101
|
Firth AE, Zevenhoven-Dobbe JC, Wills NM, Go YY, Balasuriya UBR, Atkins JF, Snijder EJ, Posthuma CC. Discovery of a small arterivirus gene that overlaps the GP5 coding sequence and is important for virus production. J Gen Virol 2011; 92:1097-1106. [PMID: 21307223 PMCID: PMC3139419 DOI: 10.1099/vir.0.029264-0] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The arterivirus family (order Nidovirales) of single-stranded, positive-sense RNA viruses includes porcine respiratory and reproductive syndrome virus and equine arteritis virus (EAV). Their replicative enzymes are translated from their genomic RNA, while their seven structural proteins are encoded by a set of small, partially overlapping genes in the genomic 3′-proximal region. The latter are expressed via synthesis of a set of subgenomic mRNAs that, in general, are functionally monocistronic (except for a bicistronic mRNA encoding the E and GP2 proteins). ORF5, which encodes the major glycoprotein GP5, has been used extensively for phylogenetic analyses. However, an in-depth computational analysis now reveals the arterivirus-wide conservation of an additional AUG-initiated ORF, here termed ORF5a, that overlaps the 5′ end of ORF5. The pattern of substitutions across sequence alignments indicated that ORF5a is subject to functional constraints at the amino acid level, while an analysis of substitutions at synonymous sites in ORF5 revealed a greatly reduced frequency of substitution in the portion of ORF5 that is overlapped by ORF5a. The 43–64 aa ORF5a protein and GP5 are probably expressed from the same subgenomic mRNA, via a translation initiation mechanism involving leaky ribosomal scanning. Inactivation of ORF5a expression by reverse genetics yielded a severely crippled EAV mutant, which displayed lower titres and a tiny plaque phenotype. These defects, which could be partially complemented in ORF5a-expressing cells, indicate that the novel protein, which may be the eighth structural protein of arteriviruses, is expressed and important for arterivirus infection.
Collapse
Affiliation(s)
- Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Jessika C Zevenhoven-Dobbe
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Norma M Wills
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - Yun Young Go
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546-0099, USA
| | - Udeni B R Balasuriya
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546-0099, USA
| | - John F Atkins
- BioSciences Institute, University College Cork, Cork, Ireland.,Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Clara C Posthuma
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
102
|
A short N-terminal peptide motif on flavivirus nonstructural protein NS1 modulates cellular targeting and immune recognition. J Virol 2010; 84:9516-32. [PMID: 20592095 DOI: 10.1128/jvi.00775-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flavivirus NS1 is a versatile nonstructural glycoprotein, with intracellular NS1 functioning as an essential cofactor for viral replication and cell surface and secreted NS1 antagonizing complement activation. Even though NS1 has multiple functions that contribute to virulence, the genetic determinants that regulate the spatial distribution of NS1 in cells among different flaviviruses remain uncharacterized. Here, by creating a panel of West Nile virus-dengue virus (WNV-DENV) NS1 chimeras and site-specific mutants, we identified a novel, short peptide motif immediately C-terminal to the signal sequence cleavage position that regulates its transit time through the endoplasmic reticulum and differentially directs NS1 for secretion or plasma membrane expression. Exchange of two amino acids within this motif reciprocally changed the cellular targeting pattern of DENV or WNV NS1. For WNV, this substitution also modulated infectivity and antibody-induced phagocytosis of infected cells. Analysis of a mutant lacking all three conserved N-linked glycosylation sites revealed an independent requirement of N-linked glycans for secretion but not for plasma membrane expression of WNV NS1. Collectively, our experiments define the requirements for cellular targeting of NS1, with implications for the protective host responses, immune antagonism, and association with the host cell sorting machinery. These studies also suggest a link between the effects of NS1 on viral replication and the levels of secreted or cell surface NS1.
Collapse
|
103
|
Baronti C, Sire J, de Lamballerie X, Quérat G. Nonstructural NS1 proteins of several mosquito-borne Flavivirus do not inhibit TLR3 signaling. Virology 2010; 404:319-30. [PMID: 20554300 DOI: 10.1016/j.virol.2010.05.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 02/11/2010] [Accepted: 05/17/2010] [Indexed: 01/21/2023]
Abstract
Flaviviruses are single-stranded positive RNA viruses that replicate through double stranded RNA (dsRNA) intermediates. These dsRNA may be recognized as pathogen-associated molecular patterns by cellular receptors including membrane-bound Toll-like receptor 3 (TLR3) and cytosolic helicases RIG-I and MDA5. dsRNA stimulation results in signaling cascades converging to activation of interferon (IFN) regulatory factor 3 (IRF3) and to transcriptional activation of several interferon stimulated genes, including IFNss and inflammatory cytokines. There are conflicting reports concerning the ability of West Nile virus to counteract TLR3 signaling. In our analyses, transiently or stably expressed NS1 proteins from two West Nile viruses, two dengue 2 viruses and a yellow fever virus failed to inhibit TLR3 signaling in two different mammalian cell lines. Moreover, using siRNA inhibiting the helicase signalization pathway, we show that viral infection did not impede TLR3 responses to poly(I:C). We conclude that NS1 proteins from distinct mosquito-borne flaviviruses do not inhibit TLR3 signaling.
Collapse
Affiliation(s)
- Cécile Baronti
- UMR IRD 190, Emergence des Pathologies Virales, Université de la Méditerranée, Faculté de Médecine de la Timone, 27 Bd Jean Moulin, 13005 Marseille, France
| | | | | | | |
Collapse
|
104
|
Sperschneider J, Datta A. DotKnot: pseudoknot prediction using the probability dot plot under a refined energy model. Nucleic Acids Res 2010; 38:e103. [PMID: 20123730 PMCID: PMC2853144 DOI: 10.1093/nar/gkq021] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
RNA pseudoknots are functional structure elements with key roles in viral and cellular processes. Prediction of a pseudoknotted minimum free energy structure is an NP-complete problem. Practical algorithms for RNA structure prediction including restricted classes of pseudoknots suffer from high runtime and poor accuracy for longer sequences. A heuristic approach is to search for promising pseudoknot candidates in a sequence and verify those. Afterwards, the detected pseudoknots can be further analysed using bioinformatics or laboratory techniques. We present a novel pseudoknot detection method called DotKnot that extracts stem regions from the secondary structure probability dot plot and assembles pseudoknot candidates in a constructive fashion. We evaluate pseudoknot free energies using novel parameters, which have recently become available. We show that the conventional probability dot plot makes a wide class of pseudoknots including those with bulged stems manageable in an explicit fashion. The energy parameters now become the limiting factor in pseudoknot prediction. DotKnot is an efficient method for long sequences, which finds pseudoknots with higher accuracy compared to other known prediction algorithms. DotKnot is accessible as a web server at http://dotknot.csse.uwa.edu.au.
Collapse
Affiliation(s)
- Jana Sperschneider
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, WA 6009, Australia.
| | | |
Collapse
|
105
|
Firth AE, Blitvich BJ, Wills NM, Miller CL, Atkins JF. Evidence for ribosomal frameshifting and a novel overlapping gene in the genomes of insect-specific flaviviruses. Virology 2010; 399:153-166. [PMID: 20097399 PMCID: PMC2830293 DOI: 10.1016/j.virol.2009.12.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/15/2009] [Accepted: 12/22/2009] [Indexed: 02/02/2023]
Abstract
Flaviviruses have a positive-sense, single-stranded RNA genome of ∼11 kb, encoding a large polyprotein that is cleaved to produce ∼10 mature proteins. Cell fusing agent virus, Kamiti River virus, Culex flavivirus and several recently discovered flaviviruses have no known vertebrate host and apparently infect only insects. We present compelling bioinformatic evidence for a 253–295 codon overlapping gene (designated fifo) conserved throughout these insect-specific flaviviruses and immunofluorescent detection of its product. Fifo overlaps the NS2A/NS2B coding sequence in the − 1/+ 2 reading frame and is most likely expressed as a trans-frame fusion protein via ribosomal frameshifting at a conserved GGAUUUY slippery heptanucleotide with 3′-adjacent RNA secondary structure (which stimulates efficient frameshifting in vitro). The discovery bears striking parallels to the recently discovered ribosomal frameshifting site in the NS2A coding sequence of the Japanese encephalitis serogroup of flaviviruses and suggests that programmed ribosomal frameshifting may be more widespread in flaviviruses than currently realized.
Collapse
Affiliation(s)
- Andrew E Firth
- BioSciences Institute, University College Cork, Cork, Ireland.
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Norma M Wills
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA.
| | - Cathy L Miller
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - John F Atkins
- BioSciences Institute, University College Cork, Cork, Ireland; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA.
| |
Collapse
|
106
|
Firth AE, Atkins JF. Candidates in Astroviruses, Seadornaviruses, Cytorhabdoviruses and Coronaviruses for +1 frame overlapping genes accessed by leaky scanning. Virol J 2010; 7:17. [PMID: 20100346 PMCID: PMC2832772 DOI: 10.1186/1743-422x-7-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 01/25/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Overlapping genes are common in RNA viruses where they serve as a mechanism to optimize the coding potential of compact genomes. However, annotation of overlapping genes can be difficult using conventional gene-finding software. Recently we have been using a number of complementary approaches to systematically identify previously undetected overlapping genes in RNA virus genomes. In this article we gather together a number of promising candidate new overlapping genes that may be of interest to the community. RESULTS Overlapping gene predictions are presented for the astroviruses, seadornaviruses, cytorhabdoviruses and coronaviruses (families Astroviridae, Reoviridae, Rhabdoviridae and Coronaviridae, respectively).
Collapse
Affiliation(s)
- Andrew E Firth
- BioSciences Institute, University College Cork, Cork, Ireland.
| | | |
Collapse
|
107
|
Firth AE, Atkins JF. Evidence for a novel coding sequence overlapping the 5'-terminal approximately 90 codons of the gill-associated and yellow head okavirus envelope glycoprotein gene. Virol J 2009; 6:222. [PMID: 20017924 PMCID: PMC2805633 DOI: 10.1186/1743-422x-6-222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 12/17/2009] [Indexed: 11/23/2022] Open
Abstract
The genus Okavirus (order Nidovirales) includes a number of viruses that infect crustaceans, causing major losses in the shrimp industry. These viruses have a linear positive-sense ssRNA genome of ~26-27 kb, encoding a large replicase polyprotein that is expressed from the genomic RNA, and several additional proteins that are expressed from a nested set of 3'-coterminal subgenomic RNAs. In this brief report, we describe the bioinformatic discovery of a new, apparently coding, ORF that overlaps the 5' end of the envelope glycoprotein encoding sequence, ORF3, in the +2 reading frame. The new ORF has a strong coding signature and, in fact, is more conserved at the amino acid level than the overlapping region of ORF3. We propose that translation of the new ORF initiates at a conserved AUG codon separated by just 2 nt from the ORF3 AUG initiation codon, resulting in a novel 86 amino acid protein.
Collapse
Affiliation(s)
- Andrew E Firth
- BioSciences Institute, University College Cork, Cork, Ireland.
| | | |
Collapse
|
108
|
NS1' of flaviviruses in the Japanese encephalitis virus serogroup is a product of ribosomal frameshifting and plays a role in viral neuroinvasiveness. J Virol 2009; 84:1641-7. [PMID: 19906906 DOI: 10.1128/jvi.01979-09] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Flavivirus NS1 is a nonstructural protein involved in virus replication and regulation of the innate immune response. Interestingly, a larger NS1-related protein, NS1', is often detected during infection with the members of the Japanese encephalitis virus serogroup of flaviviruses. However, how NS1' is made and what role it performs in the viral life cycle have not been determined. Here we provide experimental evidence that NS1' is the product of a -1 ribosomal frameshift event that occurs at a conserved slippery heptanucleotide motif located near the beginning of the NS2A gene and is stimulated by a downstream RNA pseudoknot structure. Using site-directed mutagenesis of these sequence elements in an infectious clone of the Kunjin subtype of West Nile virus, we demonstrate that NS1' plays a role in viral neuroinvasiveness.
Collapse
|
109
|
Firth AE, Wang QS, Jan E, Atkins JF. Bioinformatic evidence for a stem-loop structure 5'-adjacent to the IGR-IRES and for an overlapping gene in the bee paralysis dicistroviruses. Virol J 2009; 6:193. [PMID: 19895695 PMCID: PMC2777877 DOI: 10.1186/1743-422x-6-193] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 11/06/2009] [Indexed: 02/09/2023] Open
Abstract
The family Dicistroviridae (order Picornavirales) includes species that infect insects and other arthropods. These viruses have a linear positive-sense ssRNA genome of ~8-10 kb, which contains two long ORFs. The 5' ORF encodes the nonstructural polyprotein while the 3' ORF encodes the structural polyprotein. The dicistroviruses are noteworthy for the intergenic Internal Ribosome Entry Site (IGR-IRES) that mediates efficient translation initation on the 3' ORF without the requirement for initiator Met-tRNA. Acute bee paralysis virus, Israel acute paralysis virus of bees and Kashmir bee virus form a distinct subgroup within the Dicistroviridae family. In this brief report, we describe the bioinformatic discovery of a new, apparently coding, ORF in these viruses. The ORF overlaps the 5' end of the structural polyprotein coding sequence in the +1 reading frame. We also identify a potential 14-18 bp RNA stem-loop structure 5'-adjacent to the IGR-IRES. We discuss potential translation initiation mechanisms for the novel ORF in the context of the IGR-IRES and 5'-adjacent stem-loop.
Collapse
Affiliation(s)
- Andrew E Firth
- BioSciences Institute, University College Cork, Cork, Ireland.
| | | | | | | |
Collapse
|
110
|
Bekaert M, Firth AE, Zhang Y, Gladyshev VN, Atkins JF, Baranov PV. Recode-2: new design, new search tools, and many more genes. Nucleic Acids Res 2009; 38:D69-74. [PMID: 19783826 PMCID: PMC2808893 DOI: 10.1093/nar/gkp788] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
‘Recoding’ is a term used to describe non-standard read-out of the genetic code, and encompasses such phenomena as programmed ribosomal frameshifting, stop codon readthrough, selenocysteine insertion and translational bypassing. Although only a small proportion of genes utilize recoding in protein synthesis, accurate annotation of ‘recoded’ genes lags far behind annotation of ‘standard’ genes. In order to address this issue, provide a service to researchers in the field, and offer training data for developers of gene-annotation software, we have gathered together known cases of recoding within the Recode database. Recode-2 is an improved and updated version of the database. It provides access to detailed information on genes known to utilize translational recoding and allows complex search queries, browsing of recoding data and enhanced visualization of annotated sequence elements. At present, the Recode-2 database stores information on approximately 1500 genes that are known to utilize recoding in their expression—a factor of approximately three increase over the previous version of the database. Recode-2 is available at http://recode.ucc.ie
Collapse
Affiliation(s)
- Michaël Bekaert
- School of Biology and Environmental Science, University College Dublin, BioSciences Institute, University College Cork, Ireland
| | | | | | | | | | | |
Collapse
|
111
|
Firth AE, Atkins JF. A case for a CUG-initiated coding sequence overlapping torovirus ORF1a and encoding a novel 30 kDa product. Virol J 2009; 6:136. [PMID: 19737402 PMCID: PMC2749830 DOI: 10.1186/1743-422x-6-136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Accepted: 09/08/2009] [Indexed: 11/23/2022] Open
Abstract
The genus Torovirus (order Nidovirales) includes a number of species that infect livestock. These viruses have a linear positive-sense ssRNA genome of approximately 25-30 kb, encoding a large polyprotein that is expressed from the genomic RNA, and several additional proteins expressed from a nested set of 3'-coterminal subgenomic RNAs. In this brief report, we describe the bioinformatic discovery of a new, apparently coding, ORF that overlaps the 5' end of the polyprotein coding sequence, ORF1a, in the +2 reading frame. The new ORF has a strong coding signature and, in fact, is more conserved at the amino acid level than the overlapping region of ORF1a. We propose that the new ORF utilizes a non-AUG initiation codon--namely a conserved CUG codon in a strong Kozak context--upstream of the ORF1a AUG initiation codon, resulting in a novel 258 amino acid protein, dubbed '30K'.
Collapse
Affiliation(s)
- Andrew E Firth
- BioSciences Institute, University College Cork, Cork, Ireland
| | - John F Atkins
- BioSciences Institute, University College Cork, Cork, Ireland
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
112
|
Firth AE, Atkins JF. Analysis of the coding potential of the partially overlapping 3' ORF in segment 5 of the plant fijiviruses. Virol J 2009; 6:32. [PMID: 19292925 PMCID: PMC2666654 DOI: 10.1186/1743-422x-6-32] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 03/17/2009] [Indexed: 01/10/2023] Open
Abstract
The plant-infecting members of the genus Fijivirus (family Reoviridae) have linear dsRNA genomes divided into 10 segments, two of which contain two substantial and non-overlapping ORFs, while the remaining eight are apparently monocistronic. However, one of these - namely segment 5 - contains a second long ORF (approximately 200+ codons) that overlaps the 3' end of the major ORF (approximately 920-940 codons) in the +1 reading frame. In this report, we use bioinformatic techniques to analyze the pattern of base variations across an alignment of fijivirus segment 5 sequences, and show that this 3' ORF has a strong coding signature. Possible translation mechanisms for this unusually positioned ORF are discussed.
Collapse
Affiliation(s)
- Andrew E Firth
- BioSciences Institute, University College Cork, Cork, Ireland.
| | | |
Collapse
|