101
|
Cascella K, Jollivet D, Papot C, Léger N, Corre E, Ravaux J, Clark MS, Toullec JY. Diversification, evolution and sub-functionalization of 70kDa heat-shock proteins in two sister species of antarctic krill: differences in thermal habitats, responses and implications under climate change. PLoS One 2015; 10:e0121642. [PMID: 25835552 PMCID: PMC4383606 DOI: 10.1371/journal.pone.0121642] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/03/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND A comparative thermal tolerance study was undertaken on two sister species of Euphausiids (Antarctic krills) Euphausia superba and Euphausia crystallorophias. Both are essential components of the Southern Ocean ecosystem, but occupy distinct environmental geographical locations with slightly different temperature regimes. They therefore provide a useful model system for the investigation of adaptations to thermal tolerance. METHODOLOGY/PRINCIPAL FINDING Initial CTmax studies showed that E. superba was slightly more thermotolerant than E. crystallorophias. Five Hsp70 mRNAs were characterized from the RNAseq data of both species and subsequent expression kinetics studies revealed notable differences in induction of each of the 5 orthologues between the two species, with E. crystallorophias reacting more rapidly than E. superba. Furthermore, analyses conducted to estimate the evolutionary rates and selection strengths acting on each gene tended to support the hypothesis that diversifying selection has contributed to the diversification of this gene family, and led to the selective relaxation on the inducible C form with its possible loss of function in the two krill species. CONCLUSIONS The sensitivity of the epipelagic species E. crystallorophias to temperature variations and/or its adaptation to cold is enhanced when compared with its sister species, E. superba. These results indicate that ice krill could be the first of the two species to be impacted by the warming of coastal waters of the Austral ocean in the coming years due to climate change.
Collapse
Affiliation(s)
- Kévin Cascella
- Sorbonne Universités, UPMC Université Paris 06, UMR 7144 CNRS, Equipe ABICE, Station Biologique de Roscoff, 29680 Roscoff, France
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Didier Jollivet
- Sorbonne Universités, UPMC Université Paris 06, UMR 7144 CNRS, Equipe ABICE, Station Biologique de Roscoff, 29680 Roscoff, France
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Claire Papot
- Université de Lille1, CNRS UMR8198, Ecoimmunology of Marine Annelids, 59655 Villeneuve d’Ascq, France
| | - Nelly Léger
- Sorbonne Universités, UPMC Université Paris 06, UMR 7208 CNRS, Equipe AMEX, 75005 Paris, France
- CNRS 7208, BOREA, UPMC Université Paris 06, 75005 Paris, France
| | - Erwan Corre
- Sorbonne Universités, UPMC Université Paris 06, FR 2424 CNRS, ABiMS, Analysis and Bioinformatics for Marine Science, Station Biologique de Roscoff, 29680 Roscoff, France
- CNRS, FR 2424, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Juliette Ravaux
- Sorbonne Universités, UPMC Université Paris 06, UMR 7208 CNRS, Equipe AMEX, 75005 Paris, France
- CNRS 7208, BOREA, UPMC Université Paris 06, 75005 Paris, France
| | - Melody S. Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, United Kingdom
| | - Jean-Yves Toullec
- Sorbonne Universités, UPMC Université Paris 06, UMR 7144 CNRS, Equipe ABICE, Station Biologique de Roscoff, 29680 Roscoff, France
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
- * E-mail:
| |
Collapse
|
102
|
Pardo-Diaz C, Salazar C, Jiggins CD. Towards the identification of the loci of adaptive evolution. Methods Ecol Evol 2015; 6:445-464. [PMID: 25937885 PMCID: PMC4409029 DOI: 10.1111/2041-210x.12324] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/28/2014] [Indexed: 12/17/2022]
Abstract
1. Establishing the genetic and molecular basis underlying adaptive traits is one of the major goals of evolutionary geneticists in order to understand the connection between genotype and phenotype and elucidate the mechanisms of evolutionary change. Despite considerable effort to address this question, there remain relatively few systems in which the genes shaping adaptations have been identified. 2. Here, we review the experimental tools that have been applied to document the molecular basis underlying evolution in several natural systems, in order to highlight their benefits, limitations and suitability. In most cases, a combination of DNA, RNA and functional methodologies with field experiments will be needed to uncover the genes and mechanisms shaping adaptation in nature.
Collapse
Affiliation(s)
- Carolina Pardo-Diaz
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del RosarioCarrera 24 No 63C-69, Bogotá 111221, Colombia
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del RosarioCarrera 24 No 63C-69, Bogotá 111221, Colombia
| | - Chris D Jiggins
- Department of Zoology, University of CambridgeDowning Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
103
|
Seneca FO, Palumbi SR. The role of transcriptome resilience in resistance of corals to bleaching. Mol Ecol 2015; 24:1467-84. [DOI: 10.1111/mec.13125] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Francois O. Seneca
- Department of Biology; Stanford University; Hopkins Marine Station Pacific Grove CA 93950 USA
| | - Stephen R. Palumbi
- Department of Biology; Stanford University; Hopkins Marine Station Pacific Grove CA 93950 USA
| |
Collapse
|
104
|
Porcelli D, Butlin RK, Gaston KJ, Joly D, Snook RR. The environmental genomics of metazoan thermal adaptation. Heredity (Edinb) 2015; 114:502-14. [PMID: 25735594 PMCID: PMC4815515 DOI: 10.1038/hdy.2014.119] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 01/07/2023] Open
Abstract
Continued and accelerating change in the thermal environment places an ever-greater priority on understanding how organisms are going to respond. The paradigm of ‘move, adapt or die', regarding ways in which organisms can respond to environmental stressors, stimulates intense efforts to predict the future of biodiversity. Assuming that extinction is an unpalatable outcome, researchers have focussed attention on how organisms can shift in their distribution to stay in the same thermal conditions or can stay in the same place by adapting to a changing thermal environment. How likely these respective outcomes might be depends on the answer to a fundamental evolutionary question, namely what genetic changes underpin adaptation to the thermal environment. The increasing access to and decreasing costs of next-generation sequencing (NGS) technologies, which can be applied to both model and non-model systems, provide a much-needed tool for understanding thermal adaptation. Here we consider broadly what is already known from non-NGS studies about thermal adaptation, then discuss the benefits and challenges of different NGS methodologies to add to this knowledge base. We then review published NGS genomics and transcriptomics studies of thermal adaptation to heat stress in metazoans and compare these results with previous non-NGS patterns. We conclude by summarising emerging patterns of genetic response and discussing future directions using these increasingly common techniques.
Collapse
Affiliation(s)
- D Porcelli
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - R K Butlin
- 1] Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK [2] Sven Lovén Centre-Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - K J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | - D Joly
- 1] Laboratoire Evolution, Génomes et Spéciation, CNRS-UPR 9034, Gif sur Yvette, France [2] Université Paris-Sud, Orsay, France
| | - R R Snook
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
105
|
Gleason LU, Burton RS. RNA-seq reveals regional differences in transcriptome response to heat stress in the marine snailChlorostoma funebralis. Mol Ecol 2015; 24:610-27. [DOI: 10.1111/mec.13047] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 12/09/2014] [Accepted: 12/12/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Lani U. Gleason
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093-0202 USA
| | - Ronald S. Burton
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093-0202 USA
| |
Collapse
|
106
|
Barreto FS, Schoville SD, Burton RS. Reverse genetics in the tide pool: knock-down of target gene expression via RNA interference in the copepodTigriopus californicus. Mol Ecol Resour 2014; 15:868-79. [DOI: 10.1111/1755-0998.12359] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Felipe S. Barreto
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California; San Diego La Jolla CA 92037 USA
| | - Sean D. Schoville
- Department of Entomology; University of Wisconsin-Madison; Madison WI 53706 USA
| | - Ronald S. Burton
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California; San Diego La Jolla CA 92037 USA
| |
Collapse
|
107
|
Barreto FS, Pereira RJ, Burton RS. Hybrid Dysfunction and Physiological Compensation in Gene Expression. Mol Biol Evol 2014; 32:613-22. [DOI: 10.1093/molbev/msu321] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
108
|
Wallace GT, Kim TL, Neufeld CJ. Interpopulational variation in the cold tolerance of a broadly distributed marine copepod. CONSERVATION PHYSIOLOGY 2014; 2:cou041. [PMID: 27293662 PMCID: PMC4732475 DOI: 10.1093/conphys/cou041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 06/06/2023]
Abstract
Latitudinal trends in cold tolerance have been observed in many terrestrial ectotherms, but few studies have investigated interpopulational variation in the cold physiology of marine invertebrates. Here, the intertidal copepod Tigriopus californicus was used as a model system to study how local adaptation influences the cold tolerance of a broadly distributed marine crustacean. Among five populations spanning 18° in latitude, the following three metrics were used to compare cold tolerance: the temperature of chill-coma onset, the chill-coma recovery time and post-freezing recovery. In comparison to copepods from warmer southern latitudes, animals from northern populations exhibited lower chill-coma onset temperatures, shorter chill-coma recovery times and faster post-freezing recovery rates. Importantly, all three metrics showed a consistent latitudinal trend, suggesting that any single metric could be used equivalently in future studies investigating latitudinal variation in cold tolerance. Our results agree with previous studies showing that populations within a single species can display strong local adaptation to spatially varying climatic conditions. Thus, accounting for local adaptation in bioclimate models will be useful for understanding how broadly distributed species like T. californicus will respond to anthropogenic climate change.
Collapse
Affiliation(s)
- Gemma T. Wallace
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Biology Department, Whitman College, Walla Walla, WA 99362, USA
| | - Tiffany L. Kim
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Environmental Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Christopher J. Neufeld
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Quest University Canada, Squamish, BC, Canada VB8 0N8
| |
Collapse
|
109
|
Yampolsky LY, Zeng E, Lopez J, Williams PJ, Dick KB, Colbourne JK, Pfrender ME. Functional genomics of acclimation and adaptation in response to thermal stress in Daphnia. BMC Genomics 2014; 15:859. [PMID: 25282344 PMCID: PMC4201682 DOI: 10.1186/1471-2164-15-859] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/23/2014] [Indexed: 12/01/2022] Open
Abstract
Background Gene expression regulation is one of the fundamental mechanisms of phenotypic plasticity and is expected to respond to selection in conditions favoring phenotypic response. The observation that many organisms increase their stress tolerance after acclimation to moderate levels of stress is an example of plasticity which has been long hypothesized to be based on adaptive changes in gene expression. We report genome-wide patterns of gene expression in two heat-tolerant and two heat-sensitive parthenogenetic clones of the zooplankton crustacean Daphnia pulex exposed for three generations to either optimal (18°C) or substressful (28°C) temperature. Results A large number of genes responded to temperature and many demonstrated a significant genotype-by-environment (GxE) interaction. Among genes with a significant GxE there were approximately equally frequent instances of canalization, i.e. stronger plasticity in heat-sensitive than in heat-tolerant clones, and of enhancement of plasticity along the evolutionary vector toward heat tolerance. The strongest response observed is the across-the-board down-regulation of a variety of genes occurring in heat-tolerant, but not in heat-sensitive clones. This response is particularly obvious among genes involved in core metabolic pathways and those responsible for transcription, translation and DNA repair. Conclusions The observed down-regulation of metabolism, consistent with previous findings in yeast and Drosophila, may reflect a general compensatory stress response. The associated down-regulation of DNA repair pathways potentially creates a trade-off between short-term benefits of survival at high temperature and long-term costs of accelerated mutation accumulation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-859) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lev Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37641, USA.
| | | | | | | | | | | | | |
Collapse
|
110
|
Wang W, Hui JHL, Chan TF, Chu KH. De novo transcriptome sequencing of the snail Echinolittorina malaccana: identification of genes responsive to thermal stress and development of genetic markers for population studies. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:547-559. [PMID: 24825364 DOI: 10.1007/s10126-014-9573-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
Echinolittorina snails inhabit the upper intertidal rocky shore and face strong selection pressures from thermal extremes and fluctuations. Revealing the molecular processes of adaptive significance is greatly obstructed by the scarcity of genomic resource for these taxa. Here, we reported the first comprehensive transcriptome dataset for the genus Echinolittorina. Using Illumina HiSeq 2000 platform, about 52 M and 54 M paired-end clean reads were, respectively, generated for the control and heat-stressed libraries. Totally, 115,211 unique transcript fragments (unigenes) were assembled, with an average length of 453 bp and a N50 size of 492 bp. Approximately one third of the unigenes could be annotated according to their homology matches against the Nr, Swiss-Prot, COG, or KEGG databases, and they were found to represent 23,098 non-redundant genes. Gene expression comparison revealed that 1,267 and 6,663 annotated genes were, respectively, up- and downregulated with at least twofold changes upon heat stress. Gene Ontology and KEGG pathway analyses indicated that there were overrepresented amount of genes enriched in a broad spectrum of biological processes and pathways, including those associated with cytoskeleton organization, developmental regulation, signaling transduction, infection, and cardiac function. In addition, a transcriptome-wide search for polymorphic loci yielded a total of 11,228 simple sequence repeats (SSRs) from 9,938 unigenes and 138,631 single nucleotide polymorphism (SNP) and insertion/deletion (INDEL) sites among 22,770 unigenes. The large number of transcript sequences acquired, the biological pathways identified, and the candidate microsatellite and SNP/INDEL loci discovered in the study will serve as valuable resources for further investigations of genetic differentiation and thermal adaptation among populations.
Collapse
Affiliation(s)
- Wei Wang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong,
| | | | | | | |
Collapse
|
111
|
Sun PY, Foley HB, Handschumacher L, Suzuki A, Karamanukyan T, Edmands S. Acclimation and adaptation to common marine pollutants in the copepod Tigriopus californicus. CHEMOSPHERE 2014; 112:465-471. [PMID: 25048941 DOI: 10.1016/j.chemosphere.2014.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/07/2014] [Accepted: 05/11/2014] [Indexed: 06/03/2023]
Abstract
Establishing water quality criteria using bioassays is complicated by variation in chemical tolerance between populations. Two major contributors to this variation are acclimation and adaptation, which are both linked to exposure history, but differ in how long their effects are maintained. Our study examines how tolerance changes over multiple generations of exposure to two common marine pollutants, copper (Cu) and tributyltin oxide (TBTO), in a sexually reproducing marine copepod, Tigriopus californicus. Lines of T. californicus were chronically exposed to sub-lethal levels of Cu and TBTO for 12 generations followed by a recovery period of 3 generations in seawater control conditions. At each generation, the average number of offspring produced and survived to 28 d was determined and used as the metric of tolerance. Lines exposed to Cu and TBTO showed an overall increase in tolerance over time. Increased Cu tolerance arose by generation 3 in the chronically exposed lines and was lost after 3 generations in seawater control conditions. Increased TBTO tolerance was detected at generation 7 and was maintained even after 3 generations in seawater control conditions. It was concluded from this study that tolerance to Cu is consistent with acclimation, a quick gain and loss of tolerance. In contrast, TBTO tolerance is consistent with adaptation, in which onset of tolerance was delayed relative to an acclimation response and maintained in the absence of exposure. These findings illustrate that consideration of exposure history is necessary when using bioassays to measure chemical tolerance.
Collapse
Affiliation(s)
- Patrick Y Sun
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA, United States.
| | - Helen B Foley
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA, United States
| | - Lisa Handschumacher
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA, United States
| | - Amanda Suzuki
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA, United States
| | - Tigran Karamanukyan
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA, United States
| | - Suzanne Edmands
- Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
112
|
Dunning LT, Dennis AB, Sinclair BJ, Newcomb RD, Buckley TR. Divergent transcriptional responses to low temperature among populations of alpine and lowland species of New Zealand stick insects (Micrarchus). Mol Ecol 2014; 23:2712-26. [DOI: 10.1111/mec.12767] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Luke T. Dunning
- Landcare Research; Private Bag 92170 Auckland New Zealand
- School of Biological Sciences; The University of Auckland; Private Bag 92019 Auckland New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution; Palmerston North New Zealand
| | - Alice B. Dennis
- Landcare Research; Private Bag 92170 Auckland New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution; Palmerston North New Zealand
| | - Brent J. Sinclair
- Department of Biology; The University of Western Ontario; London ON Canada N6G 1L3
| | - Richard D. Newcomb
- School of Biological Sciences; The University of Auckland; Private Bag 92019 Auckland New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution; Palmerston North New Zealand
- The New Zealand Institute of Plant & Food Research Limited; Private Bag 92169 Auckland New Zealand
| | - Thomas R. Buckley
- Landcare Research; Private Bag 92170 Auckland New Zealand
- School of Biological Sciences; The University of Auckland; Private Bag 92019 Auckland New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution; Palmerston North New Zealand
| |
Collapse
|
113
|
Christie AE. Prediction of the peptidomes of Tigriopus californicus and Lepeophtheirus salmonis (Copepoda, Crustacea). Gen Comp Endocrinol 2014; 201:87-106. [PMID: 24613138 DOI: 10.1016/j.ygcen.2014.02.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/03/2014] [Accepted: 02/12/2014] [Indexed: 11/23/2022]
Abstract
Transcriptome mining is a powerful method for crustacean peptide discovery, especially when large sequence datasets are available and an appropriate reference is extant. Recently, a 206,041-sequence transcriptome for the copepod Calanus finmarchicus was mined for peptide-encoding transcripts, with ones for 17 families/subfamilies identified. Here, the deduced Calanus pre/preprohormones were used as templates for peptide discovery in the copepods Tigriopus californicus and Lepeophtheirus salmonis; large transcriptome shotgun assembly datasets are publicly accessible for both species. Sixty-five Tigriopus and 17 Lepeophtheirus transcripts, encompassing 22 and 13 distinct peptide families/subfamilies, respectively, were identified, with the structures of 161 and 70 unique mature peptides predicted from the deduced precursors. The identified peptides included members of the allatostatin A, allatostatin C, bursicon α, bursicon β, CAPA/periviscerokinin/pyrokinin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, FLRFamide, leucokinin, myosuppressin, neuroparsin, neuropeptide F, orcokinin, and tachykinin-related peptide families, most of which possess novel structures, though isoforms from other copepods are known. Of particular note was the discovery of novel isoforms of adipokinetic hormone-corazonin-like peptide, allatotropin, corazonin, eclosion hormone and intocin, peptide families previously unidentified in copepods. In addition, Tigriopus precursors for two previously unknown peptide groups were discovered, one encoding GSEFLamides and the other DXXRLamides; precursors for the novel FXGGXamide family were identified from both Tigriopus and Lepeophtheirus. These data not only greatly expand the catalog of known copepod peptides, but also provide strong foundations for future functional studies of peptidergic signaling in members of this ecologically important crustacean subclass.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
114
|
Yampolsky LY, Schaer TMM, Ebert D. Adaptive phenotypic plasticity and local adaptation for temperature tolerance in freshwater zooplankton. Proc Biol Sci 2013; 281:20132744. [PMID: 24352948 DOI: 10.1098/rspb.2013.2744] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many organisms have geographical distributions extending from the tropics to near polar regions or can experience up to 30°C temperature variation within the lifespan of an individual. Two forms of evolutionary adaptation to such wide ranges in ambient temperatures are frequently discussed: local adaptation and phenotypic plasticity. The freshwater planktonic crustacean Daphnia magna, whose range extends from South Africa to near arctic sites, shows strong phenotypic and genotypic variation in response to temperature. In this study, we use D. magna clones from 22 populations (one clone per population) ranging from latitude 0° (Kenya) to 66° North (White Sea) to explore the contributions of phenotypic plasticity and local adaptation to high temperature tolerance. Temperature tolerance was studied as knockout time (time until immobilization, T(imm)) at 37°C in clones acclimatized to either 20°C or 28°C. Acclimatization to 28°C strongly increased T(imm), testifying to adaptive phenotypic plasticity. At the same time, Timm significantly correlated with average high temperature at the clones' sites of origin, suggesting local adaptation. As earlier studies have found that haemoglobin expression contributes to temperature tolerance, we also quantified haemoglobin concentration in experimental animals and found that both acclimatization temperature (AccT) and temperature at the site of origin are positively correlated with haemoglobin concentration. Furthermore, Daphnia from warmer climates upregulate haemoglobin much more strongly in response to AccT, suggesting local adaptation for plasticity in haemoglobin expression. Our results show that both local adaptation and phenotypic plasticity contribute to temperature tolerance, and elucidate a possible role of haemoglobin in mediating these effects that differs along a cold-warm gradient.
Collapse
Affiliation(s)
- Lev Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, , Johnson City, TN 37614-1710, USA, Zoological Institute, Basel University, , Vesalgasse 1, Basel 4051, Switzerland
| | | | | |
Collapse
|
115
|
Fu X, Sun Y, Wang J, Xing Q, Zou J, Li R, Wang Z, Wang S, Hu X, Zhang L, Bao Z. Sequencing-based gene network analysis provides a core set of gene resource for understanding thermal adaptation in Zhikong scallop Chlamys farreri. Mol Ecol Resour 2013; 14:184-98. [PMID: 24128079 DOI: 10.1111/1755-0998.12169] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/28/2013] [Accepted: 09/07/2013] [Indexed: 12/14/2022]
Abstract
Marine organisms are commonly exposed to variable environmental conditions, and many of them are under threat from increased sea temperatures caused by global climate change. Generating transcriptomic resources under different stress conditions are crucial for understanding molecular mechanisms underlying thermal adaptation. In this study, we conducted transcriptome-wide gene expression profiling of the scallop Chlamys farreri challenged by acute and chronic heat stress. Of the 13 953 unique tags, more than 850 were significantly differentially expressed at each time point after acute heat stress, which was more than the number of tags differentially expressed (320-350) under chronic heat stress. To obtain a systemic view of gene expression alterations during thermal stress, a weighted gene coexpression network was constructed. Six modules were identified as acute heat stress-responsive modules. Among them, four modules involved in apoptosis regulation, mRNA binding, mitochondrial envelope formation and oxidation reduction were downregulated. The remaining two modules were upregulated. One was enriched with chaperone and the other with microsatellite sequences, whose coexpression may originate from a transcription factor binding site. These results indicated that C. farreri triggered several cellular processes to acclimate to elevated temperature. No modules responded to chronic heat stress, suggesting that the scallops might have acclimated to elevated temperature within 3 days. This study represents the first sequencing-based gene network analysis in a nonmodel aquatic species and provides valuable gene resources for the study of thermal adaptation, which should assist in the development of heat-tolerant scallop lines for aquaculture.
Collapse
Affiliation(s)
- X Fu
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Pereira RJ, Barreto FS, Burton RS. ECOLOGICAL NOVELTY BY HYBRIDIZATION: EXPERIMENTAL EVIDENCE FOR INCREASED THERMAL TOLERANCE BY TRANSGRESSIVE SEGREGATION INTIGRIOPUS CALIFORNICUS. Evolution 2013; 68:204-15. [DOI: 10.1111/evo.12254] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 08/16/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Ricardo J. Pereira
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California; San Diego, La Jolla CA 92093
| | - Felipe S. Barreto
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California; San Diego, La Jolla CA 92093
| | - Ronald S. Burton
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California; San Diego, La Jolla CA 92093
| |
Collapse
|
117
|
Baculovirus replication induces the expression of heat shock proteins in vivo and in vitro. Arch Virol 2013; 158:1517-22. [PMID: 23443933 DOI: 10.1007/s00705-013-1640-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
A recent handful of studies have linked baculovirus infection with the induction of heat shock proteins, a highly conserved family of cytoprotective proteins. Here, we demonstrate baculovirus-stimulated upregulation of hsp70 transcription in the natural host, Helicoverpa zea. Larvae lethally infected with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV) accumulated hsp70 transcripts throughout the 72-hour course of infection in the midgut, hemocytes, and fat body. While a maximal 17- or 15-fold induction of hsp70 was noted in the midgut and hemocytes, respectively, by 72 hours postinfection, the level of hsp70 transcription in the fat body of larvae was greater than two orders of magnitude higher than in mock-infected larvae. These results were largely mirrored in cultures of infected cells, and a potentiation effect was observed in cells that were both heat shocked and infected. In contrast, Spodoptera frugiperda multiple nucleopolyhedrovirus and ultraviolet-inactivated HzSNPV did not stimulate hsp70 transcription in these non-permissive larvae and in cell culture, respectively. Taken together, this report documents baculovirus-mediated upregulation of hsp70 in the host and demonstrates the requirement for productive infection for hsp70 induction in vitro and in vivo.
Collapse
|