101
|
Identification of a critical T(Q/D/E)x5ADx2(I/L) motif from primate lentivirus Vif proteins that regulate APOBEC3G and APOBEC3F neutralizing activity. J Virol 2010; 84:8561-70. [PMID: 20592083 DOI: 10.1128/jvi.00960-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primate lentiviruses are unique in that they produce several accessory proteins to help in the establishment of productive viral infection. The major function of these proteins is to clear host resistance factors that inhibit viral replication. Vif is one of these proteins. It functions as an adaptor that binds to the cytidine deaminases APOBEC3G (A3G) and APOBEC3F (A3F) and bridges them to a cullin 5 (Cul5) and elongin (Elo) B/C E3 ubiquitin ligase complex for proteasomal degradation. So far, 11 discontinuous domains in Vif have been identified that regulate this degradation process. Here we report another domain, T(Q/D/E)x(5)ADx(2)(I/L), which is located at residues 96 to 107 in the human immunodeficiency virus type 1 (HIV-1) Vif protein. This domain is conserved not only in all HIV-1 subtypes but also in other primate lentiviruses, including HIV-2 and simian immunodeficiency virus (SIV), which infects rhesus macaques (SIVmac) and African green monkeys (SIVagm). Mutations of the critical residues in this motif seriously disrupted Vif's neutralizing activity toward both A3G and A3F. This motif regulates Vif interaction not only with A3G and A3F but also with Cul5. When this motif was inactivated in the HIV-1 genome, Vif failed to exclude A3G and A3F from virions, resulting in abortive HIV replication in nonpermissive human T cells. Thus, T(Q/D/E)x(5)ADx(2)(I/L) is a critical functional motif that directly supports the adaptor function of Vif and is an attractive target for inhibition of Vif function.
Collapse
|
102
|
Ruggero K, Corradin A, Zanovello P, Amadori A, Bronte V, Ciminale V, D'Agostino DM. Role of microRNAs in HTLV-1 infection and transformation. Mol Aspects Med 2010; 31:367-82. [PMID: 20600265 DOI: 10.1016/j.mam.2010.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 05/26/2010] [Indexed: 12/20/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), a retrovirus that infects more than 20 million people worldwide, is the etiological agent of ATLL (adult T-cell leukemia/lymphoma), an aggressive leukemia of CD4+ T lymphocytes which arises in a small percentage of infected individuals after a long clinical latency. Tumor emergence is attributed primarily to the oncogenic activity of the viral protein Tax, which drives the expression of viral transcripts and controls the expression and function of a broad variety of host-cell genes involved in proliferation, genetic stability and apoptosis. Nevertheless, many aspects of HTLV-1 replication, persistence and pathogenesis remain to be understood. The emerging role of microRNAs in tumor development and viral infection has prompted investigations on the interactions between HTLV-1 and the microRNA regulatory network. In the present review we discuss recent data demonstrating changes in cellular microRNA expression in HTLV-1-infected cell lines and ATLL cells, and the functional impact of a subset microRNAs deregulated by HTLV-1 on cellular gene expression and signal transduction pathways. Mechanisms through which the viral proteins may influence microRNA expression are discussed. Results of searches for potential cellular microRNAs that target viral transcripts and for microRNAs produced by HTLV-1 are described. Observations along with regarding the expression of tRNA-derived small regulatory RNAs in HTLV-1-infected cells are presented.
Collapse
Affiliation(s)
- Katia Ruggero
- Department of Oncology and Surgical Sciences, University of Padova, Via Gattamelata 64, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
103
|
Ebola virus glycoprotein counteracts BST-2/Tetherin restriction in a sequence-independent manner that does not require tetherin surface removal. J Virol 2010; 84:7243-55. [PMID: 20444895 DOI: 10.1128/jvi.02636-09] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BST-2/tetherin is an interferon-inducible protein that restricts the release of enveloped viruses from the surface of infected cells by physically linking viral and cellular membranes. It is present at both the cell surface and in a perinuclear region, and viral anti-tetherin factors including HIV-1 Vpu and HIV-2 Env have been shown to decrease the cell surface population. To map the domains of human tetherin necessary for both virus restriction and sensitivity to viral anti-tetherin factors, we constructed a series of tetherin derivatives and assayed their activity. We found that the cytoplasmic tail (CT) and transmembrane (TM) domains of tetherin alone produced its characteristic cellular distribution, while the ectodomain of the protein, which includes a glycosylphosphatidylinositol (GPI) anchor, was sufficient to restrict virus release when presented by the CT/TM regions of a different type II membrane protein. To counteract tetherin restriction and remove it from the cell surface, HIV-1 Vpu required the specific sequence present in the TM domain of human tetherin. In contrast, the HIV-2 Env required only the ectodomain of the protein and was sensitive to a point mutation in this region. Strikingly, the anti-tetherin factor, Ebola virus GP, was able to overcome restriction conferred by both tetherin and a series of functional tetherin derivatives, including a wholly artificial tetherin molecule. Moreover, GP overcame restriction without significantly removing tetherin from the cell surface. These findings suggest that Ebola virus GP uses a novel mechanism to circumvent tetherin restriction.
Collapse
|
104
|
Identification of 81LGxGxxIxW89 and 171EDRW174 domains from human immunodeficiency virus type 1 Vif that regulate APOBEC3G and APOBEC3F neutralizing activity. J Virol 2010; 84:5741-50. [PMID: 20335268 DOI: 10.1128/jvi.00079-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytidine deaminases APOBEC3G (A3G) and APOBEC3F (A3F) potently restrict human immunodeficiency virus type 1 (HIV-1) replication, but they are neutralized by the viral protein Vif. Vif bridges A3G and A3F with a Cullin 5 (Cul5)-based E3 ubiquitin ligase and mediates their proteasomal degradation. This mechanism has been extensively studied, and several Vif domains have been identified that are critical for A3G and A3F neutralization. Here, we identified two additional domains. Via sequence analysis of more than 2,000 different HIV-1 Vif proteins, we identified two highly conserved amino acid sequences, (81)LGxGxSIEW(89) and (171)EDRWN(175). Within the (81)LGxGxSIEW(89) sequence, residues L81, G82, G84, and, to a lesser extent, I87 and W89 play very critical roles in A3G/A3F neutralization. In particular, residues L81 and G82 determine Vif binding to A3F, residue G84 determines Vif binding to both A3G and A3F, and residues (86)SIEW(89) affect Vif binding to A3F, A3G, and Cul5. Accordingly, this (81)LGxGxSIEW(89) sequence was designated the (81)LGxGxxIxW(89) domain. Within the (171)EDRWN(175) sequence, all residues except N175 are almost equally important for regulation of A3F neutralization, and consistently, they determine Vif binding only to A3F. Accordingly, this domain was designated (171)EDRW(174). The LGxGxxIxW domain is also partially conserved in simian immunodeficiency virus Vif from rhesus macaques (SIVmac239) and has a similar activity. Thus, (81)LGxGxxIxW(89) and (171)EDRW(174) are two novel functional domains that are very critical for Vif function. They could become new targets for inhibition of Vif activity during HIV replication.
Collapse
|
105
|
Identification of dominant negative human immunodeficiency virus type 1 Vif mutants that interfere with the functional inactivation of APOBEC3G by virus-encoded Vif. J Virol 2010; 84:5201-11. [PMID: 20219919 DOI: 10.1128/jvi.02318-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
APOBEC3G (A3G) is a host cytidine deaminase that serves as a potent intrinsic inhibitor of retroviral replication. A3G is packaged into human immunodeficiency virus type 1 virions and deaminates deoxycytidine to deoxyuridine on nascent minus-strand retroviral cDNA, leading to hyper-deoxyguanine-to-deoxyadenine mutations on positive-strand cDNA and inhibition of viral replication. The antiviral activity of A3G is suppressed by Vif, a lentiviral accessory protein that prevents encapsidation of A3G. In this study, we identified dominant negative mutants of Vif that interfered with the ability of wild-type Vif to inhibit the encapsidation and antiviral activity of A3G. These mutants were nonfunctional due to mutations in the highly conserved HCCH and/or SOCS box motifs, which are required for assembly of a functional Cul5-E3 ubiquitin ligase complex. Similarly, mutation or deletion of a PPLP motif, which was previously reported to be important for Vif dimerization, induced a dominant negative phenotype. Expression of dominant negative Vif counteracted the Vif-induced reduction of intracellular A3G levels, presumably by preventing Vif-induced A3G degradation. Consequently, dominant negative Vif interfered with wild-type Vif's ability to exclude A3G from viral particles and reduced viral infectivity despite the presence of wild-type Vif. The identification of dominant negative mutants of Vif presents exciting possibilities for the design of novel antiviral strategies.
Collapse
|
106
|
Furtak V, Mulky A, Rawlings SA, Kozhaya L, Lee K, KewalRamani VN, Unutmaz D. Perturbation of the P-body component Mov10 inhibits HIV-1 infectivity. PLoS One 2010; 5:e9081. [PMID: 20140200 PMCID: PMC2816699 DOI: 10.1371/journal.pone.0009081] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 01/11/2010] [Indexed: 11/19/2022] Open
Abstract
Exogenous retroviruses are obligate cellular parasites that co-opt a number of host proteins and functions to enable their replication and spread. Several host factors that restrict HIV and other retroviral infections have also recently been described. Here we demonstrate that Mov10, a protein associated with P-bodies that has a putative RNA-helicase domain, when overexpressed in cells can inhibit the production of infectious retroviruses. Interestingly, reducing the endogenous Mov10 levels in virus-producing cells through siRNA treatment also modestly suppresses HIV infectivity. The actions of Mov10 are not limited to HIV, however, as ectopic expression of Mov10 restricts the production of other lentiviruses as well as the gammaretrovirus, murine leukemia virus. We found that HIV produced in the presence of high levels of Mov10 is restricted at the pre-reverse transcription stage in target cells. Finally, we show that either helicase mutation or truncation of the C-terminal half of Mov10, where a putative RNA-helicase domain is located, maintained most of its HIV inhibition; whereas removing the N-terminal half of Mov10 completely abolished its activity on HIV. Together these results suggest that Mov10 could be required during the lentiviral lifecycle and that its perturbation disrupts generation of infectious viral particles. Because Mov10 is implicated as part of the P-body complex, these findings point to the potential role of cytoplasmic RNA processing machinery in infectious retroviral production.
Collapse
Affiliation(s)
- Vyacheslav Furtak
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Alok Mulky
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Stephen A. Rawlings
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Lina Kozhaya
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - KyeongEun Lee
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Vineet N. KewalRamani
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, United States of America
- * E-mail: (VK); (DU)
| | - Derya Unutmaz
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
- * E-mail: (VK); (DU)
| |
Collapse
|
107
|
Banerjee P, Crawford L, Samuelson E, Feuer G. Hematopoietic stem cells and retroviral infection. Retrovirology 2010; 7:8. [PMID: 20132553 PMCID: PMC2826343 DOI: 10.1186/1742-4690-7-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 02/04/2010] [Indexed: 11/10/2022] Open
Abstract
Retroviral induced malignancies serve as ideal models to help us better understand the molecular mechanisms associated with the initiation and progression of leukemogenesis. Numerous retroviruses including AEV, FLV, M-MuLV and HTLV-1 have the ability to infect hematopoietic stem and progenitor cells, resulting in the deregulation of normal hematopoiesis and the development of leukemia/lymphoma. Research over the last few decades has elucidated similarities between retroviral-induced leukemogenesis, initiated by deregulation of innate hematopoietic stem cell traits, and the cancer stem cell hypothesis. Ongoing research in some of these models may provide a better understanding of the processes of normal hematopoiesis and cancer stem cells. Research on retroviral induced leukemias and lymphomas may identify the molecular events which trigger the initial cellular transformation and subsequent maintenance of hematologic malignancies, including the generation of cancer stem cells. This review focuses on the role of retroviral infection in hematopoietic stem cells and the initiation, maintenance and progression of hematological malignancies.
Collapse
Affiliation(s)
- Prabal Banerjee
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Center for Humanized SCID Mice and Stem Cell Processing Laboratory, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Lindsey Crawford
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Elizabeth Samuelson
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Gerold Feuer
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Center for Humanized SCID Mice and Stem Cell Processing Laboratory, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
108
|
Colin L, Van Lint C. Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology 2009; 6:111. [PMID: 19961595 PMCID: PMC2797771 DOI: 10.1186/1742-4690-6-111] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 12/04/2009] [Indexed: 02/07/2023] Open
Abstract
The persistence of HIV-1 latent reservoirs represents a major barrier to virus eradication in infected patients under HAART since interruption of the treatment inevitably leads to a rebound of plasma viremia. Latency establishes early after infection notably (but not only) in resting memory CD4+ T cells and involves numerous host and viral trans-acting proteins, as well as processes such as transcriptional interference, RNA silencing, epigenetic modifications and chromatin organization. In order to eliminate latent reservoirs, new strategies are envisaged and consist of reactivating HIV-1 transcription in latently-infected cells, while maintaining HAART in order to prevent de novo infection. The difficulty lies in the fact that a single residual latently-infected cell can in theory rekindle the infection. Here, we review our current understanding of the molecular mechanisms involved in the establishment and maintenance of HIV-1 latency and in the transcriptional reactivation from latency. We highlight the potential of new therapeutic strategies based on this understanding of latency. Combinations of various compounds used simultaneously allow for the targeting of transcriptional repression at multiple levels and can facilitate the escape from latency and the clearance of viral reservoirs. We describe the current advantages and limitations of immune T-cell activators, inducers of the NF-κB signaling pathway, and inhibitors of deacetylases and histone- and DNA- methyltransferases, used alone or in combinations. While a solution will not be achieved by tomorrow, the battle against HIV-1 latent reservoirs is well- underway.
Collapse
Affiliation(s)
- Laurence Colin
- Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium.
| | | |
Collapse
|
109
|
Jeang KT, Huang LM. HIV-1 Vaccine—Many Miles to Go Before We Sleep. J Formos Med Assoc 2009; 108:827-9. [DOI: 10.1016/s0929-6646(09)60412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|