101
|
Dragani M, de Botton S. SOHO State of the Art Updates and Next Questions: IDH Inhibition. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2021; 21:567-572. [PMID: 34193376 DOI: 10.1016/j.clml.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
There has been extraordinary progress in the field of targeted therapy for myeloid malignancies in the last few years, especially due to the approval of various agents that can be used as monotherapy or in combination as first-line treatment or when facing a refractory or relapsed disease. Many successful trials have been conducted recently, and a consistent body of work about the efficacy of novel molecules is now available. In this review, we sought to explain how enasidenib and ivosidenib have changed the face of myeloid neoplasm treatment through isocitrate dehydrogenase inhibition and to summarize the trials results that have led to the current commercial indications for the two molecules.
Collapse
Affiliation(s)
- Matteo Dragani
- Hematology Department, Gustave Roussy Cancer Centre, Villejuif, France
| | | |
Collapse
|
102
|
Itzykson R, Fournier E, Berthon C, Röllig C, Braun T, Marceau-Renaut A, Pautas C, Nibourel O, Lemasle E, Micol JB, Adès L, Lebon D, Malfuson JV, Gastaud L, Goursaud L, Raffoux E, Wattebled KJ, Rousselot P, Thomas X, Chantepie S, Cluzeau T, Serve H, Boissel N, Terré C, Celli-Lebras K, Preudhomme C, Thiede C, Dombret H, Gardin C, Duployez N. Genetic identification of patients with AML older than 60 years achieving long-term survival with intensive chemotherapy. Blood 2021; 138:507-519. [PMID: 34410352 DOI: 10.1182/blood.2021011103] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
To design a simple and reproducible classifier predicting the overall survival (OS) of patients with acute myeloid leukemia (AML) ≥60 years of age treated with 7 + 3, we sequenced 37 genes in 471 patients from the ALFA1200 (Acute Leukemia French Association) study (median age, 68 years). Mutation patterns and OS differed between the 84 patients with poor-risk cytogenetics and the 387 patients with good (n = 13), intermediate (n = 339), or unmeasured (n = 35) cytogenetic risk. TP53 (hazards ratio [HR], 2.49; P = .0003) and KRAS (HR, 3.60; P = .001) mutations independently worsened the OS of patients with poor-risk cytogenetics. In those without poor-risk cytogenetics, NPM1 (HR, 0.57; P = .0004), FLT3 internal tandem duplications with low (HR, 1.85; P = .0005) or high (HR, 3.51; P < 10-4) allelic ratio, DNMT3A (HR, 1.86; P < 10-4), NRAS (HR, 1.54; P = .019), and ASXL1 (HR, 1.89; P = .0003) mutations independently predicted OS. Combining cytogenetic risk and mutations in these 7 genes, 39.1% of patients could be assigned to a "go-go" tier with a 2-year OS of 66.1%, 7.6% to the "no-go" group (2-year OS 2.8%), and 3.3% of to the "slow-go" group (2-year OS of 39.1%; P < 10-5). Across 3 independent validation cohorts, 31.2% to 37.7% and 11.2% to 13.5% of patients were assigned to the go-go and the no-go tiers, respectively, with significant differences in OS between tiers in all 3 trial cohorts (HDF [Hauts-de-France], n = 141, P = .003; and SAL [Study Alliance Leukemia], n = 46; AMLSG [AML Study Group], n = 223, both P < 10-5). The ALFA decision tool is a simple, robust, and discriminant prognostic model for AML patients ≥60 years of age treated with intensive chemotherapy. This model can instruct the design of trials comparing the 7 + 3 standard of care with less intensive regimens.
Collapse
Affiliation(s)
- Raphael Itzykson
- Service Hématologie Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Génomes, Biologie Cellulaire et Thérapeutique, Unité 944, Université de Paris, Centre National de la Recherche Scientifique (CNRS), INSERM, Paris, France
| | - Elise Fournier
- Département d'Hématologie, Canther (Cancer Heterogeneity, Plasticity and Resistance to Therapies), Unité 1277, Centre Hospitalier Universitaire de Lille, Université de Lille, INSERM, Lille, France
| | - Céline Berthon
- Département d'Hématologie, Canther (Cancer Heterogeneity, Plasticity and Resistance to Therapies), Unité 1277, Centre Hospitalier Universitaire de Lille, Université de Lille, INSERM, Lille, France
| | - Christoph Röllig
- Medizinische Klinik and
- Poliklinik 1, Universitätsklinikum Techniche Universität Dresden, Dresden, Germany
| | - Thorsten Braun
- Service d'Hématologie Clinique, Hôpital Avicenne, AP-HP, Bobigny, France
| | - Alice Marceau-Renaut
- Département d'Hématologie, Canther (Cancer Heterogeneity, Plasticity and Resistance to Therapies), Unité 1277, Centre Hospitalier Universitaire de Lille, Université de Lille, INSERM, Lille, France
| | - Cécile Pautas
- Service d'Hématologie Clinique, Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Olivier Nibourel
- Département d'Hématologie, Canther (Cancer Heterogeneity, Plasticity and Resistance to Therapies), Unité 1277, Centre Hospitalier Universitaire de Lille, Université de Lille, INSERM, Lille, France
| | - Emilie Lemasle
- Service d'Hématologie, Centre Henri Becquerel, Rouen, France
| | - Jean-Baptiste Micol
- Département d'Hématologie, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Lionel Adès
- Service Hématologie Seniors, Hôpital Saint-Louis, AP-HP, Paris, France
| | | | - Jean-Valère Malfuson
- Service d'Hématologie Clinique, Hôpital d'Instruction des Armées Percy, Clamart, France
| | - Lauris Gastaud
- Département d'Oncologie Médicale, Centre Antoine Lacassagne, Nice, France
| | - Laure Goursaud
- Département d'Hématologie, Canther (Cancer Heterogeneity, Plasticity and Resistance to Therapies), Unité 1277, Centre Hospitalier Universitaire de Lille, Université de Lille, INSERM, Lille, France
| | - Emmanuel Raffoux
- Service Hématologie Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | | | - Philippe Rousselot
- Département d'Hématologie Clinique, Hôpital André Mignot, Centre Hospitalier de Versailles, Le Chesnay, France
- Unité Mixte de Recherche (UMR) 1184, Infectious Disease Models for Innovative Therapies (IDMIT) Department, Université Paris-Saclay, Commissariat à l'Énergie Atomique et Aux Énergies Alternatives (CEA), INSERM, Paris, France
| | - Xavier Thomas
- Service d'Hématologie Clinique, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre-Bénite, France
| | | | - Thomas Cluzeau
- Service d'Hématologie, Université Cote d'Azur, CHU de Nice, Nice, France
| | - Hubert Serve
- Department of Medicine 2, Hematology and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Nicolas Boissel
- Service Hématologie Adolescents Jeunes Adultes, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Christine Terré
- Laboratoire de Cytogénétique, CH Versailles, Le Chesnay, France
| | | | - Claude Preudhomme
- Département d'Hématologie, Canther (Cancer Heterogeneity, Plasticity and Resistance to Therapies), Unité 1277, Centre Hospitalier Universitaire de Lille, Université de Lille, INSERM, Lille, France
| | | | - Hervé Dombret
- Service Hématologie Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Institut de Recherche Saint-Louis (IRSL), Equipe d'Accueil (EA) 3518, Université de Paris, Hôpital Saint-Louis, Paris, France
| | - Claude Gardin
- Service d'Hématologie Clinique, Hôpital Avicenne, AP-HP, Bobigny, France
- Institut de Recherche Saint-Louis (IRSL), Equipe d'Accueil (EA) 3518, Université de Paris, Hôpital Saint-Louis, Paris, France
| | - Nicolas Duployez
- Département d'Hématologie, Canther (Cancer Heterogeneity, Plasticity and Resistance to Therapies), Unité 1277, Centre Hospitalier Universitaire de Lille, Université de Lille, INSERM, Lille, France
| |
Collapse
|
103
|
Improving prediction accuracy in acute myeloid leukaemia: micro-environment, immune and metabolic models. Leukemia 2021; 35:3073-3077. [PMID: 34365474 PMCID: PMC8550966 DOI: 10.1038/s41375-021-01377-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 02/02/2023]
|
104
|
Abstract
In the past few years research in the underlying pathogenic mechanisms of acute myeloid leukaemia (AML) has led to remarkable advances in our understanding of the disease. Cytogenetic and molecular aberrations are the most important factors in determining response to chemotherapy as well as long-term outcome, but beyond prognostication are potential therapeutic targets. Our increased understanding of the pathogenesis of AML facilitated by next-generation sequencing has spurred the development of new compounds in the treatment of AML, particularly the creation of small molecules that target the disease on a molecular level. Many of the hopeful predictions outlined in our AML review of 2018 are now therapeutic realities: gemtuzumab ozogamicin, venetoclax, FLT3 inhibitors (midostaurin, gilteritinib), IDH inhibitors (ivosidenib, enasidenib), CPX-351, glasdegib, oral decitabine, and oral azacitidine. Others may soon be (quizartinib, APR246 magrolimab, menin inhibitors). The wealth of positive data allows reconsideration of what might soon be new standards of care in younger and older patients with AML. In this review we give an overview of recently approved therapies in AML and address present and future research directions.
Collapse
Affiliation(s)
- Sabine Kayser
- Medical Clinic and Policlinic I, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany.,NCT Trial Center, National Center of Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark J Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
105
|
Jain P, Mims AS. Is venetoclax the new backbone of acute myeloid leukaemia therapy? Lancet Haematol 2021; 8:e536-e537. [PMID: 34329570 DOI: 10.1016/s2352-3026(21)00205-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Prachi Jain
- Department of Internal Medicine, The Ohio State University, OH, USA
| | - Alice S Mims
- Department of Internal Medicine, The Ohio State University, OH, USA.
| |
Collapse
|
106
|
Jaramillo S, Schlenk RF. Post-Induction Treatment for Acute Myeloid Leukemia: Something Change? Curr Oncol Rep 2021; 23:109. [PMID: 34272619 PMCID: PMC8285306 DOI: 10.1007/s11912-021-01092-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Until recently, improvement in terms of survival for patients with acute myeloid leukemia (AML) was achieved mostly in younger patients with dose intensification of conventional chemotherapy and a broadening use of allogeneic hematopoietic cell transplantation (allo-HCT) whereas the results remained dismal and very stable in patients older than 60 years. The current review highlights the recent developments in standard intensive post-remission chemotherapy, evidence for the use of recently approved agents, and discusses the relevance of measurable residual disease (MRD) measurement in treatment adaptation. RECENT FINDINGS Current approvals of midostaurin, venetoclax, gemtuzumab ozogamicin, VYXEOS, ivosidenib, enasidenib, glasdegib, and CC-486 have changed the structure, aim, and schedule of consolidation therapy, and new, well-tolerated agents are being evaluated as maintenance therapies. Furthermore, MRD assessment has been implemented to guide the duration and type of consolidation and maintenance therapy as well as indicate the optimal timing of allo-HCT. Novel therapies have changed the structure and perspective of post-remission therapy in AML for both young and elderly patients. In addition, MRD assessment could guide the type, duration, and intensity of consolidation and maintenance therapy.
Collapse
Affiliation(s)
- Sonia Jaramillo
- Department of Hematology, Oncology, and Rheumatology at Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Richard F. Schlenk
- Department of Hematology, Oncology, and Rheumatology at Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- NCT-Trial Center, NCT Heidelberg, DKFZ and Heidelberg University Hospital, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| |
Collapse
|
107
|
Myelodysplastic Syndromes in the Postgenomic Era and Future Perspectives for Precision Medicine. Cancers (Basel) 2021; 13:cancers13133296. [PMID: 34209457 PMCID: PMC8267785 DOI: 10.3390/cancers13133296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary With demographic ageing, improved cancer survivorship and increased diagnostic sensitivity, incident cases of patients with Myelodysplastic Syndromes (MDS) are continuously rising, leading to a relevant impact on health care resources. Disease heterogeneity and various comorbidities are challenges for the management of the generally elderly patients. Therefore, experienced physicians and multidisciplinary teams should be involved in the establishment of the correct diagnosis, risk-assessment and personalized treatment plan. Next-generation sequencing allows for early detection of clonal hematopoiesis and monitoring of clonal evolution, but also poses new challenges for its appropriate use. At present, allogeneic hematopoietic stem cell transplantation remains the only curative treatment option for a minority of fit MDS patients. All others receive palliative treatment and will eventually progress, having an unmet need for novel therapies. Targeting compounds are in prospect for precision medicine, however, abrogation of clonal evolution to acute myeloid leukemia remains actually out of reach. Abstract Myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal disorders caused by sequential accumulation of somatic driver mutations in hematopoietic stem and progenitor cells (HSPCs). MDS is characterized by ineffective hematopoiesis with cytopenia, dysplasia, inflammation, and a variable risk of transformation into secondary acute myeloid leukemia. The advent of next-generation sequencing has revolutionized our understanding of the genetic basis of the disease. Nevertheless, the biology of clonal evolution remains poorly understood, and the stochastic genetic drift with sequential accumulation of genetic hits in HSPCs is individual, highly dynamic and hardly predictable. These continuously moving genetic targets pose substantial challenges for the implementation of precision medicine, which aims to maximize efficacy with minimal toxicity of treatments. In the current postgenomic era, allogeneic hematopoietic stem cell transplantation remains the only curative option for younger and fit MDS patients. For all unfit patients, regeneration of HSPCs stays out of reach and all available therapies remain palliative, which will eventually lead to refractoriness and progression. In this review, we summarize the recent advances in our understanding of MDS pathophysiology and its impact on diagnosis, risk-assessment and disease monitoring. Moreover, we present ongoing clinical trials with targeting compounds and highlight future perspectives for precision medicine.
Collapse
|
108
|
Bernasconi P, Borsani O. Eradication of Measurable Residual Disease in AML: A Challenging Clinical Goal. Cancers (Basel) 2021; 13:3170. [PMID: 34202000 PMCID: PMC8268140 DOI: 10.3390/cancers13133170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 12/18/2022] Open
Abstract
In non-promyelocytic (non-M3) AML measurable residual disease (MRD) detected by multi-parameter flow cytometry and molecular technologies, which are guided by Consensus-based guidelines and discover very low leukemic cell numbers far below the 5% threshold of morphological assessment, has emerged as the most relevant predictor of clinical outcome. Currently, it is well-established that MRD positivity after standard induction and consolidation chemotherapy, as well as during the period preceding an allogeneic hematopoietic stem cell transplant (allo-HSCT), portends to a significantly inferior relapse-free survival (RFS) and overall survival (OS). In addition, it has become absolutely clear that conversion from an MRD-positive to an MRD-negative state provides a favorable clinical outcome similar to that associated with early MRD negativity. Thus, the complete eradication of MRD, i.e., the clearance of the few leukemic stem cells-which, due to their chemo-radiotherapy resistance, might eventually be responsible of disease recurrence-has become an un-met clinical need in AML. Nowadays, this goal might potentially be achieved thanks to the development of novel innovative treatment strategies, including those targeting driver mutations, apoptosis, methylation patterns and leukemic proteins. The aim of this review is to analyze these strategies and to suggest any potential combination able to induce MRD negativity in the pre- and post-HSCT period.
Collapse
Affiliation(s)
- Paolo Bernasconi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Hematology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Oscar Borsani
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
109
|
Epigenetic dysregulation in myeloid malignancies. Blood 2021; 138:613-624. [PMID: 34157099 DOI: 10.1182/blood.2019004262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/19/2021] [Indexed: 12/18/2022] Open
Abstract
Epigenetic deregulation is now a well-recognized -though not yet fully understood- mechanism that contributes to the development and progression of myeloid malignancies. In the past 15 years, next generation sequencing studies have revealed patterns of aberrant DNA methylation, altered chromatin states, and mutations in chromatin modifiers across the spectrum of myeloid malignancies. Studies into the mechanisms that drive these diseases through mouse modeling have helped identify new avenues for therapeutic interventions, from initial treatment to resistant, relapsed disease. This is particularly significant when chemotherapy with cytotoxic agents remains the general standard of care. In this review, we will discuss some of the recent findings of epigenetic mechanisms and how these are informing the development of more targeted strategies for therapeutic intervention in myeloid malignancies.
Collapse
|
110
|
Stemer G, Rowe JM, Ofran Y. Efficacy and Safety Profile of Ivosidenib in the Management of Patients with Acute Myeloid Leukemia (AML): An Update on the Emerging Evidence. BLOOD AND LYMPHATIC CANCER-TARGETS AND THERAPY 2021; 11:41-54. [PMID: 34188585 PMCID: PMC8235936 DOI: 10.2147/blctt.s236446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/23/2021] [Indexed: 12/13/2022]
Abstract
The isocitrate dehydrogenase enzyme, catalyzing isocitrate conversion to α-ketoglutarate (αKG) in both the cell cytoplasm and mitochondria, contributes to the production of dihydronicotinamide-adenine dinucleotide phosphate (NADPH) as a reductive potential in various cellular processes. IDH1 gene mutations are revealed in up to 20% of the patients with acute myeloid leukemia (AML). A mutant IDH enzyme, existing in the cell cytoplasm and possessing neomorphic activity, converts αKG into oncometabolite R-2-hydroxyglutarate (R-2-HG) that accumulates in high amounts in the cell and inhibits αKG-dependent enzymes, including epigenetic regulators. The resultant alteration in gene expression and blockade of differentiation ultimately lead to leukemia development. Myeloid differentiation capacity can be restored by obstruction of the mutant enzyme, inducing substantial reduction in R-2-HG levels. Ivosidenib, a potent selective inhibitor of mutant IDH1, is a differentiating agent shown to be clinically effective in newly diagnosed AML (ND-AML) and relapsed/refractory (R/R) AML harboring this mutation. The drug is approved by the Food and Drug Administration (FDA) as a single-agent treatment for R/R AML. Significance of mutated IDH1 targeting and a potential role of ivosidenib in AML management, when used either as a single agent or as part of combination therapies, will be reviewed herein.
Collapse
Affiliation(s)
- Galia Stemer
- Institute of Hematology, Ha'Emek Medical Center, Afula, Israel
| | - Jacob M Rowe
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel.,Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Yishai Ofran
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
111
|
Nucleophosmin1 and isocitrate dehydrogenase 1 and 2 as measurable residual disease markers in acute myeloid leukemia. PLoS One 2021; 16:e0253386. [PMID: 34153064 PMCID: PMC8216517 DOI: 10.1371/journal.pone.0253386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/03/2021] [Indexed: 11/19/2022] Open
Abstract
Monitoring measurable residual disease (MRD) in acute myeloid leukemia (AML) plays an important role in predicting relapse and outcome. The applicability of the leukemia-initiating nucleophosmin1 (NPM1) gene mutations in MRD detection is well-established, while that of isocitrate dehydrogenase1/2 (IDH1/2) mutations are matter of debate. The aim of this study was to investigate the stability of NPM1 and IDH1/2 mutations at diagnosis and relapse retrospectively in 916 adult AML patients. The prognostic value of MRD was evaluated by droplet digital PCR on the DNA level in a selected subgroup of patients in remission. NPM1 re-emerged at relapse in 91% (72/79), while IDH1/2 in 87% (20/23) of mutation-positive cases at diagnosis. NPM1 mutation did not develop at relapse, on the contrary novel IDH1/2 mutations occurred in 3% (3/93) of previously mutation-negative cases. NPM1 MRD-positivity after induction (n = 116) proved to be an independent, adverse risk factor (MRDpos 24-month OS: 39.3±6.2% versus MRDneg: 58.5±7.5%, p = 0.029; HR: 2.16; 95%CI: 1.25–3.74, p = 0.006). In the favorable subgroup of mutated NPM1 without fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) or with low allelic ratio, NPM1 MRD provides a valuable prognostic biomarker (NPM1 MRDpos versus MRDneg 24-month OS: 42.9±6.7% versus 66.7±8.6%; p = 0.01). IDH1/2 MRD-positivity after induction (n = 62) was also associated with poor survival (MRDpos 24-month OS: 41.3±9.2% versus MRDneg: 62.5±9.0%, p = 0.003; HR 2.81 95%CI 1.09–7.23, p = 0.032). While NPM1 variant allele frequency decreased below 2.5% in remission in all patients, IDH1/2 mutations (typically IDH2 R140Q) persisted in 24% of cases. Our results support that NPM1 MRD even at DNA level is a reliable prognostic factor, while IDH1/2 mutations may represent pre-leukemic, founder or subclonal drivers.
Collapse
|
112
|
Pirozzi CJ, Yan H. The implications of IDH mutations for cancer development and therapy. Nat Rev Clin Oncol 2021; 18:645-661. [PMID: 34131315 DOI: 10.1038/s41571-021-00521-0] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Mutations in the genes encoding the cytoplasmic and mitochondrial forms of isocitrate dehydrogenase (IDH1 and IDH2, respectively; collectively referred to as IDH) are frequently detected in cancers of various origins, including but not limited to acute myeloid leukaemia (20%), cholangiocarcinoma (20%), chondrosarcoma (80%) and glioma (80%). In all cases, neomorphic activity of the mutated enzyme leads to production of the oncometabolite D-2-hydroxyglutarate, which has profound cell-autonomous and non-cell-autonomous effects. The broad effects of IDH mutations on epigenetic, differentiation and metabolic programmes, together with their high prevalence across a variety of cancer types, early presence in tumorigenesis and uniform expression in tumour cells, make mutant IDH an ideal therapeutic target. Herein, we describe the current biological understanding of IDH mutations and the roles of mutant IDH in the various associated cancers. We also present the available preclinical and clinical data on various methods of targeting IDH-mutant cancers and discuss, based on the underlying pathogenesis of different IDH-mutated cancer types, whether the treatment approaches will converge or be context dependent.
Collapse
Affiliation(s)
- Christopher J Pirozzi
- Department of Pathology, Duke University Medical Center, Durham, NC, USA. .,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.
| | - Hai Yan
- Department of Pathology, Duke University Medical Center, Durham, NC, USA. .,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
113
|
Targeting IDH1 and IDH2 Mutations in Acute Myeloid Leukemia: Emerging Options and Pending Questions. Hemasphere 2021; 5:e583. [PMID: 34095766 PMCID: PMC8171378 DOI: 10.1097/hs9.0000000000000583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/17/2021] [Indexed: 11/26/2022] Open
|
114
|
Issa GC, DiNardo CD. Acute myeloid leukemia with IDH1 and IDH2 mutations: 2021 treatment algorithm. Blood Cancer J 2021; 11:107. [PMID: 34083508 PMCID: PMC8175383 DOI: 10.1038/s41408-021-00497-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 12/31/2022] Open
Abstract
Acute myeloid leukemia is a genetically heterogeneous hematologic malignancy; approximately 20% of AML harbors a mutation in the isocitrate dehydrogenase (IDH) genes, IDH1 or IDH2. These recurrent mutations in key metabolic enzymes lead to the production of the oncometabolite 2-hydroxyglutarate, which promotes leukemogenesis through a block in normal myeloid differentiation. Since this discovery, selective oral inhibitors of mutant IDH1 and IDH2 have subsequently been developed and are now approved as single agent therapy, based on clinical efficacy observed within the original first-in-human trials. The investigation of IDH inhibitors in combination with standard therapies such as azacytidine, with intensive chemotherapy, and with other small molecule targeted therapies in rational combinations are currently under evaluation to further improve upon clinical efficacy.
Collapse
Affiliation(s)
- Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
115
|
Fathi AT, Stein EM, DiNardo CD, Levis MJ, Montesinos P, Botton S. Differentiation syndrome with lower-intensity treatments for acute myeloid leukemia. Am J Hematol 2021; 96:735-746. [PMID: 33625753 DOI: 10.1002/ajh.26142] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
Differentiation Syndrome (DS) has been identified in a subset of patients undergoing treatment with novel classes of differentiating therapies for acute myeloid leukemia (AML) such as IDH and FLT3 inhibitors. While DS is a well-known treatment-related complication in acute promyelocytic leukemia (APL), efforts are still ongoing to standardize diagnostic and treatment parameters for DS in AML. Though the rates of incidence vary, many of the signs and symptoms of DS are common between APL and AML. So, DS can lead to fatal complications in AML, but prompt management is usually effective and rarely necessitates interruption or discontinuation of AML therapy.
Collapse
Affiliation(s)
- Amir T. Fathi
- Massachusetts General Hospital Cancer Center Boston Massachusetts USA
- Harvard Medical School Boston Massachusetts USA
| | - Eytan M. Stein
- Memorial Sloan Kettering Cancer Center New York New York USA
- Weill Cornell Medical College New York New York USA
| | | | - Mark J. Levis
- Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University Baltimore Maryland USA
| | | | | |
Collapse
|
116
|
The evolving concept of indications for allogeneic hematopoietic cell transplantation during first complete remission of acute myeloid leukemia. Bone Marrow Transplant 2021; 56:1257-1265. [PMID: 33686251 DOI: 10.1038/s41409-021-01247-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/27/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
The long-standing debate of whether patients with acute myeloid leukemia (AML) should proceed to allogeneic hematopoietic cell transplantation (HCT) during first complete remission (CR1) remains unsettled. Although allogeneic HCT during CR1 used to be recommended for those with intermediate or poor cytogenetics if they had a matched sibling donor, the concept of indications for allogeneic HCT during CR1 has been evolving by virtue of advances in understanding of the molecular pathogenesis of AML and innovations in transplantation practice attained over the last few decades. The incorporation of molecular profiles of leukemia has been shown to contribute to further refinements of risk classification that had previously relied mostly on cytogenetics, while the progress in transplantation procedures has made it possible to perform transplantations more safely even for patients without a matched sibling donor. These significant changes have underpinned the need to reappraise indications for allogeneic HCT during CR1 of AML. Improvements in clinical applications of genetic and measurable residual disease information as well as in transplantation technology are expected to further refine indications for allogeneic HCT during CR1, and thus promote an individualized approach for the treatment of AML.
Collapse
|
117
|
A novel differentiation response with combination IDH inhibitor and intensive induction therapy for AML. Blood Adv 2021; 5:2279-2283. [PMID: 33904894 DOI: 10.1182/bloodadvances.2020003685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/16/2021] [Indexed: 01/05/2023] Open
|
118
|
Kantarjian HM, Short NJ, Fathi AT, Marcucci G, Ravandi F, Tallman M, Wang ES, Wei AH. Acute Myeloid Leukemia: Historical Perspective and Progress in Research and Therapy Over 5 Decades. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:580-597. [PMID: 34176779 DOI: 10.1016/j.clml.2021.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/17/2022]
Abstract
With the Food and Drug Administration approval of 9 agents for different acute myeloid leukemia (AML) indications, the prognosis and management of AML is evolving rapidly. Herein, we review the important milestones in the history of AML research and therapy, discuss insights regarding prognostic assessment and prediction of treatment outcome, detail practical supportive care measures, and summarize the current treatment landscape and areas of evolving research.
Collapse
Affiliation(s)
| | - Nicholas J Short
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Amir T Fathi
- Leukemia Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research City of Hope, Duarte, CA, USA
| | - Farhad Ravandi
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Martin Tallman
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Eunice S Wang
- Leukemia Service, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Andrew H Wei
- Department of Clinical Hematology, The Alfred Hospital and Monash University, Melbourne, Australia
| |
Collapse
|
119
|
Outcome of patients with IDH1/2-mutated post-myeloproliferative neoplasm AML in the era of IDH inhibitors. Blood Adv 2021; 4:5336-5342. [PMID: 33112940 DOI: 10.1182/bloodadvances.2020001528] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Key Points
IDH1/2-inhibitor–based combinations conferred significant clinical responses in patients with IDH1/2-mutated post–MPN AML. Complete remission was achieved in 3/7 patients (1 attaining MRD–) with new IDH1/2-mutated post–MPN AML treated with IDH1/2-i combinations.
Collapse
|
120
|
Abstract
PURPOSE OF REVIEW Mutations in isocitrate dehydrogenase genes (IDH1 and IDH2) are common in acute myeloid leukemia (AML), occurring in up to 30% of AML cases. Mutations in IDH leads to abnormal epigenetic regulation in AML cells and blocks differentiation. Inhibitors of mutated IDH1 and IDH2, ivosidenib and enasidenib, respectively, were recently approved by the FDA for relapsed/refractory AML; ivosidenib is also approved for newly diagnosed AML patients not fit for standard chemotherapy. Here, we discuss the clinical development of IDH inhibitors, their unique side effects, and outline future combination approaches in AML. RECENT FINDINGS IDH inhibitors are well-tolerated but can induce differentiation of AML cells, which leads to the on-target side effect of differentiation syndrome in up to 20% of patients. Although IDH inhibitors demonstrate efficacy as monotherapy, recent trials have shown that they have higher response rates in combination with hypomethylating agents (HMAs). Current trials of IDH inhibitors include combination with standard induction chemotherapy, as maintenance therapy, and in combination with venetoclax-based regimens. IDH inhibitors are active and have a favorable toxicity profile in AML therapy. Current clinical trials are evaluating how to best incorporate IDH inhibitors into combination therapy to optimize outcomes and duration of response for AML patients with IDH mutations.
Collapse
|
121
|
Xing L, Ren J, Guo X, Qiao S, Tian T. Effect of decitabine and thalidomide on the immunological effect and bone marrow mesenchymal stem cells of patients with myelodysplastic syndrome. Am J Transl Res 2021; 13:2462-2471. [PMID: 34017405 PMCID: PMC8129381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE This study intended to investigate the therapeutic effect of decitabine and thalidomide on myelodysplastic syndrome (MDS), immunological effect and effective mesenchymal stem cells (MSCs). METHODS Altogether 62 patients with MDS diagnosed in our hospital were selected. Patients who received 5-day treatment mainly and received decitabine from the 1st day to the 5th day were collected as group A (A), while patients who received thalidomide 1st to 5th day as in group A were collected as group B (B). The immunologic effects, blood and bone marrow index levels, clinical effects and adverse reactions of group A and group B before and after intervention were observed. RESULTS Th17 in the two groups after intervention were evidently lower than that before intervention, and the decrease of Th17 cells in group B after intervention was more obvious than that in group A (P<0.001). Th22 cells in the two groups after intervention were evidently down-regulated compared with those before intervention, and the down-regulation of Th17 cells in group B after intervention was more obvious than that in group A (P<0.001). However, compared with group A, the levels of CD3+, CD4+, CD4+/CD8+ in serum of group B increased more obviously and CD8+ decreased more obviously after intervention. The white blood cell count of group B after intervention was evidently higher than that of group A (P<0.001). The hemoglobin concentration after intervention in group B was evidently higher than that in group A (P<0.001). The platelet count after intervention in group A was evidently higher than that in group B (P<0.001). The total effective rate in group B was evidently higher than that in group A (P<0.05). CONCLUSION The combination of decitabine and thalidomide has a better regulatory role in the immunological mechanism and bone marrow mesenchymal stem cells of patients with MDS than the single decitabine therapy on the premise of ensuring clinical efficacy.
Collapse
Affiliation(s)
- Lina Xing
- Department of Hematology, Second Affiliated Hospital, Hebei Medical University Shijiazhuang 050000, Hebei Province, China
| | - Jinhai Ren
- Department of Hematology, Second Affiliated Hospital, Hebei Medical University Shijiazhuang 050000, Hebei Province, China
| | - Xiaonan Guo
- Department of Hematology, Second Affiliated Hospital, Hebei Medical University Shijiazhuang 050000, Hebei Province, China
| | - Shukai Qiao
- Department of Hematology, Second Affiliated Hospital, Hebei Medical University Shijiazhuang 050000, Hebei Province, China
| | - Tian Tian
- Department of Hematology, Second Affiliated Hospital, Hebei Medical University Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
122
|
CAR-T Cell Therapy for Acute Myeloid Leukemia: Preclinical Rationale, Current Clinical Progress, and Barriers to Success. BioDrugs 2021; 35:281-302. [PMID: 33826079 DOI: 10.1007/s40259-021-00477-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has shown impressive results in chemorefractory B cell malignancies, raising the possibilities of using this immunotherapeutic modality for other devastating hematologic malignancies, such as acute myeloid leukemia (AML). AML is an aggressive hematologic malignancy which, like B cell malignancies, poses several challenges for clinical translation of successful immunotherapy. The antigenic heterogeneity of AML results in a list of potential targets that CAR-T cells could be directed towards, each with advantages and disadvantages. In this review, we provide an up-to-date report of outcomes and adverse effects from published and presented clinical trials of CAR-T cell therapy for AML and provide the preclinical rationale underlying these studies and antigen selection. Comparison across trials is difficult, yet themes emerge with respect to appropriate antigen selection and association of adverse effects with outcomes. We highlight currently active clinical trials and the potential improvements and caveats with these novel approaches. Key hurdles to the successful introduction of CAR-T cell therapy for the treatment of AML include the effect of antigenic heterogeneity and trade-offs between therapy specificity and sensitivity; on-target off-tumor toxicities; the AML tumor microenvironment; and practical considerations for future trials that should be addressed to enable successful CAR-T cell therapy for AML.
Collapse
|
123
|
Taking aim at IDH in fitter patients with AML. Blood 2021; 137:1706-1707. [PMID: 33792680 PMCID: PMC9999040 DOI: 10.1182/blood.2020009361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
124
|
Cerchione C, Romano A, Daver N, DiNardo C, Jabbour EJ, Konopleva M, Ravandi-Kashani F, Kadia T, Martelli MP, Isidori A, Martinelli G, Kantarjian H. IDH1/IDH2 Inhibition in Acute Myeloid Leukemia. Front Oncol 2021; 11:639387. [PMID: 33898313 PMCID: PMC8063727 DOI: 10.3389/fonc.2021.639387] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Recently, the discovery of biological and clinical properties of mutated isoforms 1 and 2 mutations of isocitrate dehydrogenases (IDH) 1 and 2, affecting approximately 20% of patients with acute myeloid leukemia (AML), lead to the development of an individualized treatment strategy. Promoting differentiation and maturation of the malignant clone targeting IDH is an emerging strategy to promote clinical responses in AML. Phase I/II trials have shown evidence of safety, tolerability, and encouraging evidence of efficacy of two small molecule inhibitors targeting IDH2 and IDH1 gene mutations, respectively enasidenib and ivosidenib. In this review, the contribution of IDH1/IDH2 mutations in leukemogenesis and progress of targeted therapeutics in AML will be highlighted.
Collapse
Affiliation(s)
- Claudio Cerchione
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Alessandra Romano
- Dipartimento di Chirurgia e Specialità Medico-Chirurgiche, Sezione di Ematologia, Università degli Studi di Catania, Catania, Italy
| | - Naval Daver
- Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Courtney DiNardo
- Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | | | - Marina Konopleva
- Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | | | - Tapan Kadia
- Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | | | - Alessandro Isidori
- Leukemia Department, MD Anderson Cancer Center, Houston, TX, United States
| | - Giovanni Martinelli
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Hagop Kantarjian
- Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| |
Collapse
|
125
|
Kantarjian HM, Kadia TM, DiNardo CD, Welch MA, Ravandi F. Acute myeloid leukemia: Treatment and research outlook for 2021 and the MD Anderson approach. Cancer 2021; 127:1186-1207. [PMID: 33734442 DOI: 10.1002/cncr.33477] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/31/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
The unraveling of the pathophysiology of acute myeloid leukemia (AML) has resulted in rapid translation of the information into clinical practice. After more than 40 years of slow progress in AML research, the US Food and Drug Administration has approved nine agents for different AML treatment indications since 2017. In this review, we detail the progress that has been made in the research and treatment of AML, citing key publications related to AML research and therapy in the English literature since 2000. The notable subsets of AML include acute promyelocytic leukemia (APL), core-binding factor AML (CBF-AML), AML in younger patients fit for intensive chemotherapy, and AML in older/unfit patients (usually at the age cutoff of 60-70 years). We also consider within each subset whether the AML is primary or secondary (therapy-related, evolving from untreated or treated myelodysplastic syndrome or myeloproliferative neoplasm). In APL, therapy with all-trans retinoic acid and arsenic trioxide results in estimated 10-year survival rates of ≥80%. Treatment of CBF-AML with fludarabine, high-dose cytarabine, and gemtuzumab ozogamicin (GO) results in estimated 10-year survival rates of ≥75%. In younger/fit patients, the "3+7" regimen (3 days of daunorubicin + 7 days of cytarabine) produces less favorable results (estimated 5-year survival rates of 35%; worse in real-world experience); regimens that incorporate high-dose cytarabine, adenosine nucleoside analogs, and GO are producing better results. Adding venetoclax, FLT3, and IDH inhibitors into these regimens has resulted in encouraging preliminary data. In older/unfit patients, low-intensity therapy with hypomethylating agents (HMAs) and venetoclax is now the new standard of care. Better low-intensity regimens incorporating cladribine, low-dose cytarabine, and other targeted therapies (FLT3 and IDH inhibitors) are emerging. Maintenance therapy now has a definite role in the treatment of AML, and oral HMAs with potential treatment benefits are also available. In conclusion, AML therapy is evolving rapidly and treatment results are improving in all AML subsets as novel agents and strategies are incorporated into traditional AML chemotherapy. LAY SUMMARY: Ongoing research in acute myeloid leukemia (AML) is progressing rapidly. Since 2017, the US Food and Drug Administration has approved 10 drugs for different AML indications. This review updates the research and treatment pathways for AML.
Collapse
Affiliation(s)
| | - Tapan M Kadia
- Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| | | | - Mary Alma Welch
- Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| | - Farhad Ravandi
- Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
126
|
Kantarjian H, Kadia T, DiNardo C, Daver N, Borthakur G, Jabbour E, Garcia-Manero G, Konopleva M, Ravandi F. Acute myeloid leukemia: current progress and future directions. Blood Cancer J 2021; 11:41. [PMID: 33619261 PMCID: PMC7900255 DOI: 10.1038/s41408-021-00425-3] [Citation(s) in RCA: 341] [Impact Index Per Article: 113.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/14/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Progress in the understanding of the biology and therapy of acute myeloid leukemia (AML) is occurring rapidly. Since 2017, nine agents have been approved for various indications in AML. These included several targeted therapies like venetoclax, FLT3 inhibitors, IDH inhibitors, and others. The management of AML is complicated, highlighting the need for expertise in order to deliver optimal therapy and achieve optimal outcomes. The multiple subentities in AML require very different therapies. In this review, we summarize the important pathophysiologies driving AML, review current therapies in standard practice, and address present and future research directions.
Collapse
Affiliation(s)
- Hagop Kantarjian
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA.
| | - Tapan Kadia
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney DiNardo
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Gautam Borthakur
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Marina Konopleva
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|