemogenesis. Genes Dev 2018; 32:341-346. [PMID: 29563185 PMCID: PMC5900708 DOI: 10.1101/gad.311639.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/01/2018] [Indexed: 11/24/2022]
Abstract
The mixed-lineage leukemia (MLL)-AF10 fusion oncoprotein recruits DOT1L to the homeobox A (HOXA) gene cluster through its octapeptide motif leucine zipper (OM-LZ), thereby inducing and maintaining the MLL-AF10-associated leukemogenesis. However, the recognition mechanism between DOT1L and MLL-AF10 is unclear. Here, we present the crystal structures of both apo AF10OM-LZ and its complex with the coiled-coil domain of DOT1L. Disruption of the DOT1L-AF10 interface abrogates MLL-AF10-associated leukemic transformation. We further show that zinc stabilizes the DOT1L-AF10 complex and may be involved in the regulation of the HOXA gene expression. Our studies may also pave the way for the rational design of therapeutic drugs against MLL-rearranged leukemia.
Collapse
Affiliation(s)
- Heng Zhang
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Bo Zhou
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Su Qin
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Life Science Research Center, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Xu
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Rachel Harding
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Vinod Nayak
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
110
|
Maes T, Mascaró C, Tirapu I, Estiarte A, Ciceri F, Lunardi S, Guibourt N, Perdones A, Lufino MMP, Somervaille TCP, Wiseman DH, Duy C, Melnick A, Willekens C, Ortega A, Martinell M, Valls N, Kurz G, Fyfe M, Castro-Palomino JC, Buesa C. ORY-1001, a Potent and Selective Covalent KDM1A Inhibitor, for the Treatment of Acute Leukemia. Cancer Cell 2018; 33:495-511.e12. [PMID: 29502954 DOI: 10.1016/j.ccell.2018.02.002] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/17/2017] [Accepted: 02/01/2018] [Indexed: 01/02/2023]
Abstract
The lysine-specific demethylase KDM1A is a key regulator of stem cell potential in acute myeloid leukemia (AML). ORY-1001 is a highly potent and selective KDM1A inhibitor that induces H3K4me2 accumulation on KDM1A target genes, blast differentiation, and reduction of leukemic stem cell capacity in AML. ORY-1001 exhibits potent synergy with standard-of-care drugs and selective epigenetic inhibitors, reduces growth of an AML xenograft model, and extends survival in a mouse PDX (patient-derived xenograft) model of T cell acute leukemia. Surrogate pharmacodynamic biomarkers developed based on expression changes in leukemia cell lines were translated to samples from patients treated with ORY-1001. ORY-1001 is a selective KDM1A inhibitor in clinical trials and is currently being evaluated in patients with leukemia and solid tumors.
Collapse
Affiliation(s)
- Tamara Maes
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain.
| | - Cristina Mascaró
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Iñigo Tirapu
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Angels Estiarte
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Filippo Ciceri
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Serena Lunardi
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Nathalie Guibourt
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Alvaro Perdones
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Michele M P Lufino
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Dan H Wiseman
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Cihangir Duy
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, 10065 NY, USA
| | - Ari Melnick
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, 10065 NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, 10065 NY, USA
| | - Christophe Willekens
- Drug Development Department (DITEP) and Hematology Department, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Alberto Ortega
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Marc Martinell
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Nuria Valls
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Guido Kurz
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Matthew Fyfe
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | | | - Carlos Buesa
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| |
Collapse
|
111
|
Wood K, Tellier M, Murphy S. DOT1L and H3K79 Methylation in Transcription and Genomic Stability. Biomolecules 2018; 8:E11. [PMID: 29495487 PMCID: PMC5871980 DOI: 10.3390/biom8010011] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 01/08/2023] Open
Abstract
The organization of eukaryotic genomes into chromatin provides challenges for the cell to accomplish basic cellular functions, such as transcription, DNA replication and repair of DNA damage. Accordingly, a range of proteins modify and/or read chromatin states to regulate access to chromosomal DNA. Yeast Dot1 and the mammalian homologue DOT1L are methyltransferases that can add up to three methyl groups to histone H3 lysine 79 (H3K79). H3K79 methylation is implicated in several processes, including transcription elongation by RNA polymerase II, the DNA damage response and cell cycle checkpoint activation. DOT1L is also an important drug target for treatment of mixed lineage leukemia (MLL)-rearranged leukemia where aberrant transcriptional activation is promoted by DOT1L mislocalisation. This review summarizes what is currently known about the role of Dot1/DOT1L and H3K79 methylation in transcription and genomic stability.
Collapse
Affiliation(s)
- Katherine Wood
- Department of Biochemistry, University of Oxford, Oxford OX1 3RE, UK.
- School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK.
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
112
|
WDR5 high expression and its effect on tumorigenesis in leukemia. Oncotarget 2018; 7:37740-37754. [PMID: 27192115 PMCID: PMC5122345 DOI: 10.18632/oncotarget.9312] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/27/2016] [Indexed: 01/21/2023] Open
Abstract
WD repeat domain 5 (WDR5) plays an important role in various biological functions through the epigenetic regulation of gene transcription. However, the oncogenic effect of WDR5 in leukemia remains largely unknown. Here, we found WDR5 expression is increased in leukemia patients. High expression of WDR5 is associated with high risk leukemia; Patients with WDR5 and MLL1 high expression have poor complete remission rate. We further identified the global genomic binding of WDR5 in leukemic cells and found the genomic co-localization of WDR5 binding with H3K4me3 enrichment. Moreover, WDR5 knockdown by shRNA suppresses cell proliferation, induces apoptosis, inhibits the expression of WDR5 targets, and blocks the H3K4me3 enrichment on the promoter of its targets. We also observed the positive correlation of WDR5 expression with these targets in the cohort study of leukemia patients. Our data reveal that WDR5 may have oncogenic effect and WDR5-mediated H3K4 methylation plays an important role in leukemogenesis.
Collapse
|
113
|
Differential regulation of the c-Myc/Lin28 axis discriminates subclasses of rearranged MLL leukemia. Oncotarget 2018; 7:25208-23. [PMID: 27007052 PMCID: PMC5041898 DOI: 10.18632/oncotarget.8199] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/14/2016] [Indexed: 12/25/2022] Open
Abstract
MLL rearrangements occur in myeloid and lymphoid leukemias and are generally associated with a poor prognosis, however this varies depending on the fusion partner. We modeled acute myeloid leukemia (AML) in mice using various MLL fusion proteins (MLL-FPs) and observed significantly different survival outcomes. To better understand the differences between these leukemias, we examined the genome wide expression profiles of leukemic cells transformed with different MLL-FPs. RNA-sequencing and pathway analysis identified the c-Myc transcriptional program as one of the top distinguishing features. c-Myc protein levels were highly correlative with AML disease latency in mice. Functionally, overexpression of c-Myc resulted in a more aggressive proliferation rate in MLL-FP cell lines. While all MLL-FP transformed cells displayed sensitivity to BET inhibitors, high c-Myc expressing cells showed greater resistance to Brd4 inhibition. The Myc target Lin28B was also differentially expressed in MLL-FP cell lines in agreement with c-Myc expression. Examination of Lin28B miRNAs targets revealed that let-7g was significantly increased in leukemic cells associated with the longest disease latency and forced let-7g expression induced differentiation of leukemic blasts. Thus, differential regulation of the c-Myc/Lin28/let-7g program by different MLL-FPs is functionally related to disease latency and BET inhibitor resistance in MLL leukemias.
Collapse
|
114
|
Carretta M, Brouwers-Vos AZ, Bosman M, Horton SJ, Martens JHA, Vellenga E, Schuringa JJ. BRD3/4 inhibition and FLT3-ligand deprivation target pathways that are essential for the survival of human MLL-AF9+ leukemic cells. PLoS One 2017; 12:e0189102. [PMID: 29240787 PMCID: PMC5730124 DOI: 10.1371/journal.pone.0189102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/13/2017] [Indexed: 01/15/2023] Open
Abstract
In the present work we aimed to identify targetable signaling networks in human MLL-AF9 leukemias. We show that MLL-AF9 cells critically depend on FLT3-ligand induced pathways as well as on BRD3/4 for their survival. We evaluated the in vitro and in vivo efficacy of the BRD3/4 inhibitor I-BET151 in various human MLL-AF9 (primary) models and patient samples and analyzed the transcriptome changes following treatment. To further understand the mode of action of BRD3/4 inhibition, we performed ChIP-seq experiments on the MLL-AF9 complex in THP1 cells and compared it to RNA-seq data of I-BET151 treated cells. While we could confirm a consistent and specific downregulation of key-oncogenic drivers such as MYC and BCL2, we found that the majority of I-BET151-responsive genes were not direct MLL-AF9 targets. In fact, MLL-AF9 specific targets such as the HOXA cluster, MEIS1 and other cell cycle regulators such as CDK6 were not affected by I-BET151 treatment. Furthermore, we also highlight how MLL-AF9 transformed cells are dependent on the function of non-mutated hematopoietic transcription factors and tyrosine kinases such as the FLT3-TAK1/NF-kB pathway, again impacting on BCL2 but not on the HOXA cluster. We conclude that BRD3/4 and the FLT3-TAK1/NF-kB pathways collectively control a set of targets that are critically important for the survival of human MLL-AF9 cells.
Collapse
Affiliation(s)
- Marco Carretta
- Department of Experimental Hematology, Cancer Research Center Groningen (CRCG), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Annet Z. Brouwers-Vos
- Department of Experimental Hematology, Cancer Research Center Groningen (CRCG), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Matthieu Bosman
- Department of Experimental Hematology, Cancer Research Center Groningen (CRCG), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sarah J. Horton
- Department of Experimental Hematology, Cancer Research Center Groningen (CRCG), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Joost H. A. Martens
- Department of Molecular Biology, Faculty of Science and Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Edo Vellenga
- Department of Experimental Hematology, Cancer Research Center Groningen (CRCG), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, Cancer Research Center Groningen (CRCG), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
115
|
The interaction of ENL with PAF1 mitigates polycomb silencing and facilitates murine leukemogenesis. Blood 2017; 131:662-673. [PMID: 29217648 DOI: 10.1182/blood-2017-11-815035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
Eleven-nineteen leukemia (ENL) is a chromatin reader present in complexes stimulating transcriptional elongation. It is fused to mixed-lineage leukemia (MLL) in leukemia, and missense mutations have been identified in Wilms tumor and acute myeloid leukemia. Here we demonstrate that ENL overcomes polycomb silencing through recruitment of PAF1 via the conserved YEATS domain, which recognizes acetylated histone H3. PAF1 was responsible for antirepressive activities of ENL in vitro, and it determined the transforming potential of MLL-ENL. MLL-ENL target loci showed supraphysiological PAF1 binding, hyperubiquitination of histone H2B and hypomodification with H2AUb, resulting in accelerated transcription rates. YEATS mutations induced a gain of function, transforming primary hematopoietic cells in vitro and in transplantation assays through aberrant transcription and H2B ubiquitination of Hoxa9 and Meis1 Mechanistically, H3 and PAF1 competed for ENL interaction, with activating mutations favoring PAF1 binding, whereas the MLL moiety provided a constitutive PAF1 tether allowing MLL fusions to circumvent H3 competition.
Collapse
|
116
|
Kerry J, Godfrey L, Repapi E, Tapia M, Blackledge NP, Ma H, Ballabio E, O'Byrne S, Ponthan F, Heidenreich O, Roy A, Roberts I, Konopleva M, Klose RJ, Geng H, Milne TA. MLL-AF4 Spreading Identifies Binding Sites that Are Distinct from Super-Enhancers and that Govern Sensitivity to DOT1L Inhibition in Leukemia. Cell Rep 2017; 18:482-495. [PMID: 28076791 PMCID: PMC5263239 DOI: 10.1016/j.celrep.2016.12.054] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/31/2016] [Accepted: 12/16/2016] [Indexed: 01/16/2023] Open
Abstract
Understanding the underlying molecular mechanisms of defined cancers is crucial for effective personalized therapies. Translocations of the mixed-lineage leukemia (MLL) gene produce fusion proteins such as MLL-AF4 that disrupt epigenetic pathways and cause poor-prognosis leukemias. Here, we find that at a subset of gene targets, MLL-AF4 binding spreads into the gene body and is associated with the spreading of Menin binding, increased transcription, increased H3K79 methylation (H3K79me2/3), a disruption of normal H3K36me3 patterns, and unmethylated CpG regions in the gene body. Compared to other H3K79me2/3 marked genes, MLL-AF4 spreading gene expression is downregulated by inhibitors of the H3K79 methyltransferase DOT1L. This sensitivity mediates synergistic interactions with additional targeted drug treatments. Therefore, epigenetic spreading and enhanced susceptibility to epidrugs provides a potential marker for better understanding combination therapies in humans. MLL-AF4 binding requires an unmethylated CpG (uCpG) island and Menin MLL-AF4 and Menin can spread into the gene body of some targets Spreading targets are highly transcribed and have an aberrant chromatin signature Spreading of MLL-AF4 is a predictor of sensitivity to DOT1L inhibitors
Collapse
Affiliation(s)
- Jon Kerry
- MRC, Molecular Haematology Unit, NIHR Oxford Biomedical Research Centre Programme, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Laura Godfrey
- MRC, Molecular Haematology Unit, NIHR Oxford Biomedical Research Centre Programme, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Emmanouela Repapi
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Marta Tapia
- MRC, Molecular Haematology Unit, NIHR Oxford Biomedical Research Centre Programme, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Neil P Blackledge
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Helen Ma
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erica Ballabio
- MRC, Molecular Haematology Unit, NIHR Oxford Biomedical Research Centre Programme, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Sorcha O'Byrne
- Department of Paediatrics, University of Oxford, Children's Hospital, John Radcliffe, Oxford OX3 9DU, UK
| | - Frida Ponthan
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Anindita Roy
- Department of Paediatrics, University of Oxford, Children's Hospital, John Radcliffe, Oxford OX3 9DU, UK
| | - Irene Roberts
- MRC, Molecular Haematology Unit, NIHR Oxford Biomedical Research Centre Programme, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Department of Paediatrics, University of Oxford, Children's Hospital, John Radcliffe, Oxford OX3 9DU, UK
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert J Klose
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Thomas A Milne
- MRC, Molecular Haematology Unit, NIHR Oxford Biomedical Research Centre Programme, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
117
|
Gates LA, Foulds CE, O'Malley BW. Histone Marks in the 'Driver's Seat': Functional Roles in Steering the Transcription Cycle. Trends Biochem Sci 2017; 42:977-989. [PMID: 29122461 DOI: 10.1016/j.tibs.2017.10.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/16/2017] [Indexed: 12/27/2022]
Abstract
Particular chromatin modifications are associated with different states of gene transcription, yet our understanding of which modifications are causal 'drivers' in promoting transcription is incomplete. Here, we discuss new developments describing the ordered, mechanistic role of select histone marks occurring during distinct steps in the RNA polymerase II (Pol II) transcription cycle. In particular, we highlight the interplay between histone marks in specifying the 'next step' of transcription. While many studies have described correlative relationships between histone marks and their occupancy at distinct gene regions, we focus on studies that elucidate clear functional consequences of specific histone marks during different stages of transcription. These recent discoveries have refined our current mechanistic understanding of how histone marks promote Pol II transcriptional progression.
Collapse
Affiliation(s)
- Leah A Gates
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Current address: Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
118
|
Krivtsov AV, Hoshii T, Armstrong SA. Mixed-Lineage Leukemia Fusions and Chromatin in Leukemia. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026658. [PMID: 28242784 DOI: 10.1101/cshperspect.a026658] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent studies have shown the importance of chromatin-modifying complexes in the maintenance of developmental gene expression and human disease. The mixed lineage leukemia gene (MLL1) encodes a chromatin-modifying protein and was discovered as a result of the cloning of translocations involved in human leukemias. MLL1 is a histone lysine 4 (H3K4) methyltransferase that supports transcription of genes that are important for normal development including homeotic (Hox) genes. MLL1 rearrangements result in expression of fusion proteins without H3K4 methylation activity but may gain the ability to recruit other chromatin-associated complexes such as the H3K79 methyltransferase DOT1L and the super elongation complex. Therefore, chromosomal translocations involving MLL1 appear to directly perturb the regulation of multiple chromatin-associated complexes to allow inappropriate expression of developmentally regulated genes and thus drive leukemia development.
Collapse
Affiliation(s)
- Andrei V Krivtsov
- Department of Pediatric Oncology, Dana Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02215
| | - Takayuki Hoshii
- Department of Pediatric Oncology, Dana Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02215
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02215
| |
Collapse
|
119
|
Evolution of AF6-RAS association and its implications in mixed-lineage leukemia. Nat Commun 2017; 8:1099. [PMID: 29062045 PMCID: PMC5653649 DOI: 10.1038/s41467-017-01326-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/09/2017] [Indexed: 12/31/2022] Open
Abstract
Elucidation of activation mechanisms governing protein fusions is essential for therapeutic development. MLL undergoes rearrangement with numerous partners, including a recurrent translocation fusing the epigenetic regulator to a cytoplasmic RAS effector, AF6/afadin. We show here that AF6 employs a non-canonical, evolutionarily conserved α-helix to bind RAS, unique to AF6 and the classical RASSF effectors. Further, all patients with MLL-AF6 translocations express fusion proteins missing only this helix from AF6, resulting in exposure of hydrophobic residues that induce dimerization. We provide evidence that oligomerization is the dominant mechanism driving oncogenesis from rare MLL translocation partners and employ our mechanistic understanding of MLL-AF6 to examine how dimers induce leukemia. Proteomic data resolve association of dimerized MLL with gene expression modulators, and inhibiting dimerization disrupts formation of these complexes while completely abrogating leukemogenesis in mice. Oncogenic gene translocations are thus selected under pressure from protein structure/function, underscoring the complex nature of chromosomal rearrangements. Several rearrangements of the MLL gene are associated with acute leukemia, including the fusion of MLL with a RAS effector protein, AF6. Here the authors show that the truncated AF6 can induce AF6-MLL dimerization and drive its oncogenic activity.
Collapse
|
120
|
Abstract
PURPOSE OF REVIEW HOXA9 is a homeodomain transcription factor that plays an essential role in normal hematopoiesis and acute leukemia, in which its overexpression is strongly correlated with poor prognosis. The present review highlights recent advances in the understanding of genetic alterations leading to deregulation of HOXA9 and the downstream mechanisms of HOXA9-mediated transformation. RECENT FINDINGS A variety of genetic alterations including MLL translocations, NUP98-fusions, NPM1 mutations, CDX deregulation, and MOZ-fusions lead to high-level HOXA9 expression in acute leukemias. The mechanisms resulting in HOXA9 overexpression are beginning to be defined and represent attractive therapeutic targets. Small molecules targeting MLL-fusion protein complex members, such as DOT1L and menin, have shown promising results in animal models, and a DOT1L inhibitor is currently being tested in clinical trials. Essential HOXA9 cofactors and collaborators are also being identified, including transcription factors PU.1 and C/EBPα, which are required for HOXA9-driven leukemia. HOXA9 targets including IGF1, CDX4, INK4A/INK4B/ARF, mir-21, and mir-196b and many others provide another avenue for potential drug development. SUMMARY HOXA9 deregulation underlies a large subset of aggressive acute leukemias. Understanding the mechanisms regulating the expression and activity of HOXA9, along with its critical downstream targets, shows promise for the development of more selective and effective leukemia therapies.
Collapse
|
121
|
Franco LC, Morales F, Boffo S, Giordano A. CDK9: A key player in cancer and other diseases. J Cell Biochem 2017; 119:1273-1284. [PMID: 28722178 DOI: 10.1002/jcb.26293] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023]
Abstract
Cyclin-Dependent Kinase 9 (CDK9) is part of a functional diverse group of enzymes responsible for cell cycle control and progression. It associates mainly with Cyclin T1 and forms the Positive Transcription Elongation Factor b (p-TEFb) complex responsible for regulation of transcription elongation and mRNA maturation. Recent studies have highlighted the importance of CDK9 in many relevant pathologic processes, like cancer, cardiovascular diseases, and viral replication. Herein we provide an overview of the different pathways in which CDK9 is directly and indirectly involved.
Collapse
Affiliation(s)
- Lia Carolina Franco
- Escuela de Medicina, Universidad de las Americas (UDLA), Quito, Ecuador.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, College of Science and Technology, Temple University, PA, Pennsylvania
| | - Fátima Morales
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, College of Science and Technology, Temple University, PA, Pennsylvania.,Departamento de Química Orgánica, Universidad de Murcia, Murcia, Spain
| | - Silvia Boffo
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, College of Science and Technology, Temple University, PA, Pennsylvania
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, College of Science and Technology, Temple University, PA, Pennsylvania.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
122
|
AFF1 and AFF4 differentially regulate the osteogenic differentiation of human MSCs. Bone Res 2017; 5:17044. [PMID: 28955517 PMCID: PMC5613922 DOI: 10.1038/boneres.2017.44] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/18/2017] [Accepted: 06/18/2017] [Indexed: 02/05/2023] Open
Abstract
AFF1 and AFF4 belong to the AFF (AF4/FMR2) family of proteins, which function as scaffolding proteins linking two different transcription elongation factors, positive elongation factor b (P-TEFb) and ELL1/2, in super elongation complexes (SECs). Both AFF1 and AFF4 regulate gene transcription through elongation and chromatin remodeling. However, their function in the osteogenic differentiation of mesenchymal stem cells (MSCs) is unknown. In this study, we show that small interfering RNA (siRNA)-mediated depletion of AFF1 in human MSCs leads to increased alkaline phosphatase (ALP) activity, enhanced mineralization and upregulated expression of osteogenic-related genes. On the contrary, depletion of AFF4 significantly inhibits the osteogenic potential of MSCs. In addition, we confirm that overexpression of AFF1 and AFF4 differentially affects osteogenic differentiation in vitro and MSC-mediated bone formation in vivo. Mechanistically, we find that AFF1 regulates the expression of DKK1 via binding to its promoter region. Depletion of DKK1 in HA-AFF1-overexpressing MSCs abrogates the impairment of osteogenic differentiation. Moreover, we detect that AFF4 is enriched in the promoter region of ID1. AFF4 knockdown blunts the BRE luciferase activity, SP7 expression and ALP activity induced by BMP2 treatment. In conclusion, our data indicate that AFF1 and AFF4 differentially regulate the osteogenic differentiation of human MSCs.
Collapse
|
123
|
Chang AYF, Liao BY. Recruitment of histone modifications to assist mRNA dosage maintenance after degeneration of cytosine DNA methylation during animal evolution. Genome Res 2017; 27:1513-1524. [PMID: 28720579 PMCID: PMC5580711 DOI: 10.1101/gr.221739.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/05/2017] [Indexed: 12/24/2022]
Abstract
Following gene duplication, mRNA expression of the duplicated gene is reduced to maintain mRNA dosage. In mammals, this process is achieved with increased cytosine DNA methylation of the promoters of duplicated genes to suppress transcriptional initiation. However, not all animal species possess a full apparatus for cytosine DNA methylation. For such species, such as the roundworm (Caenorhabditis elegans, "worm" hereafter) or fruit fly (Drosophila melanogaster, "fly" hereafter), it is unclear how reduced expression of duplicated genes has been achieved evolutionarily. Here, we hypothesize that in the absence of a classical cytosine DNA methylation pathway, histone modifications play an increasing role in maintaining mRNA dosage following gene duplication. We initially verified that reduced gene expression of duplicated genes had occurred in the worm, fly, and mouse (Mus musculus). Next, several histone marks, with the capacity to control mRNA abundance in the models studied, were examined. In the worm and fly, but not in the mouse, multiple histone modifications were found to assist mRNA dosage maintenance following gene duplication events and the possible involvement of adenine DNA methylation in this process was excluded. Furthermore, the histone marks and acting regions that mediated the reduction in duplicated gene expression were found to be largely organism specific. Thus, it appears that many of the histone marks that maintain mRNA dosage were independently recruited during the evolution of worms and flies to compensate for the loss of cytosine DNA methylation machinery from their genomes.
Collapse
Affiliation(s)
- Andrew Ying-Fei Chang
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan, Republic of China
| | - Ben-Yang Liao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan, Republic of China
| |
Collapse
|
124
|
Upregulation of CD11b and CD86 through LSD1 inhibition promotes myeloid differentiation and suppresses cell proliferation in human monocytic leukemia cells. Oncotarget 2017; 8:85085-85101. [PMID: 29156705 PMCID: PMC5689595 DOI: 10.18632/oncotarget.18564] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 06/02/2017] [Indexed: 12/11/2022] Open
Abstract
LSD1 (Lysine Specific Demethylase1)/KDM1A (Lysine Demethylase 1A), a flavin adenine dinucleotide (FAD)-dependent histone H3K4/K9 demethylase, sustains oncogenic potential of leukemia stem cells in primary human leukemia cells. However, the pro-differentiation and anti-proliferation effects of LSD1 inhibition in acute myeloid leukemia (AML) are not yet fully understood. Here, we report that small hairpin RNA (shRNA) mediated LSD1 inhibition causes a remarkable transcriptional activation of myeloid lineage marker genes (CD11b/ITGAM and CD86), reduction of cell proliferation and decrease of clonogenic ability of human AML cells. Cell surface expression of CD11b and CD86 is significantly and dynamically increased in human AML cells upon sustained LSD1 inhibition. Chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR) analyses of histone marks revealed that there is a specific increase of H3K4me2 modification and an accompanied increase of H3K4me3 modification at the respective CD11b and CD86 promoter region, whereas the global H3K4me2 level remains constant. Consistently, inhibition of LSD1 in vivo significantly blocks tumor growth and induces a prominent increase of CD11b and CD86. Taken together, our results demonstrate the anti-tumor properties of LSD1 inhibition on human AML cell line and mouse xenograft model. Our findings provide mechanistic insights into the LSD1 functions in controlling both differentiation and proliferation in AML.
Collapse
|
125
|
Abstract
Osteoarthritis is the most prevalent and crippling joint disease, and lacks curative treatment, as the underlying molecular basis is unclear. Here, we show that DOT1L, an enzyme involved in histone methylation, is a master protector of cartilage health. Loss of DOT1L disrupts the molecular signature of healthy chondrocytes in vitro and causes osteoarthritis in mice. Mechanistically, the protective function of DOT1L is attributable to inhibition of Wnt signalling, a pathway that when hyper-activated can lead to joint disease. Unexpectedly, DOT1L suppresses Wnt signalling by inhibiting the activity of sirtuin-1 (SIRT1), an important regulator of gene transcription. Inhibition of SIRT1 protects against osteoarthritis triggered by loss of DOT1L activity. Modulating the DOT1L network might therefore be a therapeutic approach to protect the cartilage against osteoarthritis.
Collapse
|
126
|
Yang H, Basquin D, Pauli D, Oliver B. Drosophila melanogaster positive transcriptional elongation factors regulate metabolic and sex-biased expression in adults. BMC Genomics 2017; 18:384. [PMID: 28521739 PMCID: PMC5436443 DOI: 10.1186/s12864-017-3755-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/03/2017] [Indexed: 11/22/2022] Open
Abstract
Background Transcriptional elongation is a generic function, but is also regulated to allow rapid transcription responses. Following relatively long initiation and promoter clearance, RNA polymerase II can pause and then rapidly elongate following recruitment of positive elongation factors. Multiple elongation complexes exist, but the role of specific components in adult Drosophila is underexplored. Results We conducted RNA-seq experiments to analyze the effect of RNAi knockdown of Suppressor of Triplolethal and lilliputian. We similarly analyzed the effect of expressing a dominant negative Cyclin-dependent kinase 9 allele. We observed that almost half of the genes expressed in adults showed reduced expression, supporting a broad role for the three tested genes in steady-state transcript abundance. Expression profiles following lilliputian and Suppressor of Triplolethal RNAi were nearly identical raising the possibility that they are obligatory co-factors. Genes showing reduced expression due to these RNAi treatments were short and enriched for genes encoding metabolic or enzymatic functions. The dominant-negative Cyclin-dependent kinase 9 profiles showed both overlapping and specific differential expression, suggesting involvement in multiple complexes. We also observed hundreds of genes with sex-biased differential expression following treatment. Conclusion Transcriptional profiles suggest that Lilliputian and Suppressor of Triplolethal are obligatory cofactors in the adult and that they can also function with Cyclin-dependent kinase 9 at a subset of loci. Our results suggest that transcriptional elongation control is especially important for rapidly expressed genes to support digestion and metabolism, many of which have sex-biased function. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3755-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haiwang Yang
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD, 20892, USA.
| | - Denis Basquin
- Department of Genetics & Evolution, Sciences III, University of Geneva, Boulevard d'Yvoy 4, CH 1205, Geneva, Switzerland
| | - Daniel Pauli
- Department of Genetics & Evolution, Sciences III, University of Geneva, Boulevard d'Yvoy 4, CH 1205, Geneva, Switzerland
| | - Brian Oliver
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
127
|
Hyun K, Jeon J, Park K, Kim J. Writing, erasing and reading histone lysine methylations. Exp Mol Med 2017; 49:e324. [PMID: 28450737 PMCID: PMC6130214 DOI: 10.1038/emm.2017.11] [Citation(s) in RCA: 801] [Impact Index Per Article: 100.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 02/08/2023] Open
Abstract
Histone modifications are key epigenetic regulatory features that have important roles in many cellular events. Lysine methylations mark various sites on the tail and globular domains of histones and their levels are precisely balanced by the action of methyltransferases ('writers') and demethylases ('erasers'). In addition, distinct effector proteins ('readers') recognize specific methyl-lysines in a manner that depends on the neighboring amino-acid sequence and methylation state. Misregulation of histone lysine methylation has been implicated in several cancers and developmental defects. Therefore, histone lysine methylation has been considered a potential therapeutic target, and clinical trials of several inhibitors of this process have shown promising results. A more detailed understanding of histone lysine methylation is necessary for elucidating complex biological processes and, ultimately, for developing and improving disease treatments. This review summarizes enzymes responsible for histone lysine methylation and demethylation and how histone lysine methylation contributes to various biological processes.
Collapse
Affiliation(s)
- Kwangbeom Hyun
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jongcheol Jeon
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kihyun Park
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jaehoon Kim
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
128
|
Okuda H, Stanojevic B, Kanai A, Kawamura T, Takahashi S, Matsui H, Takaori-Kondo A, Yokoyama A. Cooperative gene activation by AF4 and DOT1L drives MLL-rearranged leukemia. J Clin Invest 2017; 127:1918-1931. [PMID: 28394257 DOI: 10.1172/jci91406] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/16/2017] [Indexed: 11/17/2022] Open
Abstract
The eleven-nineteen leukemia (ENL) protein family, composed of ENL and AF9, is a common component of 3 transcriptional modulators: AF4-ENL-P-TEFb complex (AEP), DOT1L-AF10-ENL complex (referred to as the DOT1L complex) and polycomb-repressive complex 1 (PRC1). Each complex associates with chromatin via distinct mechanisms, conferring different transcriptional properties including activation, maintenance, and repression. The mixed-lineage leukemia (MLL) gene often fuses with ENL and AF10 family genes in leukemia. However, the functional interrelationship among those 3 complexes in leukemic transformation remains largely elusive. Here, we have shown that MLL-ENL and MLL-AF10 constitutively activate transcription by aberrantly inducing both AEP-dependent transcriptional activation and DOT1L-dependent transcriptional maintenance, mostly in the absence of PRC1, to fully transform hematopoietic progenitors. These results reveal a cooperative transcriptional activation mechanism of AEP and DOT1L and suggest a molecular rationale for the simultaneous inhibition of the MLL fusion-AF4 complex and DOT1L for more effective treatment of MLL-rearranged leukemia.
Collapse
|
129
|
Abstract
![]()
Post-translational
modifications of histones by protein methyltransferases
(PMTs) and histone demethylases (KDMs) play an important role in the
regulation of gene expression and transcription and are implicated
in cancer and many other diseases. Many of these enzymes also target
various nonhistone proteins impacting numerous crucial biological
pathways. Given their key biological functions and implications in
human diseases, there has been a growing interest in assessing these
enzymes as potential therapeutic targets. Consequently, discovering
and developing inhibitors of these enzymes has become a very active
and fast-growing research area over the past decade. In this review,
we cover the discovery, characterization, and biological application
of inhibitors of PMTs and KDMs with emphasis on key advancements in
the field. We also discuss challenges, opportunities, and future directions
in this emerging, exciting research field.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Michael L Martini
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Jian Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| |
Collapse
|
130
|
Meeks JJ, Shilatifard A. Multiple Roles for the MLL/COMPASS Family in the Epigenetic Regulation of Gene Expression and in Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2017. [DOI: 10.1146/annurev-cancerbio-050216-034333] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joshua J. Meeks
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
131
|
Transcription control by the ENL YEATS domain in acute leukaemia. Nature 2017; 543:270-274. [PMID: 28241139 PMCID: PMC5497220 DOI: 10.1038/nature21688] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 02/03/2017] [Indexed: 01/03/2023]
Abstract
Recurrent chromosomal translocations involving the mixed lineage leukemia gene (MLL) give rise to a highly aggressive acute leukemia associated with poor clinical outcome1. The preferential involvement of chromatin-associated factors in MLL rearrangement belies a dependency on transcription control2. Despite recent progress made in targeting chromatin regulators in cancer3, available therapies for this well-characterized disease remain inadequate, prompting the present effort to qualify new targets for therapeutic intervention. Using unbiased, emerging CRISPR-Cas9 technology to perform a genome-scale loss-of-function screen in MLL-AF4-positive acute leukemia, we identified ENL (eleven-nineteen leukemia) as an unrecognized dependency particularly indispensable for proliferation in vitro and in vivo. To explain the mechanistic role for ENL in leukemia pathogenesis and dynamic transcription control, we pursued a chemical genetic strategy utilizing targeted protein degradation. Acute ENL loss suppresses transcription initiation and elongation genome-wide, with pronounced effects at genes featuring disproportionate ENL load. Importantly, ENL-dependent leukemic growth was contingent upon an intact YEATS chromatin reader domain. These findings reveal a novel dependency in acute leukemia and a first mechanistic rational for disrupting the YEATS domain in disease.
Collapse
|
132
|
Preclinical Pharmacokinetics and Pharmacodynamics of Pinometostat (EPZ-5676), a First-in-Class, Small Molecule S-Adenosyl Methionine Competitive Inhibitor of DOT1L. Eur J Drug Metab Pharmacokinet 2017; 42:891-901. [DOI: 10.1007/s13318-017-0404-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
133
|
Abstract
Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.
Collapse
Affiliation(s)
- Tan Boon Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jhin Jieh Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Medicine, National University of Singapore, 14 Medical Drive #12-01, Singapore, 117599 Singapore
| |
Collapse
|
134
|
MLL-AF9 and MLL-AF4 oncofusion proteins bind a distinct enhancer repertoire and target the RUNX1 program in 11q23 acute myeloid leukemia. Oncogene 2017; 36:3346-3356. [PMID: 28114278 PMCID: PMC5474565 DOI: 10.1038/onc.2016.488] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 11/14/2016] [Accepted: 11/22/2016] [Indexed: 12/27/2022]
Abstract
In 11q23 leukemias, the N-terminal part of the mixed lineage leukemia (MLL) gene is fused to >60 different partner genes. In order to define a core set of MLL rearranged targets, we investigated the genome-wide binding of the MLL-AF9 and MLL-AF4 fusion proteins and associated epigenetic signatures in acute myeloid leukemia (AML) cell lines THP-1 and MV4-11. We uncovered both common as well as specific MLL-AF9 and MLL-AF4 target genes, which were all marked by H3K79me2, H3K27ac and H3K4me3. Apart from promoter binding, we also identified MLL-AF9 and MLL-AF4 binding at specific subsets of non-overlapping active distal regulatory elements. Despite this differential enhancer binding, MLL-AF9 and MLL-AF4 still direct a common gene program, which represents part of the RUNX1 gene program and constitutes of CD34+ and monocyte-specific genes. Comparing these data sets identified several zinc finger transcription factors (TFs) as potential MLL-AF9 co-regulators. Together, these results suggest that MLL fusions collaborate with specific subsets of TFs to deregulate the RUNX1 gene program in 11q23 AMLs.
Collapse
|
135
|
Winters AC, Bernt KM. MLL-Rearranged Leukemias-An Update on Science and Clinical Approaches. Front Pediatr 2017; 5:4. [PMID: 28232907 PMCID: PMC5299633 DOI: 10.3389/fped.2017.00004] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/09/2017] [Indexed: 12/18/2022] Open
Abstract
The mixed-lineage leukemia 1 (MLL1) gene (now renamed Lysine [K]-specific MethylTransferase 2A or KMT2A) on chromosome 11q23 is disrupted in a unique group of acute leukemias. More than 80 different partner genes in these fusions have been described, although the majority of leukemias result from MLL1 fusions with one of about six common partner genes. Approximately 10% of all leukemias harbor MLL1 translocations. Of these, two patient populations comprise the majority of cases: patients younger than 1 year of age at diagnosis (primarily acute lymphoblastic leukemias) and young- to-middle-aged adults (primarily acute myeloid leukemias). A much rarer subgroup of patients with MLL1 rearrangements develop leukemia that is attributable to prior treatment with certain chemotherapeutic agents-so-called therapy-related leukemias. In general, outcomes for all of these patients remain poor when compared to patients with non-MLL1 rearranged leukemias. In this review, we will discuss the normal biological roles of MLL1 and its fusion partners, how these roles are hypothesized to be dysregulated in the context of MLL1 rearrangements, and the clinical manifestations of this group of leukemias. We will go on to discuss the progress in clinical management and promising new avenues of research, which may lead to more effective targeted therapies for affected patients.
Collapse
Affiliation(s)
- Amanda C Winters
- Division of Pediatric Hematology/Oncology/BMT, University of Colorado School of Medicine and Children's Hospital Colorado , Aurora, CO , USA
| | - Kathrin M Bernt
- Division of Pediatric Hematology/Oncology/BMT, University of Colorado School of Medicine and Children's Hospital Colorado , Aurora, CO , USA
| |
Collapse
|
136
|
Connelly KE, Dykhuizen EC. Compositional and functional diversity of canonical PRC1 complexes in mammals. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:233-245. [PMID: 28007606 DOI: 10.1016/j.bbagrm.2016.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/17/2022]
Abstract
The compositional complexity of Polycomb Repressive Complex 1 (PRC1) increased dramatically during vertebrate evolution. What is considered the "canonical" PRC1 complex consists of four subunits originally identified as regulators of body segmentation in Drosophila. In mammals, each of these four canonical subunits consists of two to six paralogs that associate in a combinatorial manner to produce over a hundred possible distinct PRC1 complexes with unknown function. Genetic studies have begun to define the phenotypic roles for different PRC1 paralogs; however, relating these phenotypes to unique biochemical and transcriptional function for the different paralogs has been challenging. In this review, we attempt to address how the compositional diversity of canonical PRC1 complexes relates to unique roles for individual PRC1 paralogs in transcriptional regulation. This review focuses primarily on PRC1 complex composition, genome targeting, and biochemical function.
Collapse
Affiliation(s)
- Katelyn E Connelly
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907, USA.
| |
Collapse
|
137
|
Yokoyama A. Transcriptional activation by MLL fusion proteins in leukemogenesis. Exp Hematol 2016; 46:21-30. [PMID: 27865805 DOI: 10.1016/j.exphem.2016.10.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/14/2016] [Accepted: 10/29/2016] [Indexed: 12/16/2022]
Abstract
Chromosomal translocations involving the mixed lineage leukemia (MLL) gene cause aggressive leukemia. Fusion proteins of MLL and a component of the AF4 family/ENL family/P-TEFb complex (AEP) are responsible for two-thirds of MLL-associated leukemia cases. MLL-AEP fusion proteins trigger aberrant self-renewal of hematopoietic progenitors by constitutively activating self-renewal-related genes. MLL-AEP fusion proteins activate transcription initiation by loading the TATA-binding protein (TBP) to the TATA element via selectivity factor 1. Although AEP retains transcription elongation and mediator recruiting activities, the rate-limiting step activated by MLL-AEP fusion proteins appears to be the TBP-loading step. This is contrary to prevailing views, in which the recruitment of transcription elongation activities are emphasized. Here, I review recent advances towards elucidating the mechanisms underlying gene activation by MLL-AEP fusion proteins in leukemogenesis.
Collapse
Affiliation(s)
- Akihiko Yokoyama
- Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
138
|
Godfrey L, Kerry J, Thorne R, Repapi E, Davies JOJ, Tapia M, Ballabio E, Hughes JR, Geng H, Konopleva M, Milne TA. MLL-AF4 binds directly to a BCL-2 specific enhancer and modulates H3K27 acetylation. Exp Hematol 2016; 47:64-75. [PMID: 27856324 PMCID: PMC5333536 DOI: 10.1016/j.exphem.2016.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/21/2016] [Accepted: 11/02/2016] [Indexed: 11/15/2022]
Abstract
Survival rates for children and adults carrying mutations in the Mixed Lineage Leukemia (MLL) gene continue to have a very poor prognosis. The most common MLL mutation in acute lymphoblastic leukemia is the t(4;11)(q21;q23) chromosome translocation that fuses MLL in-frame with the AF4 gene producing MLL-AF4 and AF4-MLL fusion proteins. Previously, we found that MLL-AF4 binds to the BCL-2 gene and directly activates it through DOT1L recruitment and increased H3K79me2/3 levels. In the study described here, we performed a detailed analysis of MLL-AF4 regulation of the entire BCL-2 family. By measuring nascent RNA production in MLL-AF4 knockdowns, we found that of all the BCL-2 family genes, MLL-AF4 directly controls the active transcription of both BCL-2 and MCL-1 and also represses BIM via binding of the polycomb group repressor 1 (PRC1) complex component CBX8. We further analyzed MLL-AF4 activation of the BCL-2 gene using Capture-C and identified a BCL-2-specific enhancer, consisting of two clusters of H3K27Ac at the 3' end of the gene. Loss of MLL-AF4 activity results in a reduction of H3K79me3 levels in the gene body and H3K27Ac levels at the 3' BCL-2 enhancer, revealing a novel regulatory link between these two histone marks and MLL-AF4-mediated activation of BCL-2.
Collapse
Affiliation(s)
- Laura Godfrey
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Headington, Oxford, UK
| | - Jon Kerry
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Headington, Oxford, UK
| | - Ross Thorne
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Headington, Oxford, UK
| | - Emmanouela Repapi
- Weatherall Institute of Molecular Medicine, Computational Biology Research Group, University of Oxford, Headington, Oxford, UK
| | - James O J Davies
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Headington, Oxford, UK
| | - Marta Tapia
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Headington, Oxford, UK
| | - Erica Ballabio
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Headington, Oxford, UK
| | - Jim R Hughes
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Headington, Oxford, UK
| | - Huimin Geng
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Marina Konopleva
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Thomas A Milne
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Headington, Oxford, UK.
| |
Collapse
|
139
|
Poynter ST, Kadoch C. Polycomb and trithorax opposition in development and disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:659-688. [PMID: 27581385 DOI: 10.1002/wdev.244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/07/2016] [Accepted: 06/02/2016] [Indexed: 01/08/2023]
Abstract
Early discoveries in chromatin biology and epigenetics heralded new insights into organismal development. From these studies, two mediators of cellular differentiation were discovered: the Polycomb group (PcG) of transcriptional repressors, and the trithorax group (trxG) of transcriptional activators. These protein families, while opposed in function, work together to coordinate the appropriate cellular developmental programs that allow for both embryonic stem cell self-renewal and differentiation. Recently, both the PcG and trxG chromatin modulators have been observed to be deregulated in a wide spectrum diseases including developmental disorders and cancer. To understand the impact of these findings we outline the past, present, and future. WIREs Dev Biol 2016, 5:659-688. doi: 10.1002/wdev.244 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Steven T Poynter
- Chemical Biology Program, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
140
|
Okuda H, Takahashi S, Takaori-Kondo A, Yokoyama A. TBP loading by AF4 through SL1 is the major rate-limiting step in MLL fusion-dependent transcription. Cell Cycle 2016; 15:2712-22. [PMID: 27564129 DOI: 10.1080/15384101.2016.1222337] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Gene rearrangement of the mixed lineage leukemia (MLL) gene causes leukemia by inducing the constitutive expression of a gene subset normally expressed only in the immature haematopoietic progenitor cells. MLL gene rearrangements often generate fusion products of MLL and a component of the AF4 family/ENL family/P-TEFb (AEP) complex. MLL-AEP fusion proteins have the potential of constitutively recruiting the P-TEFb elongation complex. Thus, it is hypothesized that relieving the promoter proximal pausing of RNA polymerase II is the rate-limiting step of MLL fusion-dependent transcription. AEP also has the potential to recruit the mediator complex via MED26. We recently showed that AEP activates transcription initiation by facilitating TBP loading to the TATA element through the SL1 complex. In the present study, we show that the key activity responsible for the oncogenic property of MLL-AEP fusion proteins is the TBP loading activity, and not the mediator recruitment or transcriptional elongation activities. Thus, we propose that TBP loading by AF4 through SL1 is the major rate-limiting step in MLL fusion-dependent transcription.
Collapse
Affiliation(s)
- Hiroshi Okuda
- a Laboratory for Malignancy Control Research , Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Satoshi Takahashi
- b Department of Hematology and Oncology , Graduate School of Medicine , Kyoto , Japan
| | - Akifumi Takaori-Kondo
- b Department of Hematology and Oncology , Graduate School of Medicine , Kyoto , Japan
| | - Akihiko Yokoyama
- a Laboratory for Malignancy Control Research , Kyoto University Graduate School of Medicine , Kyoto , Japan.,b Department of Hematology and Oncology , Graduate School of Medicine , Kyoto , Japan
| |
Collapse
|
141
|
Charng WL, Karaca E, Coban Akdemir Z, Gambin T, Atik MM, Gu S, Posey JE, Jhangiani SN, Muzny DM, Doddapaneni H, Hu J, Boerwinkle E, Gibbs RA, Rosenfeld JA, Cui H, Xia F, Manickam K, Yang Y, Faqeih EA, Al Asmari A, Saleh MAM, El-Hattab AW, Lupski JR. Exome sequencing in mostly consanguineous Arab families with neurologic disease provides a high potential molecular diagnosis rate. BMC Med Genomics 2016; 9:42. [PMID: 27435318 PMCID: PMC4950750 DOI: 10.1186/s12920-016-0208-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurodevelopment is orchestrated by a wide range of genes, and the genetic causes of neurodevelopmental disorders are thus heterogeneous. We applied whole exome sequencing (WES) for molecular diagnosis and in silico analysis to identify novel disease gene candidates in a cohort from Saudi Arabia with primarily Mendelian neurologic diseases. METHODS We performed WES in 31 mostly consanguineous Arab families and analyzed both single nucleotide and copy number variants (CNVs) from WES data. Interaction/expression network and pathway analyses, as well as paralog studies were utilized to investigate potential pathogenicity and disease association of novel candidate genes. Additional cases for candidate genes were identified through the clinical WES database at Baylor Miraca Genetics Laboratories and GeneMatcher. RESULTS We found known pathogenic or novel variants in known disease genes with phenotypic expansion in 6 families, disease-associated CNVs in 2 families, and 12 novel disease gene candidates in 11 families, including KIF5B, GRM7, FOXP4, MLLT1, and KDM2B. Overall, a potential molecular diagnosis was provided by variants in known disease genes in 17 families (54.8 %) and by novel candidate disease genes in an additional 11 families, making the potential molecular diagnostic rate ~90 %. CONCLUSIONS Molecular diagnostic rate from WES is improved by exome-predicted CNVs. Novel candidate disease gene discovery is facilitated by paralog studies and through the use of informatics tools and available databases to identify additional evidence for pathogenicity. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Wu-Lin Charng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,The Baylor-Hopkins Center for Mendelian Genomics, Houston, TX, 77030, USA
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,The Baylor-Hopkins Center for Mendelian Genomics, Houston, TX, 77030, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,The Baylor-Hopkins Center for Mendelian Genomics, Houston, TX, 77030, USA
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,The Baylor-Hopkins Center for Mendelian Genomics, Houston, TX, 77030, USA
| | - Mehmed M Atik
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,The Baylor-Hopkins Center for Mendelian Genomics, Houston, TX, 77030, USA
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,The Baylor-Hopkins Center for Mendelian Genomics, Houston, TX, 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,The Baylor-Hopkins Center for Mendelian Genomics, Houston, TX, 77030, USA
| | - Shalini N Jhangiani
- The Baylor-Hopkins Center for Mendelian Genomics, Houston, TX, 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Donna M Muzny
- The Baylor-Hopkins Center for Mendelian Genomics, Houston, TX, 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Harsha Doddapaneni
- The Baylor-Hopkins Center for Mendelian Genomics, Houston, TX, 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jianhong Hu
- The Baylor-Hopkins Center for Mendelian Genomics, Houston, TX, 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Richard A Gibbs
- The Baylor-Hopkins Center for Mendelian Genomics, Houston, TX, 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Exome Laboratory, Baylor Miraca Genetics Laboratories, Houston, TX, 77030, USA
| | - Hong Cui
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Exome Laboratory, Baylor Miraca Genetics Laboratories, Houston, TX, 77030, USA
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Exome Laboratory, Baylor Miraca Genetics Laboratories, Houston, TX, 77030, USA
| | - Kandamurugu Manickam
- Division of Molecular and Human Genetics, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Exome Laboratory, Baylor Miraca Genetics Laboratories, Houston, TX, 77030, USA
| | - Eissa A Faqeih
- Section of Medical Genetics, Children's Hospital, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Ali Al Asmari
- Section of Medical Genetics, Children's Hospital, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed A M Saleh
- Section of Medical Genetics, Children's Hospital, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA. .,The Baylor-Hopkins Center for Mendelian Genomics, Houston, TX, 77030, USA. .,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Pediatrics, Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
142
|
Gilan O, Lam EYN, Becher I, Lugo D, Cannizzaro E, Joberty G, Ward A, Wiese M, Fong CY, Ftouni S, Tyler D, Stanley K, MacPherson L, Weng CF, Chan YC, Ghisi M, Smil D, Carpenter C, Brown P, Garton N, Blewitt ME, Bannister AJ, Kouzarides T, Huntly BJP, Johnstone RW, Drewes G, Dawson SJ, Arrowsmith CH, Grandi P, Prinjha RK, Dawson MA. Functional interdependence of BRD4 and DOT1L in MLL leukemia. Nat Struct Mol Biol 2016; 23:673-81. [PMID: 27294782 DOI: 10.1038/nsmb.3249] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/19/2016] [Indexed: 02/06/2023]
Abstract
Targeted therapies against disruptor of telomeric silencing 1-like (DOT1L) and bromodomain-containing protein 4 (BRD4) are currently being evaluated in clinical trials. However, the mechanisms by which BRD4 and DOT1L regulate leukemogenic transcription programs remain unclear. Using quantitative proteomics, chemoproteomics and biochemical fractionation, we found that native BRD4 and DOT1L exist in separate protein complexes. Genetic disruption or small-molecule inhibition of BRD4 and DOT1L showed marked synergistic activity against MLL leukemia cell lines, primary human leukemia cells and mouse leukemia models. Mechanistically, we found a previously unrecognized functional collaboration between DOT1L and BRD4 that is especially important at highly transcribed genes in proximity to superenhancers. DOT1L, via dimethylated histone H3 K79, facilitates histone H4 acetylation, which in turn regulates the binding of BRD4 to chromatin. These data provide new insights into the regulation of transcription and specify a molecular framework for therapeutic intervention in this disease with poor prognosis.
Collapse
MESH Headings
- Acetylation
- Animals
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Cell Cycle Proteins
- Cell Proliferation
- Chromatin/chemistry
- Chromatin/metabolism
- Clinical Trials as Topic
- Disease Models, Animal
- Female
- Gene Expression Regulation, Leukemic
- Histone-Lysine N-Methyltransferase
- Histones/genetics
- Histones/metabolism
- Humans
- Leukemia, Biphenotypic, Acute/genetics
- Leukemia, Biphenotypic, Acute/metabolism
- Leukemia, Biphenotypic, Acute/pathology
- Male
- Methyltransferases/antagonists & inhibitors
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Mice
- Mice, Inbred C57BL
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Primary Cell Culture
- Protein Binding
- Proteomics/methods
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Omer Gilan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Enid Y N Lam
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Isabelle Becher
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Heidelberg, Germany
| | - Dave Lugo
- Epinova DPU, Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline, Stevenage, UK
| | | | - Gerard Joberty
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Heidelberg, Germany
| | - Aoife Ward
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Heidelberg, Germany
| | - Meike Wiese
- The Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Chun Yew Fong
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Sarah Ftouni
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Dean Tyler
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kym Stanley
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Laura MacPherson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Chen-Fang Weng
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Yih-Chih Chan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Margherita Ghisi
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - David Smil
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | | | - Peter Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Neil Garton
- Epinova DPU, Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline, Stevenage, UK
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Tony Kouzarides
- The Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Brian J P Huntly
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
| | - Ricky W Johnstone
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Gerard Drewes
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Heidelberg, Germany
| | - Sarah-Jane Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Paola Grandi
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Heidelberg, Germany
| | - Rab K Prinjha
- Epinova DPU, Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline, Stevenage, UK
| | - Mark A Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
143
|
Luo M, Wang H, Zou Y, Zhang S, Xiao J, Jiang G, Zhang Y, Lai Y. Identification of phenoxyacetamide derivatives as novel DOT1L inhibitors via docking screening and molecular dynamics simulation. J Mol Graph Model 2016; 68:128-139. [PMID: 27434826 DOI: 10.1016/j.jmgm.2016.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
Abstract
Dot1-like protein (DOT1L) is a histone methyltransferase that has become a novel and promising target for acute leukemias bearing mixed lineage leukemia (MLL) gene rearrangements. In this study, a hierarchical docking-based virtual screening combined with molecular dynamic (MD) simulation was performed to identify DOT1L inhibitors with novel scaffolds. Consequently, 8 top-ranked hits were eventually identified and were further subjected to MD simulation. It was indicated that all hits could reach equilibrium with DOT1L in the MD simulation and further binding free energy calculations suggested that phenoxyacetamide-derived hits such as L01, L03, L04 and L05 exhibited remarkably higher binding affinity compared to other hits. Among them, L03 showed both the lowest glide score (-12.281) and the most favorable binding free energy (-303.9+/-16.5kJ/mol), thereby making it a promising lead for further optimization.
Collapse
Affiliation(s)
- Minghao Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Zou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Shengping Zhang
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1142, New Zealand
| | - Jianhu Xiao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Guangde Jiang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Yisheng Lai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
144
|
Song Y, Wu F, Wu J. Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives. J Hematol Oncol 2016; 9:49. [PMID: 27316347 PMCID: PMC4912745 DOI: 10.1186/s13045-016-0279-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022] Open
Abstract
Post-translational methylation of histone lysine or arginine residues plays important roles in gene regulation and other physiological processes. Aberrant histone methylation caused by a gene mutation, translocation, or overexpression can often lead to initiation of a disease such as cancer. Small molecule inhibitors of such histone modifying enzymes that correct the abnormal methylation could be used as novel therapeutics for these diseases, or as chemical probes for investigation of epigenetics. Discovery and development of histone methylation modulators are in an early stage and undergo a rapid expansion in the past few years. A number of highly potent and selective compounds have been reported, together with extensive preclinical studies of their biological activity. Several compounds have been in clinical trials for safety, pharmacokinetics, and efficacy, targeting several types of cancer. This review summarizes the biochemistry, structures, and biology of cancer-relevant histone methylation modifying enzymes, small molecule inhibitors and their preclinical and clinical antitumor activities. Perspectives for targeting histone methylation for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Yongcheng Song
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Dan L. Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Fangrui Wu
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jingyu Wu
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
145
|
Wang X, Chen CW, Armstrong SA. The role of DOT1L in the maintenance of leukemia gene expression. Curr Opin Genet Dev 2016; 36:68-72. [PMID: 27151433 DOI: 10.1016/j.gde.2016.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/31/2016] [Indexed: 12/15/2022]
Abstract
Chromatin based (Epigenetic) mechanisms have been shown to play important roles in the regulation of gene expression during tumorigenesis and development. Mouse modeling suggests the methyltransferase DOT1L as a potential therapeutic target for MLL-rearranged leukemia. Epigenomic profiling indicates an abnormal H3K79me2 pattern on MLL-fusion targeted genes, but the molecular mechanism underlying this epigenetic dependency is not well understood. In this review, we will discuss recent advances in understanding the epigenetic mechanisms governed by DOT1L in the maintenance of gene expression. We will highlight the structural basis of chromatin targeting of DOT1L through its cofactors and the role of DOT1L in repelling transcription repressive complexes during leukemia development.
Collapse
Affiliation(s)
- Xi Wang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Chun-Wei Chen
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott A Armstrong
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
146
|
Abstract
Polycomb group (PcG) repress, whereas Trithorax group (TrxG) activate transcription for tissue development and cellular proliferation, and misregulation of these factors is often associated with cancer. ENL (MLLT1) and AF9 (MLLT3) are fusion partners of Mixed Lineage Leukemia (MLL), TrxG proteins, and are factors in Super Elongation Complex (SEC). SEC controls transcriptional elongation to release RNA polymerase II, paused around transcription start site. In MLL rearranged leukemia, several components of SEC have been found as MLL-fusion partners and the control of transcriptional elongation is misregulated leading to tumorigenesis in MLL-SEC fused Leukemia. It has been suggested that unexpected collaboration of ENL/AF9-MLL and PcG are involved in tumorigenesis in leukemia. Recently, we found that the collaboration of ENL/AF9 and PcG led to a novel mechanism of transcriptional switch from elongation to repression under ATM-signaling for genome integrity. Activated ATM phosphorylates ENL/AF9 in SEC, and the phosphorylated ENL/AF9 binds BMI1 and RING1B, a heterodimeric E3-ubiquitin-ligase complex in Polycomb Repressive complex 1 (PRC1), and recruits PRC1 at transcriptional elongation sites to rapidly repress transcription. The ENL/AF9 in SEC- and PcG-mediated transcriptional repression promotes DSB repair near transcription sites. The implication of this is that the collaboration of ENL/AF9 in SEC and PcG ensures a rapid response of transcriptional switching from elongation to repression to neighboring genotoxic stresses for DSB repair. Therefore, these results suggested that the collaboration of ENL/AF9 and PcG in transcriptional control is required to maintain genome integrity and may be link to the MLL-ENL/AF9 leukemia.
Collapse
Affiliation(s)
- Ayako Ui
- Department of Translational Oncology, St. Marianna University, School of Medicine, Miyamae-Ku, Kawasaki, Japan
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Japan
| | - Akira Yasui
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Japan
| |
Collapse
|
147
|
Garcia-Cuellar MP, Büttner C, Bartenhagen C, Dugas M, Slany RK. Leukemogenic MLL-ENL Fusions Induce Alternative Chromatin States to Drive a Functionally Dichotomous Group of Target Genes. Cell Rep 2016; 15:310-22. [PMID: 27050521 DOI: 10.1016/j.celrep.2016.03.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/23/2016] [Accepted: 03/02/2016] [Indexed: 12/20/2022] Open
Abstract
MLL fusions are leukemogenic transcription factors that enhance transcriptional elongation through modification of chromatin and RNA Pol II. Global transcription rates and chromatin changes accompanying the transformation process induced by MLL-ENL were monitored by nascent RNA-seq and ChIP-seq, revealing 165 direct target genes separated into two distinct clades. ME5 genes bound MLL-ENL at the promoter, relied on DOT1L-mediated histone methylation, and coded preferentially for transcription factors, including many homeobox genes. A distinct ME3 group accumulated MLL-ENL beyond the termination site, was dependent on P-TEFb-mediated phosphorylation of RNA Pol II for transcription, and translated mainly into proteins involved in RNA biology and ribosome assembly. This dichotomy was reflected by a differential sensitivity toward small molecule inhibitors, suggesting the possibility of a combinatorial strategy for treatment of MLL-induced leukemia.
Collapse
Affiliation(s)
- Maria-Paz Garcia-Cuellar
- Department of Genetics, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Christian Büttner
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | | | - Martin Dugas
- Department of Medical Informatics, University Münster, 48149 Münster, Germany
| | - Robert K Slany
- Department of Genetics, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany.
| |
Collapse
|
148
|
Farooq Z, Banday S, Pandita TK, Altaf M. The many faces of histone H3K79 methylation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 768:46-52. [PMID: 27234562 DOI: 10.1016/j.mrrev.2016.03.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 02/01/2016] [Accepted: 03/09/2016] [Indexed: 12/23/2022]
Abstract
Dot1/DOT1L (disruptor of telomeric silencing-1) is an evolutionarily conserved histone methyltransferase that methylates lysine 79 located within the globular domain of histone H3. Dot1 was initially identified by a genetic screen as a disruptor of telomeric silencing in Saccharomyces cerevisiae; further, it is the only known non-SET domain containing histone methyltransferase. Methylation of H3K79 is involved in the regulation of telomeric silencing, cellular development, cell-cycle checkpoint, DNA repair, and regulation of transcription. hDot1L-mediated H3K79 methylation appears to have a crucial role in transformation as well as disease progression in leukemias involving several oncogenic fusion proteins. This review summarizes the multiple functions of Dot1/hDOT1L in a range of cellular processes.
Collapse
Affiliation(s)
- Zeenat Farooq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu, Kashmir 190006, India
| | - Shahid Banday
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu, Kashmir 190006, India
| | - Tej K Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu, Kashmir 190006, India.
| |
Collapse
|
149
|
Black JC, Whetstine JR. Tipping the lysine methylation balance in disease. Biopolymers 2016; 99:127-35. [PMID: 23175387 DOI: 10.1002/bip.22136] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 12/28/2022]
Abstract
Genomic instability is a major contributing factor to the development and onset of diseases such as cancer. Emerging evidence has demonstrated that maintaining the proper balance of histone lysine methylation is critical to preserve genomic integrity. Genome-wide association studies, gene sequencing, and genome-wide mapping approaches have helped identify mutations, copy number changes, and aberrant gene regulation of lysine methyltransferases (KMTs) and demethylases (KDMs) associated with cancer and cognitive disorders. Structural analysis of KMTs and KDMs has demonstrated the drugability of these enzymes and has led to the discovery of small molecule inhibitors. Use of these inhibitors has allowed better understanding of the biochemical properties of KMTs and KDMs and demonstrated potential for therapeutic use. This review will highlight the methyl modifications, KMTs and KDMs associated with cancer and neurological disorders and how KMT and KDM and the potential for treatment of these conditions with small molecule inhibitors.
Collapse
Affiliation(s)
- Joshua C Black
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13th Street, Charlestown, MA 02129
| | | |
Collapse
|
150
|
Donner I, Kiviluoto T, Ristimäki A, Aaltonen LA, Vahteristo P. Exome sequencing reveals three novel candidate predisposition genes for diffuse gastric cancer. Fam Cancer 2016; 14:241-6. [PMID: 25576241 DOI: 10.1007/s10689-015-9778-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gastric cancer is the fourth most common cancer worldwide and the second leading cause of cancer mortality. Three hereditary gastric cancer syndromes have been described; hereditary diffuse gastric cancer (HDGC), familial intestinal gastric cancer (FIGC) and gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS). Thirty per cent of HDGC families have heterozygous germline mutations in CDH1, which encodes E-cadherin. A germline truncating mutation in the gene encoding α-E-catenin (CTNNA1) was also recently discovered in a family with HDGC, but no other genes specifically predisposing to gastric cancer have been identified, leaving the majority of cases showing familial aggregation without a known genetic cause. The aim of this study was to find the putative gastric cancer predisposing gene defect in a family with HDGC that had previously been tested negative for mutations in CDH1. In this family, there were six cases of diffuse gastric cancer in two generations. Exome sequencing was applied to two affected family members. The shared variants which were predicted deleterious in silico and could not be found in databases or in a control set of over 4,000 individuals were Sanger sequenced in a third family member. Three candidate variants were identified: p.Glu1313Lys in Insulin receptor (INSR), p.Arg81Pro in F-box protein 24 (FBXO24) and p.Pro1146Leu in DOT1-like histone H3K79 methyltransferase (DOT1L). These variants and adjacent regions were screened for in an additional 26 gastric cancer patients with a confirmed (n = 13) or suspected (n = 13) family history of disease, but no other non-synonymous mutations were identified. This study identifies INSR, FBXO24 and DOT1L as new candidate diffuse gastric cancer susceptibility genes, which should be validated in other populations. Of these genes, INSR is of special interest as insulin signaling was recently shown to affect tumor cell invasion capability by modulating E-cadherin glycosylation.
Collapse
Affiliation(s)
- Iikki Donner
- Genome-Scale Biology Research Program, Department of Medical Genetics, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, 00014, Helsinki, Finland
| | | | | | | | | |
Collapse
|