101
|
Genome-wide characterization and linkage mapping of simple sequence repeats in mei (Prunus mume Sieb. et Zucc.). PLoS One 2013; 8:e59562. [PMID: 23555708 PMCID: PMC3610739 DOI: 10.1371/journal.pone.0059562] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 02/19/2013] [Indexed: 11/19/2022] Open
Abstract
Because of its popularity as an ornamental plant in East Asia, mei (Prunus mume Sieb. et Zucc.) has received increasing attention in genetic and genomic research with the recent shotgun sequencing of its genome. Here, we performed the genome-wide characterization of simple sequence repeats (SSRs) in the mei genome and detected a total of 188,149 SSRs occurring at a frequency of 794 SSR/Mb. Mononucleotide repeats were the most common type of SSR in genomic regions, followed by di- and tetranucleotide repeats. Most of the SSRs in coding sequences (CDS) were composed of tri- or hexanucleotide repeat motifs, but mononucleotide repeats were always the most common in intergenic regions. Genome-wide comparison of SSR patterns among the mei, strawberry (Fragaria vesca), and apple (Malus×domestica) genomes showed mei to have the highest density of SSRs, slightly higher than that of strawberry (608 SSR/Mb) and almost twice as high as that of apple (398 SSR/Mb). Mononucleotide repeats were the dominant SSR motifs in the three Rosaceae species. Using 144 SSR markers, we constructed a 670 cM-long linkage map of mei delimited into eight linkage groups (LGs), with an average marker distance of 5 cM. Seventy one scaffolds covering about 27.9% of the assembled mei genome were anchored to the genetic map, depending on which the macro-colinearity between the mei genome and Prunus T×E reference map was identified. The framework map of mei constructed provides a first step into subsequent high-resolution genetic mapping and marker-assisted selection for this ornamental species.
Collapse
|
102
|
Ward JA, Bhangoo J, Fernández-Fernández F, Moore P, Swanson JD, Viola R, Velasco R, Bassil N, Weber CA, Sargent DJ. Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genomics 2013. [PMID: 23324311 DOI: 10.1186/1471‐2164‐14‐2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rapid development of highly saturated genetic maps aids molecular breeding, which can accelerate gain per breeding cycle in woody perennial plants such as Rubus idaeus (red raspberry). Recently, robust genotyping methods based on high-throughput sequencing were developed, which provide high marker density, but result in some genotype errors and a large number of missing genotype values. Imputation can reduce the number of missing values and can correct genotyping errors, but current methods of imputation require a reference genome and thus are not an option for most species. RESULTS Genotyping by Sequencing (GBS) was used to produce highly saturated maps for a R. idaeus pseudo-testcross progeny. While low coverage and high variance in sequencing resulted in a large number of missing values for some individuals, a novel method of imputation based on maximum likelihood marker ordering from initial marker segregation overcame the challenge of missing values, and made map construction computationally tractable. The two resulting parental maps contained 4521 and 2391 molecular markers spanning 462.7 and 376.6 cM respectively over seven linkage groups. Detection of precise genomic regions with segregation distortion was possible because of map saturation. Microsatellites (SSRs) linked these results to published maps for cross-validation and map comparison. CONCLUSIONS GBS together with genome-independent imputation provides a rapid method for genetic map construction in any pseudo-testcross progeny. Our method of imputation estimates the correct genotype call of missing values and corrects genotyping errors that lead to inflated map size and reduced precision in marker placement. Comparison of SSRs to published R. idaeus maps showed that the linkage maps constructed with GBS and our method of imputation were robust, and marker positioning reliable. The high marker density allowed identification of genomic regions with segregation distortion in R. idaeus, which may help to identify deleterious alleles that are the basis of inbreeding depression in the species.
Collapse
Affiliation(s)
- Judson A Ward
- Department of Horticulture, Cornell University, New York State Agricultural Experiment Station, Geneva, New York 14456, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Ward JA, Bhangoo J, Fernández-Fernández F, Moore P, Swanson JD, Viola R, Velasco R, Bassil N, Weber CA, Sargent DJ. Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genomics 2013; 14:2. [PMID: 23324311 PMCID: PMC3575332 DOI: 10.1186/1471-2164-14-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/04/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rapid development of highly saturated genetic maps aids molecular breeding, which can accelerate gain per breeding cycle in woody perennial plants such as Rubus idaeus (red raspberry). Recently, robust genotyping methods based on high-throughput sequencing were developed, which provide high marker density, but result in some genotype errors and a large number of missing genotype values. Imputation can reduce the number of missing values and can correct genotyping errors, but current methods of imputation require a reference genome and thus are not an option for most species. RESULTS Genotyping by Sequencing (GBS) was used to produce highly saturated maps for a R. idaeus pseudo-testcross progeny. While low coverage and high variance in sequencing resulted in a large number of missing values for some individuals, a novel method of imputation based on maximum likelihood marker ordering from initial marker segregation overcame the challenge of missing values, and made map construction computationally tractable. The two resulting parental maps contained 4521 and 2391 molecular markers spanning 462.7 and 376.6 cM respectively over seven linkage groups. Detection of precise genomic regions with segregation distortion was possible because of map saturation. Microsatellites (SSRs) linked these results to published maps for cross-validation and map comparison. CONCLUSIONS GBS together with genome-independent imputation provides a rapid method for genetic map construction in any pseudo-testcross progeny. Our method of imputation estimates the correct genotype call of missing values and corrects genotyping errors that lead to inflated map size and reduced precision in marker placement. Comparison of SSRs to published R. idaeus maps showed that the linkage maps constructed with GBS and our method of imputation were robust, and marker positioning reliable. The high marker density allowed identification of genomic regions with segregation distortion in R. idaeus, which may help to identify deleterious alleles that are the basis of inbreeding depression in the species.
Collapse
Affiliation(s)
- Judson A Ward
- Department of Horticulture, Cornell University, New York State Agricultural Experiment Station, Geneva, New York 14456, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Vandepitte K, Honnay O, Mergeay J, Breyne P, Roldán-Ruiz I, De Meyer T. SNP discovery using Paired-End RAD-tag sequencing on pooled genomic DNA of Sisymbrium austriacum (Brassicaceae). Mol Ecol Resour 2012; 13:269-75. [PMID: 23231662 DOI: 10.1111/1755-0998.12039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/22/2012] [Accepted: 10/30/2012] [Indexed: 12/22/2022]
Abstract
Single nucleotide polymorphisms SNPs are rapidly replacing anonymous markers in population genomic studies, but their use in non model organisms is hampered by the scarcity of cost-effective approaches to uncover genome-wide variation in a comprehensive subset of individuals. The screening of one or only a few individuals induces ascertainment bias. To discover SNPs for a population genomic study of the Pyrenean rocket (Sisymbrium austriacum subsp. chrysanthum), we undertook a pooled RAD-PE (Restriction site Associated DNA Paired-End sequencing) approach. RAD tags were generated from the PstI-digested pooled genomic DNA of 12 individuals sampled across the species distribution range and paired-end sequenced using Illumina technology to produce ~24.5 Mb of sequences, covering ~7% of the specie's genome. Sequences were assembled into ~76 000 contigs with a mean length of 323 bp (N(50) = 357 bp, sequencing depth = 24x). In all, >15 000 SNPs were called, of which 47% were annotated in putative genic regions based on homology with the Arabidopsis thaliana genome. Gene ontology (GO) slim categorization demonstrated that the identified SNPs covered extant genic variation well. The validation of 300 SNPs on a larger set of individuals using a KASPar assay underpinned the utility of pooled RAD-PE as an inexpensive genome-wide SNP discovery technique (success rate: 87%). In addition to SNPs, we discovered >600 putative SSR markers.
Collapse
Affiliation(s)
- K Vandepitte
- Plant Conservation and Population Biology, Biology Department, University of Leuven, Kasteelpark Arenberg 31, Heverlee, B-3001, Belgium.
| | | | | | | | | | | |
Collapse
|
105
|
Kumar S, You FM, Cloutier S. Genome wide SNP discovery in flax through next generation sequencing of reduced representation libraries. BMC Genomics 2012; 13:684. [PMID: 23216845 PMCID: PMC3557168 DOI: 10.1186/1471-2164-13-684] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 11/29/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Flax (Linum usitatissimum L.) is a significant fibre and oilseed crop. Current flax molecular markers, including isozymes, RAPDs, AFLPs and SSRs are of limited use in the construction of high density linkage maps and for association mapping applications due to factors such as low reproducibility, intense labour requirements and/or limited numbers. We report here on the use of a reduced representation library strategy combined with next generation Illumina sequencing for rapid and large scale discovery of SNPs in eight flax genotypes. SNP discovery was performed through in silico analysis of the sequencing data against the whole genome shotgun sequence assembly of flax genotype CDC Bethune. Genotyping-by-sequencing of an F6-derived recombinant inbred line population provided validation of the SNPs. RESULTS Reduced representation libraries of eight flax genotypes were sequenced on the Illumina sequencing platform resulting in sequence coverage ranging from 4.33 to 15.64X (genome equivalents). Depending on the relatedness of the genotypes and the number and length of the reads, between 78% and 93% of the reads mapped onto the CDC Bethune whole genome shotgun sequence assembly. A total of 55,465 SNPs were discovered with the largest number of SNPs belonging to the genotypes with the highest mapping coverage percentage. Approximately 84% of the SNPs discovered were identified in a single genotype, 13% were shared between any two genotypes and the remaining 3% in three or more. Nearly a quarter of the SNPs were found in genic regions. A total of 4,706 out of 4,863 SNPs discovered in Macbeth were validated using genotyping-by-sequencing of 96 F6 individuals from a recombinant inbred line population derived from a cross between CDC Bethune and Macbeth, corresponding to a validation rate of 96.8%. CONCLUSIONS Next generation sequencing of reduced representation libraries was successfully implemented for genome-wide SNP discovery from flax. The genotyping-by-sequencing approach proved to be efficient for validation. The SNP resources generated in this work will assist in generating high density maps of flax and facilitate QTL discovery, marker-assisted selection, phylogenetic analyses, association mapping and anchoring of the whole genome shotgun sequence.
Collapse
Affiliation(s)
- Santosh Kumar
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, R3T 2M9, Canada
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Frank M You
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, R3T 2M9, Canada
| | - Sylvie Cloutier
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, R3T 2M9, Canada
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
106
|
Yang M, Han Y, VanBuren R, Ming R, Xu L, Han Y, Liu Y. Genetic linkage maps for Asian and American lotus constructed using novel SSR markers derived from the genome of sequenced cultivar. BMC Genomics 2012; 13:653. [PMID: 23170872 PMCID: PMC3564711 DOI: 10.1186/1471-2164-13-653] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 11/07/2012] [Indexed: 01/18/2023] Open
Abstract
Background The genus Nelumbo Adans. comprises two living species, N. nucifera Gaertan. (Asian lotus) and N. lutea Pers. (American lotus). A genetic linkage map is an essential resource for plant genetic studies and crop improvement but has not been generated for Nelumbo. We aimed to develop genomic simple sequence repeat (SSR) markers from the genome sequence and construct two genetic maps for Nelumbo to assist genome assembly and integration of a genetic map with the genome sequence. Results A total of 86,089 SSR motifs were identified from the genome sequences. Di- and tri-nucleotide repeat motifs were the most abundant, and accounted for 60.73% and 31.66% of all SSRs, respectively. AG/GA repeats constituted 51.17% of dinucleotide repeat motifs, followed by AT/TA (44.29%). Of 500 SSR primers tested, 386 (77.20%) produced scorable alleles with an average of 2.59 per primer, and 185 (37.00%) showed polymorphism among two parental genotypes, N. nucifera ‘Chinese Antique’ and N. lutea ‘AL1’, and six progenies of their F1 population. The normally segregating markers, which comprised 268 newly developed SSRs, 37 previously published SSRs and 53 sequence-related amplified polymorphism markers, were used for genetic map construction. The map for Asian lotus was 365.67 cM with 47 markers distributed in seven linkage groups. The map for American lotus was 524.51 cM, and contained 177 markers distributed in 11 genetic linkage groups. The number of markers per linkage group ranged from three to 34 with an average genetic distance of 3.97 cM between adjacent markers. Moreover, 171 SSR markers contained in linkage groups were anchored to 97 genomic DNA sequence contigs of ‘Chinese Antique’. The 97 contigs were merged into 60 scaffolds. Conclusion Genetic mapping of SSR markers derived from sequenced contigs in Nelumbo enabled the associated contigs to be anchored in the linkage map and facilitated assembly of the genome sequences of ‘Chinese Antique’. The present study reports the first construction of genetic linkage maps for Nelumbo, which can serve as reference linkage maps to accelerate characterization germplasm, genetic mapping for traits of economic interest, and molecular breeding with marker-assisted selection.
Collapse
Affiliation(s)
- Mei Yang
- Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | | | | | | | | | | | | |
Collapse
|
107
|
Genome sequence of dwarf birch (Betula nana) and cross-species RAD markers. Mol Ecol 2012; 22:3098-111. [DOI: 10.1111/mec.12131] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 10/12/2012] [Accepted: 10/17/2012] [Indexed: 12/17/2022]
|
108
|
Two different high throughput sequencing approaches identify thousands of de novo genomic markers for the genetically depleted Bornean elephant. PLoS One 2012. [PMID: 23185354 PMCID: PMC3504023 DOI: 10.1371/journal.pone.0049533] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
High throughput sequencing technologies are being applied to an increasing number of model species with a high-quality reference genome. The application and analyses of whole-genome sequence data in non-model species with no prior genomic information are currently under way. Recent sequencing technologies provide new opportunities for gathering genomic data in natural populations, laying the empirical foundation for future research in the field of conservation and population genomics. Here we present the case study of the Bornean elephant, which is the most endangered subspecies of Asian elephant and exhibits very low genetic diversity. We used two different sequencing platforms, the Roche 454 FLX (shotgun) and Illumina, GAIIx (Restriction site associated DNA, RAD) to evaluate the feasibility of the two methodologies for the discovery of de novo markers (single nucleotide polymorphism, SNPs and microsatellites) using low coverage data. Approximately, 6,683 (shotgun) and 14,724 (RAD) SNPs were detected within our elephant sequence dataset. Genotyping of a representative sample of 194 SNPs resulted in a SNP validation rate of ∼ 83 to 94% and 17% of the loci were polymorphic with a low diversity (Ho = 0.057). Different numbers of microsatellites were identified through shotgun (27,226) and RAD (868) techniques. Out of all di-, tri-, and tetra-microsatellite loci, 1,706 loci had sufficient flanking regions (shotgun) while only 7 were found with RAD. All microsatellites were monomorphic in the Bornean but polymorphic in another elephant subspecies. Despite using different sample sizes, and the well known differences in the two platforms used regarding sequence length and throughput, the two approaches showed high validation rate. The approaches used here for marker development in a threatened species demonstrate the utility of high throughput sequencing technologies as a starting point for the development of genomic tools in a non-model species and in particular for a species with low genetic diversity.
Collapse
|
109
|
Keller I, Wagner CE, Greuter L, Mwaiko S, Selz OM, Sivasundar A, Wittwer S, Seehausen O. Population genomic signatures of divergent adaptation, gene flow and hybrid speciation in the rapid radiation of Lake Victoria cichlid fishes. Mol Ecol 2012; 22:2848-63. [DOI: 10.1111/mec.12083] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 08/29/2012] [Accepted: 09/07/2012] [Indexed: 01/07/2023]
|
110
|
Davey JW, Cezard T, Fuentes-Utrilla P, Eland C, Gharbi K, Blaxter ML. Special features of RAD Sequencing data: implications for genotyping. Mol Ecol 2012; 22:3151-64. [PMID: 23110438 PMCID: PMC3712469 DOI: 10.1111/mec.12084] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/07/2012] [Accepted: 09/12/2012] [Indexed: 12/17/2022]
Abstract
Restriction site-associated DNA Sequencing (RAD-Seq) is an economical and efficient method for SNP discovery and genotyping. As with other sequencing-by-synthesis methods, RAD-Seq produces stochastic count data and requires sensitive analysis to develop or genotype markers accurately. We show that there are several sources of bias specific to RAD-Seq that are not explicitly addressed by current genotyping tools, namely restriction fragment bias, restriction site heterozygosity and PCR GC content bias. We explore the performance of existing analysis tools given these biases and discuss approaches to limiting or handling biases in RAD-Seq data. While these biases need to be taken seriously, we believe RAD loci affected by them can be excluded or processed with relative ease in most cases and that most RAD loci will be accurately genotyped by existing tools.
Collapse
Affiliation(s)
- John W Davey
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK.
| | | | | | | | | | | |
Collapse
|
111
|
Increasing Food Production in Africa by Boosting the Productivity of Understudied Crops. AGRONOMY-BASEL 2012. [DOI: 10.3390/agronomy2040240] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
112
|
Deschamps S, Llaca V, May GD. Genotyping-by-Sequencing in Plants. BIOLOGY 2012; 1:460-83. [PMID: 24832503 PMCID: PMC4009820 DOI: 10.3390/biology1030460] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 08/07/2012] [Accepted: 09/13/2012] [Indexed: 12/12/2022]
Abstract
The advent of next-generation DNA sequencing (NGS) technologies has led to the development of rapid genome-wide Single Nucleotide Polymorphism (SNP) detection applications in various plant species. Recent improvements in sequencing throughput combined with an overall decrease in costs per gigabase of sequence is allowing NGS to be applied to not only the evaluation of small subsets of parental inbred lines, but also the mapping and characterization of traits of interest in much larger populations. Such an approach, where sequences are used simultaneously to detect and score SNPs, therefore bypassing the entire marker assay development stage, is known as genotyping-by-sequencing (GBS). This review will summarize the current state of GBS in plants and the promises it holds as a genome-wide genotyping application.
Collapse
Affiliation(s)
- Stéphane Deschamps
- DuPont Agricultural Biotechnology, Experimental Station, PO Box 80353, 200 Powder Mill Road, Wilmington, DE 19880-0353, USA.
| | - Victor Llaca
- DuPont Agricultural Biotechnology, Experimental Station, PO Box 80353, 200 Powder Mill Road, Wilmington, DE 19880-0353, USA.
| | - Gregory D May
- DuPont Pioneer, 7300 NW 62nd Ave., P.O. Box 1004, Johnston, IA 50131-1004, USA.
| |
Collapse
|
113
|
Wang N, Fang L, Xin H, Wang L, Li S. Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing. BMC PLANT BIOLOGY 2012; 12:148. [PMID: 22908993 PMCID: PMC3528476 DOI: 10.1186/1471-2229-12-148] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/18/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Genetic mapping and QTL detection are powerful methodologies in plant improvement and breeding. Construction of a high-density and high-quality genetic map would be of great benefit in the production of superior grapes to meet human demand. High throughput and low cost of the recently developed next generation sequencing (NGS) technology have resulted in its wide application in genome research. Sequencing restriction-site associated DNA (RAD) might be an efficient strategy to simplify genotyping. Combining NGS with RAD has proven to be powerful for single nucleotide polymorphism (SNP) marker development. RESULTS An F1 population of 100 individual plants was developed. In-silico digestion-site prediction was used to select an appropriate restriction enzyme for construction of a RAD sequencing library. Next generation RAD sequencing was applied to genotype the F1 population and its parents. Applying a cluster strategy for SNP modulation, a total of 1,814 high-quality SNP markers were developed: 1,121 of these were mapped to the female genetic map, 759 to the male map, and 1,646 to the integrated map. A comparison of the genetic maps to the published Vitis vinifera genome revealed both conservation and variations. CONCLUSIONS The applicability of next generation RAD sequencing for genotyping a grape F1 population was demonstrated, leading to the successful development of a genetic map with high density and quality using our designed SNP markers. Detailed analysis revealed that this newly developed genetic map can be used for a variety of genome investigations, such as QTL detection, sequence assembly and genome comparison.
Collapse
Affiliation(s)
- Nian Wang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Linchuan Fang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Lijun Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shaohua Li
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
114
|
Wang N, Fang L, Xin H, Wang L, Li S. Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing. BMC PLANT BIOLOGY 2012. [PMID: 22908993 DOI: 10.1186/1471-2229-12148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Genetic mapping and QTL detection are powerful methodologies in plant improvement and breeding. Construction of a high-density and high-quality genetic map would be of great benefit in the production of superior grapes to meet human demand. High throughput and low cost of the recently developed next generation sequencing (NGS) technology have resulted in its wide application in genome research. Sequencing restriction-site associated DNA (RAD) might be an efficient strategy to simplify genotyping. Combining NGS with RAD has proven to be powerful for single nucleotide polymorphism (SNP) marker development. RESULTS An F1 population of 100 individual plants was developed. In-silico digestion-site prediction was used to select an appropriate restriction enzyme for construction of a RAD sequencing library. Next generation RAD sequencing was applied to genotype the F1 population and its parents. Applying a cluster strategy for SNP modulation, a total of 1,814 high-quality SNP markers were developed: 1,121 of these were mapped to the female genetic map, 759 to the male map, and 1,646 to the integrated map. A comparison of the genetic maps to the published Vitis vinifera genome revealed both conservation and variations. CONCLUSIONS The applicability of next generation RAD sequencing for genotyping a grape F1 population was demonstrated, leading to the successful development of a genetic map with high density and quality using our designed SNP markers. Detailed analysis revealed that this newly developed genetic map can be used for a variety of genome investigations, such as QTL detection, sequence assembly and genome comparison.
Collapse
Affiliation(s)
- Nian Wang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | | | | | | | | |
Collapse
|
115
|
A RAD tag derived marker based eggplant linkage map and the location of QTLs determining anthocyanin pigmentation. PLoS One 2012; 7:e43740. [PMID: 22912903 PMCID: PMC3422253 DOI: 10.1371/journal.pone.0043740] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/23/2012] [Indexed: 11/19/2022] Open
Abstract
Both inter- and intra-specific maps have been developed in eggplant (Solanum melongena L.). The former benefit from an enhanced frequency of marker polymorphism, but their relevance to marker-assisted crop breeding is limited. Combining the restriction-site associated DNA strategy with high throughput sequencing has facilitated the discovery of a large number of functional single nucleotide polymorphism (SNP) markers discriminating between the two eggplant mapping population parental lines '305E40' and '67/3'. A set of 347 de novo SNPs, together with 84 anchoring markers, were applied to the F(2) mapping population bred from the cross '305E40' x '67/3' to construct a linkage map. In all, 415 of the 431 markers were assembled into twelve major and one minor linkage group, spanning 1,390 cM, and the inclusion of established markers allowed each linkage group to be assigned to one of the 12 eggplant chromosomes. The map was then used to discover the genetic basis of seven traits associated with anthocyanin content. Each of the traits proved to be controlled by between one and six quantitative trait loci (QTL), of which at least one was a major QTL. Exploitation of syntenic relationships between the eggplant and tomato genomes facilitated the identification of potential candidate genes for the eggplant QTLs related to anthocyanin accumulation. The intra-specific linkage map should have utility for elucidating the genetic basis of other phenotypic traits in eggplant.
Collapse
|
116
|
Hurtado M, Vilanova S, Plazas M, Gramazio P, Fonseka HH, Fonseka R, Prohens J. Diversity and relationships of eggplants from three geographically distant secondary centers of diversity. PLoS One 2012; 7:e41748. [PMID: 22848589 PMCID: PMC3407184 DOI: 10.1371/journal.pone.0041748] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/25/2012] [Indexed: 02/03/2023] Open
Abstract
Eggplant (Solanum melongena L.) was domesticated in the Indo-Birmanian region, which is also the primary center of diversity for this crop. From there eggplant spread to other regions, and diversity accumulated in several secondary centers of diversity. We have assessed the diversity and relationships of 52 accessions of eggplant from three geographically distant secondary centers of diversity (China, Spain, and Sri Lanka) using 28 morphological descriptors and 12 highly polymorphic genomic SSRs. A wide variation was found for most morphological traits, and significant differences among the three centers of diversity were detected for 22 of these traits. The PCA analysis showed that eggplants from the three origins were morphologically differentiated, and accessions from each of the three secondary centers of diversity presented a typical combination of morphological characteristics. In this respect, discriminant analysis showed that accessions could be correctly classified to their origin using only six traits. The SSR characterization identified 110 alleles and allowed obtaining a unique genetic fingerprint for each accession. Many alleles were found to be private to each origin, but no universal alleles were found for any of the origins. The PCA analysis showed that the genetic differentiation among origins was less clear than for morphological traits, although the analysis of the population structure shows that accessions mostly group according to the origin, but also provides evidence of migration among the three secondary centers of diversity. The genetic diversity (H(T)) within each origin was high, ranging between H(T) = 0.5400 (Sri Lanka) and H(T) = 0.4943 (China), while the standardized genetic differentiation (G'(ST)) among origins was moderate (G'(ST) = 0.2657). The correlation between morphological and SSR distances was non-significant (r = 0.044), indicating that both data are complementary for the conservation of germplasm and breeding of eggplant. These results are relevant for the management of genetic resources, breeding programmes, and evolutionary studies of eggplant.
Collapse
Affiliation(s)
- Maria Hurtado
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - H. Hemal Fonseka
- Horticultural Crop Research and Development Institute, Gannoruwa, Sri Lanka
| | - Ramya Fonseka
- Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
- * E-mail:
| |
Collapse
|
117
|
Yang H, Tao Y, Zheng Z, Li C, Sweetingham MW, Howieson JG. Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L. BMC Genomics 2012; 13:318. [PMID: 22805587 PMCID: PMC3430595 DOI: 10.1186/1471-2164-13-318] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 06/04/2012] [Indexed: 11/29/2022] Open
Abstract
Background In the last 30 years, a number of DNA fingerprinting methods such as RFLP, RAPD, AFLP, SSR, DArT, have been extensively used in marker development for molecular plant breeding. However, it remains a daunting task to identify highly polymorphic and closely linked molecular markers for a target trait for molecular marker-assisted selection. The next-generation sequencing (NGS) technology is far more powerful than any existing generic DNA fingerprinting methods in generating DNA markers. In this study, we employed a grain legume crop Lupinus angustifolius (lupin) as a test case, and examined the utility of an NGS-based method of RAD (restriction-site associated DNA) sequencing as DNA fingerprinting for rapid, cost-effective marker development tagging a disease resistance gene for molecular breeding. Results Twenty informative plants from a cross of RxS (disease resistant x susceptible) in lupin were subjected to RAD single-end sequencing by multiplex identifiers. The entire RAD sequencing products were resolved in two lanes of the 16-lanes per run sequencing platform Solexa HiSeq2000. A total of 185 million raw reads, approximately 17 Gb of sequencing data, were collected. Sequence comparison among the 20 test plants discovered 8207 SNP markers. Filtration of DNA sequencing data with marker identification parameters resulted in the discovery of 38 molecular markers linked to the disease resistance gene Lanr1. Five randomly selected markers were converted into cost-effective, simple PCR-based markers. Linkage analysis using marker genotyping data and disease resistance phenotyping data on a F8 population consisting of 186 individual plants confirmed that all these five markers were linked to the R gene. Two of these newly developed sequence-specific PCR markers, AnSeq3 and AnSeq4, flanked the target R gene at a genetic distance of 0.9 centiMorgan (cM), and are now replacing the markers previously developed by a traditional DNA fingerprinting method for marker-assisted selection in the Australian national lupin breeding program. Conclusions We demonstrated that more than 30 molecular markers linked to a target gene of agronomic trait of interest can be identified from a small portion (1/8) of one sequencing run on HiSeq2000 by applying NGS based RAD sequencing in marker development. The markers developed by the strategy described in this study are all co-dominant SNP markers, which can readily be converted into high throughput multiplex format or low-cost, simple PCR-based markers desirable for large scale marker implementation in plant breeding programs. The high density and closely linked molecular markers associated with a target trait help to overcome a major bottleneck for implementation of molecular markers on a wide range of germplasm in breeding programs. We conclude that application of NGS based RAD sequencing as DNA fingerprinting is a very rapid and cost-effective strategy for marker development in molecular plant breeding. The strategy does not require any prior genome knowledge or molecular information for the species under investigation, and it is applicable to other plant species.
Collapse
Affiliation(s)
- Huaan Yang
- Department of Agriculture and Food Western Australia, 3 Baron-Hay Court, South Perth, 6151, Australia.
| | | | | | | | | | | |
Collapse
|
118
|
Bus A, Hecht J, Huettel B, Reinhardt R, Stich B. High-throughput polymorphism detection and genotyping in Brassica napus using next-generation RAD sequencing. BMC Genomics 2012; 13:281. [PMID: 22726880 PMCID: PMC3442993 DOI: 10.1186/1471-2164-13-281] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/24/2012] [Indexed: 11/28/2022] Open
Abstract
Background The complex genome of rapeseed (Brassica napus) is not well understood despite the economic importance of the species. Good knowledge of sequence variation is needed for genetics approaches and breeding purposes. We used a diversity set of B. napus representing eight different germplasm types to sequence genome-wide distributed restriction-site associated DNA (RAD) fragments for polymorphism detection and genotyping. Results More than 113,000 RAD clusters with more than 20,000 single nucleotide polymorphisms (SNPs) and 125 insertions/deletions were detected and characterized. About one third of the RAD clusters and polymorphisms mapped to the Brassica rapa reference sequence. An even distribution of RAD clusters and polymorphisms was observed across the B. rapa chromosomes, which suggests that there might be an equal distribution over the Brassica oleracea chromosomes, too. The representation of Gene Ontology (GO) terms for unigenes with RAD clusters and polymorphisms revealed no signature of selection with respect to the distribution of polymorphisms within genes belonging to a specific GO category. Conclusions Considering the decreasing costs for next-generation sequencing, the results of our study suggest that RAD sequencing is not only a simple and cost-effective method for high-density polymorphism detection but also an alternative to SNP genotyping from transcriptome sequencing or SNP arrays, even for species with complex genomes such as B. napus.
Collapse
Affiliation(s)
- Anja Bus
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | | | | | |
Collapse
|
119
|
Fukuoka H, Miyatake K, Nunome T, Negoro S, Shirasawa K, Isobe S, Asamizu E, Yamaguchi H, Ohyama A. Development of gene-based markers and construction of an integrated linkage map in eggplant by using Solanum orthologous (SOL) gene sets. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:47-56. [PMID: 22350090 DOI: 10.1007/s00122-012-1815-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/31/2012] [Indexed: 05/07/2023]
Abstract
We constructed an integrated DNA marker linkage map of eggplant (Solanum melongena L.) using DNA marker segregation data sets obtained from two independent intraspecific F(2) populations. The linkage map consisted of 12 linkage groups and encompassed 1,285.5 cM in total. We mapped 952 DNA markers, including 313 genomic SSR markers developed by random sequencing of simple sequence repeat (SSR)-enriched genomic libraries, and 623 single-nucleotide polymorphisms (SNP) and insertion/deletion polymorphisms (InDels) found in eggplant-expressed sequence tags (ESTs) and related genomic sequences [introns and untranslated regions (UTRs)]. Because of their co-dominant inheritance and their highly polymorphic and multi-allelic nature, the SSR markers may be more versatile than the SNP and InDel markers for map-based genetic analysis of any traits of interest using segregating populations derived from any intraspecific crosses of practical breeding materials. However, we found that the distribution of microsatellites in the genome was biased to some extent, and therefore a considerable part of the eggplant genome was first detected when gene-derived SNP and InDel markers were mapped. Of the 623 SNP and InDel markers mapped onto the eggplant integrated map, 469 were derived from eggplant unigenes contained within Solanum orthologous (SOL) gene sets (i.e., sets of orthologous unigenes from eggplant, tomato, and potato). Out of the 469 markers, 326 could also be mapped onto the tomato map. These common markers will be informative landmarks for the transfer of tomato's more saturated genomic information to eggplant and will also provide comparative information on the genome organization of the two solanaceous species. The data are available from the DNA marker database of vegetables, VegMarks (http://vegmarks.nivot.affrc.go.jp).
Collapse
Affiliation(s)
- Hiroyuki Fukuoka
- NARO Institute of Vegetable and Tea Science (NIVTS), National Agriculture and Food Research Organization, 360 Kusawa, Ano, Tsu, Mie, 514-2392, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Truong HT, Ramos AM, Yalcin F, de Ruiter M, van der Poel HJA, Huvenaars KHJ, Hogers RCJ, van Enckevort LJG, Janssen A, van Orsouw NJ, van Eijk MJT. Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations. PLoS One 2012; 7:e37565. [PMID: 22662172 PMCID: PMC3360789 DOI: 10.1371/journal.pone.0037565] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/25/2012] [Indexed: 12/14/2022] Open
Abstract
Conventional marker-based genotyping platforms are widely available, but not without their limitations. In this context, we developed Sequence-Based Genotyping (SBG), a technology for simultaneous marker discovery and co-dominant scoring, using next-generation sequencing. SBG offers users several advantages including a generic sample preparation method, a highly robust genome complexity reduction strategy to facilitate de novo marker discovery across entire genomes, and a uniform bioinformatics workflow strategy to achieve genotyping goals tailored to individual species, regardless of the availability of a reference sequence. The most distinguishing features of this technology are the ability to genotype any population structure, regardless whether parental data is included, and the ability to co-dominantly score SNP markers segregating in populations. To demonstrate the capabilities of SBG, we performed marker discovery and genotyping in Arabidopsis thaliana and lettuce, two plant species of diverse genetic complexity and backgrounds. Initially we obtained 1,409 SNPs for arabidopsis, and 5,583 SNPs for lettuce. Further filtering of the SNP dataset produced over 1,000 high quality SNP markers for each species. We obtained a genotyping rate of 201.2 genotypes/SNP and 58.3 genotypes/SNP for arabidopsis (n = 222 samples) and lettuce (n = 87 samples), respectively. Linkage mapping using these SNPs resulted in stable map configurations. We have therefore shown that the SBG approach presented provides users with the utmost flexibility in garnering high quality markers that can be directly used for genotyping and downstream applications. Until advances and costs will allow for routine whole-genome sequencing of populations, we expect that sequence-based genotyping technologies such as SBG will be essential for genotyping of model and non-model genomes alike.
Collapse
|
121
|
Monson-Miller J, Sanchez-Mendez DC, Fass J, Henry IM, Tai TH, Comai L. Reference genome-independent assessment of mutation density using restriction enzyme-phased sequencing. BMC Genomics 2012; 13:72. [PMID: 22333298 PMCID: PMC3305632 DOI: 10.1186/1471-2164-13-72] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 02/14/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The availability of low cost sequencing has spurred its application to discovery and typing of variation, including variation induced by mutagenesis. Mutation discovery is challenging as it requires a substantial amount of sequencing and analysis to detect very rare changes and distinguish them from noise. Also challenging are the cases when the organism of interest has not been sequenced or is highly divergent from the reference. RESULTS We describe the development of a simple method for reduced representation sequencing. Input DNA was digested with a single restriction enzyme and ligated to Y adapters modified to contain a sequence barcode and to provide a compatible overhang for ligation. We demonstrated the efficiency of this method at SNP discovery using rice and arabidopsis. To test its suitability for the discovery of very rare SNP, one control and three mutagenized rice individuals (1, 5 and 10 mM sodium azide) were used to prepare genomic libraries for Illumina sequencers by ligating barcoded adapters to NlaIII restriction sites. For genome-dependent discovery 15-30 million of 80 base reads per individual were aligned to the reference sequence achieving individual sequencing coverage from 7 to 15×. We identified high-confidence base changes by comparing sequences across individuals and identified instances consistent with mutations, i.e. changes that were found in a single treated individual and were solely GC to AT transitions. For genome-independent discovery 70-mers were extracted from the sequence of the control individual and single-copy sequence was identified by comparing the 70-mers across samples to evaluate copy number and variation. This de novo "genome" was used to align the reads and identify mutations as above. Covering approximately 1/5 of the 380 Mb genome of rice we detected mutation densities ranging from 0.6 to 4 per Mb of diploid DNA depending on the mutagenic treatment. CONCLUSIONS The combination of a simple and cost-effective library construction method, with Illumina sequencing, and the use of a bioinformatic pipeline allows practical SNP discovery regardless of whether a genomic reference is available.
Collapse
Affiliation(s)
| | - Diana C Sanchez-Mendez
- Crops Pathology and Genetics Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Davis, California 95616, USA
| | - Joseph Fass
- Bioinformatics Core, Genome Center, UC Davis, Davis, California 95616, USA
| | - Isabelle M Henry
- Department of Plant Biology and Genome Center, UC Davis, Davis, California 95616, USA
| | - Thomas H Tai
- Crops Pathology and Genetics Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Davis, California 95616, USA
| | - Luca Comai
- Department of Plant Biology and Genome Center, UC Davis, Davis, California 95616, USA
| |
Collapse
|
122
|
Scaglione D, Acquadro A, Portis E, Tirone M, Knapp SJ, Lanteri S. RAD tag sequencing as a source of SNP markers in Cynara cardunculus L. BMC Genomics 2012; 13:3. [PMID: 22214349 PMCID: PMC3269995 DOI: 10.1186/1471-2164-13-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 01/03/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The globe artichoke (Cynara cardunculus L. var. scolymus) genome is relatively poorly explored, especially compared to those of the other major Asteraceae crops sunflower and lettuce. No SNP markers are in the public domain. We have combined the recently developed restriction-site associated DNA (RAD) approach with the Illumina DNA sequencing platform to effect the rapid and mass discovery of SNP markers for C. cardunculus. RESULTS RAD tags were sequenced from the genomic DNA of three C. cardunculus mapping population parents, generating 9.7 million reads, corresponding to ~1 Gbp of sequence. An assembly based on paired ends produced ~6.0 Mbp of genomic sequence, separated into ~19,000 contigs (mean length 312 bp), of which ~21% were fragments of putative coding sequence. The shared sequences allowed for the discovery of ~34,000 SNPs and nearly 800 indels, equivalent to a SNP frequency of 5.6 per 1,000 nt, and an indel frequency of 0.2 per 1,000 nt. A sample of heterozygous SNP loci was mapped by CAPS assays and this exercise provided validation of our mining criteria. The repetitive fraction of the genome had a high representation of retrotransposon sequence, followed by simple repeats, AT-low complexity regions and mobile DNA elements. The genomic k-mers distribution and CpG rate of C. cardunculus, compared with data derived from three whole genome-sequenced dicots species, provided a further evidence of the random representation of the C. cardunculus genome generated by RAD sampling. CONCLUSION The RAD tag sequencing approach is a cost-effective and rapid method to develop SNP markers in a highly heterozygous species. Our approach permitted to generate a large and robust SNP datasets by the adoption of optimized filtering criteria.
Collapse
Affiliation(s)
- Davide Scaglione
- Di.Va.P.R.A. Plant Genetics and Breeding, University of Torino, via L. da Vinci 44, 10095 Grugliasco (Torino), Italy
| | - Alberto Acquadro
- Di.Va.P.R.A. Plant Genetics and Breeding, University of Torino, via L. da Vinci 44, 10095 Grugliasco (Torino), Italy
| | - Ezio Portis
- Di.Va.P.R.A. Plant Genetics and Breeding, University of Torino, via L. da Vinci 44, 10095 Grugliasco (Torino), Italy
| | - Matteo Tirone
- Di.Va.P.R.A. Plant Genetics and Breeding, University of Torino, via L. da Vinci 44, 10095 Grugliasco (Torino), Italy
| | - Steven J Knapp
- Institute for Plant Breeding, Genetics, and Genomics, University of Georgia, 111 Riverbend Rd., 30602 Athens, Georgia USA
| | - Sergio Lanteri
- Di.Va.P.R.A. Plant Genetics and Breeding, University of Torino, via L. da Vinci 44, 10095 Grugliasco (Torino), Italy
| |
Collapse
|
123
|
Kumar S, Banks TW, Cloutier S. SNP Discovery through Next-Generation Sequencing and Its Applications. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2012; 2012:831460. [PMID: 23227038 PMCID: PMC3512287 DOI: 10.1155/2012/831460] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/08/2012] [Indexed: 05/08/2023]
Abstract
The decreasing cost along with rapid progress in next-generation sequencing and related bioinformatics computing resources has facilitated large-scale discovery of SNPs in various model and nonmodel plant species. Large numbers and genome-wide availability of SNPs make them the marker of choice in partially or completely sequenced genomes. Although excellent reviews have been published on next-generation sequencing, its associated bioinformatics challenges, and the applications of SNPs in genetic studies, a comprehensive review connecting these three intertwined research areas is needed. This paper touches upon various aspects of SNP discovery, highlighting key points in availability and selection of appropriate sequencing platforms, bioinformatics pipelines, SNP filtering criteria, and applications of SNPs in genetic analyses. The use of next-generation sequencing methodologies in many non-model crops leading to discovery and implementation of SNPs in various genetic studies is discussed. Development and improvement of bioinformatics software that are open source and freely available have accelerated the SNP discovery while reducing the associated cost. Key considerations for SNP filtering and associated pipelines are discussed in specific topics. A list of commonly used software and their sources is compiled for easy access and reference.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Travis W. Banks
- Department of Applied Genomics, Vineland Research and Innovation Centre, Vineland Station, ON, Canada L0R 2E0
| | - Sylvie Cloutier
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
- Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, MB, Canada R3T 2M9
- *Sylvie Cloutier:
| |
Collapse
|
124
|
Simbaqueba J, Sánchez P, Sanchez E, Núñez Zarantes VM, Chacon MI, Barrero LS, Mariño-Ramírez L. Development and characterization of microsatellite markers for the Cape gooseberry Physalis peruviana. PLoS One 2011; 6:e26719. [PMID: 22039540 PMCID: PMC3198794 DOI: 10.1371/journal.pone.0026719] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/03/2011] [Indexed: 11/03/2022] Open
Abstract
Physalis peruviana, commonly known as Cape gooseberry, is an Andean Solanaceae fruit with high nutritional value and interesting medicinal properties. In the present study we report the development and characterization of microsatellite loci from a P. peruviana commercial Colombian genotype. We identified 932 imperfect and 201 perfect Simple Sequence Repeats (SSR) loci in untranslated regions (UTRs) and 304 imperfect and 83 perfect SSR loci in coding regions from the assembled Physalis peruviana leaf transcriptome. The UTR SSR loci were used for the development of 162 primers for amplification. The efficiency of these primers was tested via PCR in a panel of seven P. peruviana accessions including Colombia, Kenya and Ecuador ecotypes and one closely related species Physalis floridana. We obtained an amplification rate of 83% and a polymorphic rate of 22%. Here we report the first P. peruviana specific microsatellite set, a valuable tool for a wide variety of applications, including functional diversity, conservation and improvement of the species.
Collapse
Affiliation(s)
- Jaime Simbaqueba
- Plant Molecular Genetics Laboratory, Center of Biotechnology and Bioindustry (CBB), Colombian Corporation for Agricultural Research (CORPOICA), Bogota, Colombia
| | - Pilar Sánchez
- Facultad de Agronomía, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Erika Sanchez
- Plant Molecular Genetics Laboratory, Center of Biotechnology and Bioindustry (CBB), Colombian Corporation for Agricultural Research (CORPOICA), Bogota, Colombia
| | - Victor Manuel Núñez Zarantes
- Plant Molecular Genetics Laboratory, Center of Biotechnology and Bioindustry (CBB), Colombian Corporation for Agricultural Research (CORPOICA), Bogota, Colombia
| | | | - Luz Stella Barrero
- Plant Molecular Genetics Laboratory, Center of Biotechnology and Bioindustry (CBB), Colombian Corporation for Agricultural Research (CORPOICA), Bogota, Colombia
- PanAmerican Bioinformatics Institute, Santa Marta, Magdalena, Colombia
| | - Leonardo Mariño-Ramírez
- Plant Molecular Genetics Laboratory, Center of Biotechnology and Bioindustry (CBB), Colombian Corporation for Agricultural Research (CORPOICA), Bogota, Colombia
- PanAmerican Bioinformatics Institute, Santa Marta, Magdalena, Colombia
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|