101
|
Cavalier-Smith T. Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution. Biol Direct 2010; 5:7. [PMID: 20132544 PMCID: PMC2837639 DOI: 10.1186/1745-6150-5-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 02/04/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The transition from prokaryotes to eukaryotes was the most radical change in cell organisation since life began, with the largest ever burst of gene duplication and novelty. According to the coevolutionary theory of eukaryote origins, the fundamental innovations were the concerted origins of the endomembrane system and cytoskeleton, subsequently recruited to form the cell nucleus and coevolving mitotic apparatus, with numerous genetic eukaryotic novelties inevitable consequences of this compartmentation and novel DNA segregation mechanism. Physical and mutational mechanisms of origin of the nucleus are seldom considered beyond the long-standing assumption that it involved wrapping pre-existing endomembranes around chromatin. Discussions on the origin of sex typically overlook its association with protozoan entry into dormant walled cysts and the likely simultaneous coevolutionary, not sequential, origin of mitosis and meiosis. RESULTS I elucidate nuclear and mitotic coevolution, explaining the origins of dicer and small centromeric RNAs for positionally controlling centromeric heterochromatin, and how 27 major features of the cell nucleus evolved in four logical stages, making both mechanisms and selective advantages explicit: two initial stages (origin of 30 nm chromatin fibres, enabling DNA compaction; and firmer attachment of endomembranes to heterochromatin) protected DNA and nascent RNA from shearing by novel molecular motors mediating vesicle transport, division, and cytoplasmic motility. Then octagonal nuclear pore complexes (NPCs) arguably evolved from COPII coated vesicle proteins trapped in clumps by Ran GTPase-mediated cisternal fusion that generated the fenestrated nuclear envelope, preventing lethal complete cisternal fusion, and allowing passive protein and RNA exchange. Finally, plugging NPC lumens by an FG-nucleoporin meshwork and adopting karyopherins for nucleocytoplasmic exchange conferred compartmentation advantages. These successive changes took place in naked growing cells, probably as indirect consequences of the origin of phagotrophy. The first eukaryote had 1-2 cilia and also walled resting cysts; I outline how encystation may have promoted the origin of meiotic sex. I also explain why many alternative ideas are inadequate. CONCLUSION Nuclear pore complexes are evolutionary chimaeras of endomembrane- and mitosis-related chromatin-associated proteins. The keys to understanding eukaryogenesis are a proper phylogenetic context and understanding organelle coevolution: how innovations in one cell component caused repercussions on others.
Collapse
|
102
|
Abstract
Organismal phylogeny depends on cell division, stasis, mutational divergence, cell mergers (by sex or symbiogenesis), lateral gene transfer and death. The tree of life is a useful metaphor for organismal genealogical history provided we recognize that branches sometimes fuse. Hennigian cladistics emphasizes only lineage splitting, ignoring most other major phylogenetic processes. Though methodologically useful it has been conceptually confusing and harmed taxonomy, especially in mistakenly opposing ancestral (paraphyletic) taxa. The history of life involved about 10 really major innovations in cell structure. In membrane topology, there were five successive kinds of cell: (i) negibacteria, with two bounding membranes, (ii) unibacteria, with one bounding and no internal membranes, (iii) eukaryotes with endomembranes and mitochondria, (iv) plants with chloroplasts and (v) finally, chromists with plastids inside the rough endoplasmic reticulum. Membrane chemistry divides negibacteria into the more advanced Glycobacteria (e.g. Cyanobacteria and Proteobacteria) with outer membrane lipolysaccharide and primitive Eobacteria without lipopolysaccharide (deserving intenser study). It also divides unibacteria into posibacteria, ancestors of eukaryotes, and archaebacteria-the sisters (not ancestors) of eukaryotes and the youngest bacterial phylum. Anaerobic eobacteria, oxygenic cyanobacteria, desiccation-resistant posibacteria and finally neomura (eukaryotes plus archaebacteria) successively transformed Earth. Accidents and organizational constraints are as important as adaptiveness in body plan evolution.
Collapse
|
103
|
A modular BAM complex in the outer membrane of the alpha-proteobacterium Caulobacter crescentus. PLoS One 2010; 5:e8619. [PMID: 20062535 PMCID: PMC2797634 DOI: 10.1371/journal.pone.0008619] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 12/11/2009] [Indexed: 11/19/2022] Open
Abstract
Mitochondria are organelles derived from an intracellular α-proteobacterium. The biogenesis of mitochondria relies on the assembly of β-barrel proteins into the mitochondrial outer membrane, a process inherited from the bacterial ancestor. Caulobacter crescentus is an α-proteobacterium, and the BAM (β-barrel assembly machinery) complex was purified and characterized from this model organism. Like the mitochondrial sorting and assembly machinery complex, we find the BAM complex to be modular in nature. A ∼150 kDa core BAM complex containing BamA, BamB, BamD, and BamE associates with additional modules in the outer membrane. One of these modules, Pal, is a lipoprotein that provides a means for anchorage to the peptidoglycan layer of the cell wall. We suggest the modular design of the BAM complex facilitates access to substrates from the protein translocase in the inner membrane.
Collapse
|
104
|
Bodył A, Mackiewicz P, Stiller JW. Early steps in plastid evolution: current ideas and controversies. Bioessays 2009; 31:1219-32. [DOI: 10.1002/bies.200900073] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
105
|
Avonce N, Wuyts J, Verschooten K, Vandesteene L, Van Dijck P. The Cytophaga hutchinsonii ChTPSP: First Characterized Bifunctional TPS–TPP Protein as Putative Ancestor of All Eukaryotic Trehalose Biosynthesis Proteins. Mol Biol Evol 2009; 27:359-69. [DOI: 10.1093/molbev/msp241] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
106
|
Foster PG, Cox CJ, Embley TM. The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods. Philos Trans R Soc Lond B Biol Sci 2009; 364:2197-207. [PMID: 19571240 DOI: 10.1098/rstb.2009.0034] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The three-domains tree, which depicts eukaryotes and archaebacteria as monophyletic sister groups, is the dominant model for early eukaryotic evolution. By contrast, the 'eocyte hypothesis', where eukaryotes are proposed to have originated from within the archaebacteria as sister to the Crenarchaeota (also called the eocytes), has been largely neglected in the literature. We have investigated support for these two competing hypotheses from molecular sequence data using methods that attempt to accommodate the across-site compositional heterogeneity and across-tree compositional and rate matrix heterogeneity that are manifest features of these data. When ribosomal RNA genes were analysed using standard methods that do not adequately model these kinds of heterogeneity, the three-domains tree was supported. However, this support was eroded or lost when composition-heterogeneous models were used, with concomitant increase in support for the eocyte tree for eukaryotic origins. Analysis of combined amino acid sequences from 41 protein-coding genes supported the eocyte tree, whether or not composition-heterogeneous models were used. The possible effects of substitutional saturation of our data were examined using simulation; these results suggested that saturation is delayed by among-site rate variation in the sequences, and that phylogenetic signal for ancient relationships is plausibly present in these data.
Collapse
Affiliation(s)
- Peter G Foster
- Department of Zoology, Natural History Museum, London, UK
| | | | | |
Collapse
|
107
|
Lake JA, Skophammer RG, Herbold CW, Servin JA. Genome beginnings: rooting the tree of life. Philos Trans R Soc Lond B Biol Sci 2009; 364:2177-85. [PMID: 19571238 DOI: 10.1098/rstb.2009.0035] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A rooted tree of life provides a framework to answer central questions about the evolution of life. Here we review progress on rooting the tree of life and introduce a new root of life obtained through the analysis of indels, insertions and deletions, found within paralogous gene sets. Through the analysis of indels in eight paralogous gene sets, the root is localized to the branch between the clade consisting of the Actinobacteria and the double-membrane (Gram-negative) prokaryotes and one consisting of the archaebacteria and the firmicutes. This root provides a new perspective on the habitats of early life, including the evolution of methanogenesis, membranes and hyperthermophily, and the speciation of major prokaryotic taxa. Our analyses exclude methanogenesis as a primitive metabolism, in contrast to previous findings. They parsimoniously imply that the ether archaebacterial lipids are not primitive and that the cenancestral prokaryotic population consisted of organisms enclosed by a single, ester-linked lipid membrane, covered by a peptidoglycan layer. These results explain the similarities previously noted by others between the lipid synthesis pathways in eubacteria and archaebacteria. The new root also implies that the last common ancestor was not hyperthermophilic, although moderate thermophily cannot be excluded.
Collapse
Affiliation(s)
- James A Lake
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
108
|
Bradley RK, Holmes I. Evolutionary triplet models of structured RNA. PLoS Comput Biol 2009; 5:e1000483. [PMID: 19714212 PMCID: PMC2725318 DOI: 10.1371/journal.pcbi.1000483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 07/23/2009] [Indexed: 12/31/2022] Open
Abstract
The reconstruction and synthesis of ancestral RNAs is a feasible goal for paleogenetics. This will require new bioinformatics methods, including a robust statistical framework for reconstructing histories of substitutions, indels and structural changes. We describe a "transducer composition" algorithm for extending pairwise probabilistic models of RNA structural evolution to models of multiple sequences related by a phylogenetic tree. This algorithm draws on formal models of computational linguistics as well as the 1985 protosequence algorithm of David Sankoff. The output of the composition algorithm is a multiple-sequence stochastic context-free grammar. We describe dynamic programming algorithms, which are robust to null cycles and empty bifurcations, for parsing this grammar. Example applications include structural alignment of non-coding RNAs, propagation of structural information from an experimentally-characterized sequence to its homologs, and inference of the ancestral structure of a set of diverged RNAs. We implemented the above algorithms for a simple model of pairwise RNA structural evolution; in particular, the algorithms for maximum likelihood (ML) alignment of three known RNA structures and a known phylogeny and inference of the common ancestral structure. We compared this ML algorithm to a variety of related, but simpler, techniques, including ML alignment algorithms for simpler models that omitted various aspects of the full model and also a posterior-decoding alignment algorithm for one of the simpler models. In our tests, incorporation of basepair structure was the most important factor for accurate alignment inference; appropriate use of posterior-decoding was next; and fine details of the model were least important. Posterior-decoding heuristics can be substantially faster than exact phylogenetic inference, so this motivates the use of sum-over-pairs heuristics where possible (and approximate sum-over-pairs). For more exact probabilistic inference, we discuss the use of transducer composition for ML (or MCMC) inference on phylogenies, including possible ways to make the core operations tractable.
Collapse
Affiliation(s)
- Robert K. Bradley
- Biophysics Graduate Group, University of California, Berkeley, California, United States of America
| | - Ian Holmes
- Biophysics Graduate Group, University of California, Berkeley, California, United States of America
- Department of Bioengineering, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
109
|
Valas RE, Bourne PE. Structural analysis of polarizing indels: an emerging consensus on the root of the tree of life. Biol Direct 2009; 4:30. [PMID: 19706177 PMCID: PMC3224940 DOI: 10.1186/1745-6150-4-30] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/25/2009] [Indexed: 11/18/2022] Open
Abstract
Background The root of the tree of life has been a holy grail ever since Darwin first used the tree as a metaphor for evolution. New methods seek to narrow down the location of the root by excluding it from branches of the tree of life. This is done by finding traits that must be derived, and excluding the root from the taxa those traits cover. However the two most comprehensive attempts at this strategy, performed by Cavalier-Smith and Lake et al., have excluded each other's rootings. Results The indel polarizations of Lake et al. rely on high quality alignments between paralogs that diverged before the last universal common ancestor (LUCA). Therefore, sequence alignment artifacts may skew their conclusions. We have reviewed their data using protein structure information where available. Several of the conclusions are quite different when viewed in the light of structure which is conserved over longer evolutionary time scales than sequence. We argue there is no polarization that excludes the root from all Gram-negatives, and that polarizations robustly exclude the root from the Archaea. Conclusion We conclude that there is no contradiction between the polarization datasets. The combination of these datasets excludes the root from every possible position except near the Chloroflexi. Reviewers This article was reviewed by Greg Fournier (nominated by J. Peter Gogarten), Purificación López-García, and Eugene Koonin.
Collapse
Affiliation(s)
- Ruben E Valas
- Bioinformatics Program, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | |
Collapse
|
110
|
Mulkidjanian AY, Galperin MY. On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth. Biol Direct 2009; 4:27. [PMID: 19703275 PMCID: PMC2749021 DOI: 10.1186/1745-6150-4-27] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 08/24/2009] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The accompanying article (A.Y. Mulkidjanian, Biology Direct 4:26) puts forward a detailed hypothesis on the role of zinc sulfide (ZnS) in the origin of life on Earth. The hypothesis suggests that life emerged within compartmentalized, photosynthesizing ZnS formations of hydrothermal origin (the Zn world), assembled in sub-aerial settings on the surface of the primeval Earth. RESULTS If life started within photosynthesizing ZnS compartments, it should have been able to evolve under the conditions of elevated levels of Zn2+ ions, byproducts of the ZnS-mediated photosynthesis. Therefore, the Zn world hypothesis leads to a set of testable predictions regarding the specific roles of Zn2+ ions in modern organisms, particularly in RNA and protein structures related to the procession of RNA and the "evolutionarily old" cellular functions. We checked these predictions using publicly available data and obtained evidence suggesting that the development of the primeval life forms up to the stage of the Last Universal Common Ancestor proceeded in zinc-rich settings. Testing of the hypothesis has revealed the possible supportive role of manganese sulfide in the primeval photosynthesis. In addition, we demonstrate the explanatory power of the Zn world concept by elucidating several points that so far remained without acceptable rationalization. In particular, this concept implies a new scenario for the separation of Bacteria and Archaea and the origin of Eukarya. CONCLUSION The ability of the Zn world hypothesis to generate non-trivial veritable predictions and explain previously obscure items gives credence to its key postulate that the development of the first life forms started within zinc-rich formations of hydrothermal origin and was driven by solar UV irradiation. This concept implies that the geochemical conditions conducive to the origin of life may have persisted only as long as the atmospheric CO2 pressure remained above ca. 10 bar. This work envisions the first Earth biotopes as photosynthesizing and habitable areas of porous ZnS and MnS precipitates around primeval hot springs. Further work will be needed to provide details on the life within these communities and to elucidate the primordial (bio)chemical reactions. REVIEWERS This article was reviewed by Arcady Mushegian, Eugene Koonin, and Patrick Forterre. For the full reviews, please go to the Reviewers' reports section.
Collapse
Affiliation(s)
- Armen Y Mulkidjanian
- School of Physics, Universität Osnabrück, D-49069 Osnabrück, Germany
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
111
|
Thomas H, Huang L, Young M, Ougham H. Evolution of plant senescence. BMC Evol Biol 2009; 9:163. [PMID: 19602260 PMCID: PMC2716323 DOI: 10.1186/1471-2148-9-163] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 07/14/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Senescence is integral to the flowering plant life-cycle. Senescence-like processes occur also in non-angiosperm land plants, algae and photosynthetic prokaryotes. Increasing numbers of genes have been assigned functions in the regulation and execution of angiosperm senescence. At the same time there has been a large expansion in the number and taxonomic spread of plant sequences in the genome databases. The present paper uses these resources to make a study of the evolutionary origins of angiosperm senescence based on a survey of the distribution, across plant and microbial taxa, and expression of senescence-related genes. RESULTS Phylogeny analyses were carried out on protein sequences corresponding to genes with demonstrated functions in angiosperm senescence. They include proteins involved in chlorophyll catabolism and its control, homeoprotein transcription factors, metabolite transporters, enzymes and regulators of carotenoid metabolism and of anthocyanin biosynthesis. Evolutionary timelines for the origins and functions of particular genes were inferred from the taxonomic distribution of sequences homologous to those of angiosperm senescence-related proteins. Turnover of the light energy transduction apparatus is the most ancient element in the senescence syndrome. By contrast, the association of phenylpropanoid metabolism with senescence, and integration of senescence with development and adaptation mediated by transcription factors, are relatively recent innovations of land plants. An extended range of senescence-related genes of Arabidopsis was profiled for coexpression patterns and developmental relationships and revealed a clear carotenoid metabolism grouping, coordinated expression of genes for anthocyanin and flavonoid enzymes and regulators and a cluster pattern of genes for chlorophyll catabolism consistent with functional and evolutionary features of the pathway. CONCLUSION The expression and phylogenetic characteristics of senescence-related genes allow a framework to be constructed of decisive events in the evolution of the senescence syndrome of modern land-plants. Combining phylogenetic, comparative sequence, gene expression and morphogenetic information leads to the conclusion that biochemical, cellular, integrative and adaptive systems were progressively added to the ancient primary core process of senescence as the evolving plant encountered new environmental and developmental contexts.
Collapse
Affiliation(s)
- Howard Thomas
- IBERS, Aberystwyth University, Ceredigion, SY23 3DA, UK
| | - Lin Huang
- IBERS, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - Mike Young
- IBERS, Aberystwyth University, Ceredigion, SY23 3DA, UK
| | - Helen Ougham
- IBERS, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| |
Collapse
|
112
|
Prosdocimi F, Chisham B, Pontelli E, Thompson JD, Stoltzfus A. Initial implementation of a comparative data analysis ontology. Evol Bioinform Online 2009; 5:47-66. [PMID: 19812726 PMCID: PMC2747124 DOI: 10.4137/ebo.s2320] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Comparative analysis is used throughout biology. When entities under comparison (e.g. proteins, genomes, species) are related by descent, evolutionary theory provides a framework that, in principle, allows N-ary comparisons of entities, while controlling for non-independence due to relatedness. Powerful software tools exist for specialized applications of this approach, yet it remains under-utilized in the absence of a unifying informatics infrastructure. A key step in developing such an infrastructure is the definition of a formal ontology. The analysis of use cases and existing formalisms suggests that a significant component of evolutionary analysis involves a core problem of inferring a character history, relying on key concepts: “Operational Taxonomic Units” (OTUs), representing the entities to be compared; “character-state data” representing the observations compared among OTUs; “phylogenetic tree”, representing the historical path of evolution among the entities; and “transitions”, the inferred evolutionary changes in states of characters that account for observations. Using the Web Ontology Language (OWL), we have defined these and other fundamental concepts in a Comparative Data Analysis Ontology (CDAO). CDAO has been evaluated for its ability to represent token data sets and to support simple forms of reasoning. With further development, CDAO will provide a basis for tools (for semantic transformation, data retrieval, validation, integration, etc.) that make it easier for software developers and biomedical researchers to apply evolutionary methods of inference to diverse types of data, so as to integrate this powerful framework for reasoning into their research.
Collapse
Affiliation(s)
- Francisco Prosdocimi
- Department of Structural Biology and Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), F-67400 Illkirch, France
| | | | | | | | | |
Collapse
|
113
|
Phylogenetic ubiquity and shuffling of the bacterial RecBCD and AddAB recombination complexes. J Bacteriol 2009; 191:5076-84. [PMID: 19542287 DOI: 10.1128/jb.00254-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
RecBCD and AddAB are bacterial enzymes that share similar helicase and nuclease activities and initiate repair of DNA double-strand breaks by homologous recombination. Examination of the phylogenetic distribution of AddAB and RecBCD revealed that one or the other complex is present in most sequenced bacteria. In addition, horizontal gene transfer (HGT) events involving addAB and recBCD appear to be common, with the genes encoding one complex frequently replacing those encoding the other. HGT may also explain the unexpected identification of archaeal addAB genes. More than 85% of addAB and recBCD genes are clustered on the genome, suggesting operon structures. A few organisms, including the Mycobacteria, encode multiple copies of these complexes of either the same or mixed classes. The possibility that the enzymatic activities of the AddAB and RecBCD enzymes promote their horizontal transfer is discussed, and the distribution of AddAB/RecBCD is compared to that of the RecU/RuvC resolvases. Finally, it appears that two sequence motifs, the Walker A box involved in ATP binding and an iron-sulfur-cysteine cluster, are present only in subsets of AddB proteins, suggesting the existence of mechanistically distinct classes of AddB.
Collapse
|
114
|
Abstract
Eukaryotic proteins can be modified through attachment to various small molecules and proteins. One such modification is conjugation to ubiquitin and ubiquitin-like proteins (UBLs), which controls an enormous range of physiological processes. Bound UBLs mainly regulate the interactions of proteins with other macromolecules, for example binding to the proteasome or recruitment to chromatin. The various UBL systems use related enzymes to attach specific UBLs to proteins (or other molecules), and most of these attachments are transient. There is increasing evidence suggesting that such UBL-protein modification evolved from prokaryotic sulphurtransferase systems or related enzymes. Moreover, proteins similar to UBL-conjugating enzymes and UBL-deconjugating enzymes seem to have already been widespread at the time of the last common ancestor of eukaryotes, suggesting that UBL-protein conjugation did not first evolve in eukaryotes.
Collapse
Affiliation(s)
- Mark Hochstrasser
- Yale University, Department of Molecular Biophysics & Biochemistry, 266 Whitney Avenue, PO Box 208114, New Haven, Connecticut 06520, USA.
| |
Collapse
|
115
|
Valas RE, Yang S, Bourne PE. Nothing about protein structure classification makes sense except in the light of evolution. Curr Opin Struct Biol 2009; 19:329-34. [PMID: 19394812 DOI: 10.1016/j.sbi.2009.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/19/2009] [Accepted: 03/16/2009] [Indexed: 12/27/2022]
Abstract
In this, the 200th anniversary of Charles Darwin's birth and the 150th anniversary of the publication of the Origin of Species, it is fitting to revisit the classification of protein structures from an evolutionary perspective. Existing classifications use homologous sequence relationships, but knowing that structure is much more conserved that sequence creates an iterative loop from which structures can be further classified beyond that of the domain, thereby teasing out distant evolutionary relationships. The desired classification scheme is then one in which a fold is merely semantics and structure can be classified as either ancestral or derived.
Collapse
Affiliation(s)
- Ruben E Valas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0743, USA
| | | | | |
Collapse
|
116
|
Mulkidjanian AY, Galperin MY, Koonin EV. Co-evolution of primordial membranes and membrane proteins. Trends Biochem Sci 2009; 34:206-15. [PMID: 19303305 DOI: 10.1016/j.tibs.2009.01.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 01/14/2023]
Abstract
Studies of the past several decades have provided major insights into the structural organization of biological membranes and mechanisms of many membrane molecular machines. However, the origin(s) of the membrane(s) and membrane proteins remains enigmatic. We discuss different concepts of the origin and early evolution of membranes with a focus on the evolution of the (im)permeability to charged molecules such as proteins, nucleic acids and small ions. Reconstruction of the evolution of F-type and A/V-type membrane ATPases (ATP synthases), which are either proton- or sodium-dependent, might help us to understand not only the origin of membrane bioenergetics but also of membranes themselves. We argue that evolution of biological membranes occurred as a process of co-evolution of lipid bilayers, membrane proteins and membrane bioenergetics.
Collapse
|
117
|
Forterre P, Gadelle D. Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms. Nucleic Acids Res 2009; 37:679-92. [PMID: 19208647 PMCID: PMC2647321 DOI: 10.1093/nar/gkp032] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Topoisomerases are essential enzymes that solve topological problems arising from the double-helical structure of DNA. As a consequence, one should have naively expected to find homologous topoisomerases in all cellular organisms, dating back to their last common ancestor. However, as observed for other enzymes working with DNA, this is not the case. Phylogenomics analyses indicate that different sets of topoisomerases were present in the most recent common ancestors of each of the three cellular domains of life (some of them being common to two or three domains), whereas other topoisomerases families or subfamilies were acquired in a particular domain, or even a particular lineage, by horizontal gene transfers. Interestingly, two groups of viruses encode topoisomerases that are only distantly related to their cellular counterparts. To explain these observations, we suggest that topoisomerases originated in an ancestral virosphere, and that various subfamilies were later on transferred independently to different ancient cellular lineages. We also proposed that topoisomerases have played a critical role in the origin of modern genomes and in the emergence of the three cellular domains.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut de Génétique et Microbiologie, Univ Paris-Sud, 91405 Orsay Cedex, France
| | | |
Collapse
|
118
|
Abstract
The origin of the eukaryotic genetic apparatus is thought to be central to understanding the evolution of the eukaryotic cell. Disagreement about the source of the relevant genes has spawned competing hypotheses for the origins of the eukaryote nuclear lineage. The iconic rooted 3-domains tree of life shows eukaryotes and archaebacteria as separate groups that share a common ancestor to the exclusion of eubacteria. By contrast, the eocyte hypothesis has eukaryotes originating within the archaebacteria and sharing a common ancestor with a particular group called the Crenarchaeota or eocytes. Here, we have investigated the relative support for each hypothesis from analysis of 53 genes spanning the 3 domains, including essential components of the eukaryotic nucleic acid replication, transcription, and translation apparatus. As an important component of our analysis, we investigated the fit between model and data with respect to composition. Compositional heterogeneity is a pervasive problem for reconstruction of ancient relationships, which, if ignored, can produce an incorrect tree with strong support. To mitigate its effects, we used phylogenetic models that allow for changing nucleotide or amino acid compositions over the tree and data. Our analyses favor a topology that supports the eocyte hypothesis rather than archaebacterial monophyly and the 3-domains tree of life.
Collapse
|
119
|
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
120
|
Lake JA, Servin JA, Herbold CW, Skophammer RG. Evidence for a New Root of the Tree of Life. Syst Biol 2008; 57:835-43. [DOI: 10.1080/10635150802555933] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- James A. Lake
- Department of Molecular, Cellular, and Developmental Biology, University of California Los Angeles, California 90095, USA; E-mail: (J.A.L.)
- Molecular Biology Institute, University of California Los Angeles, California 90095, USA
- Department of Human Genetics, University of California Los Angeles, California 90095, USA
- UCLA Astrobiology Institute, University of California Los Angeles, California 90095, USA
| | - Jacqueline A. Servin
- Molecular Biology Institute, University of California Los Angeles, California 90095, USA
- UCLA Astrobiology Institute, University of California Los Angeles, California 90095, USA
| | - Craig W. Herbold
- Molecular Biology Institute, University of California Los Angeles, California 90095, USA
- UCLA Astrobiology Institute, University of California Los Angeles, California 90095, USA
| | - Ryan G. Skophammer
- Department of Molecular, Cellular, and Developmental Biology, University of California Los Angeles, California 90095, USA; E-mail: (J.A.L.)
- UCLA Astrobiology Institute, University of California Los Angeles, California 90095, USA
| |
Collapse
|
121
|
Gatsos X, Perry AJ, Anwari K, Dolezal P, Wolynec PP, Likić VA, Purcell AW, Buchanan SK, Lithgow T. Protein secretion and outer membrane assembly in Alphaproteobacteria. FEMS Microbiol Rev 2008; 32:995-1009. [PMID: 18759741 PMCID: PMC2635482 DOI: 10.1111/j.1574-6976.2008.00130.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/23/2008] [Accepted: 07/18/2008] [Indexed: 11/17/2022] Open
Abstract
The assembly of beta-barrel proteins into membranes is a fundamental process that is essential in Gram-negative bacteria, mitochondria and plastids. Our understanding of the mechanism of beta-barrel assembly is progressing from studies carried out in Escherichia coli and Neisseria meningitidis. Comparative sequence analysis suggests that while many components mediating beta-barrel protein assembly are conserved in all groups of bacteria with outer membranes, some components are notably absent. The Alphaproteobacteria in particular seem prone to gene loss and show the presence or absence of specific components mediating the assembly of beta-barrels: some components of the pathway appear to be missing from whole groups of bacteria (e.g. Skp, YfgL and NlpB), other proteins are conserved but are missing characteristic domains (e.g. SurA). This comparative analysis is also revealing important structural signatures that are vague unless multiple members from a protein family are considered as a group (e.g. tetratricopeptide repeat (TPR) motifs in YfiO, beta-propeller signatures in YfgL). Given that the process of the beta-barrel assembly is conserved, analysis of outer membrane biogenesis in Alphaproteobacteria, the bacterial group that gave rise to mitochondria, also promises insight into the assembly of beta-barrel proteins in eukaryotes.
Collapse
Affiliation(s)
- Xenia Gatsos
- Department of Biochemistry and Molecular Biology, University of MelbourneMelbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| | - Andrew J Perry
- Department of Biochemistry and Molecular Biology, University of MelbourneMelbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| | - Khatira Anwari
- Department of Biochemistry and Molecular Biology, University of MelbourneMelbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| | - Pavel Dolezal
- Department of Biochemistry and Molecular Biology, University of MelbourneMelbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| | - P Peter Wolynec
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| | - Vladimir A Likić
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, University of MelbourneMelbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, USA
| | - Trevor Lithgow
- Department of Biochemistry and Molecular Biology, University of MelbourneMelbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourne, Australia
| |
Collapse
|
122
|
Cavalier-Smith T. Predation and eukaryote cell origins: a coevolutionary perspective. Int J Biochem Cell Biol 2008; 41:307-22. [PMID: 18935970 DOI: 10.1016/j.biocel.2008.10.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/06/2008] [Accepted: 10/08/2008] [Indexed: 12/23/2022]
Abstract
Cells are of only two kinds: bacteria, with DNA segregated by surface membrane motors, dating back approximately 3.5Gy; and eukaryotes, which evolved from bacteria, possibly as recently as 800-850My ago. The last common ancestor of eukaryotes was a sexual phagotrophic protozoan with mitochondria, one or two centrioles and cilia. Conversion of bacteria (=prokaryotes) into a eukaryote involved approximately 60 major innovations. Numerous contradictory ideas about eukaryogenesis fail to explain fundamental features of eukaryotic cell biology or conflict with phylogeny. Data are best explained by the intracellular coevolutionary theory, with three basic tenets: (1) the eukaryotic cytoskeleton and endomembrane system originated through cooperatively enabling the evolution of phagotrophy; (2) phagocytosis internalised DNA-membrane attachments, unavoidably disrupting bacterial division; recovery entailed the evolution of the nucleus and mitotic cycle; (3) the symbiogenetic origin of mitochondria immediately followed the perfection of phagotrophy and intracellular digestion, contributing greater energy efficiency and group II introns as precursors of spliceosomal introns. Eukaryotes plus their archaebacterial sisters form the clade neomura, which evolved from a radically modified derivative of an actinobacterial posibacterium that had replaced the ancestral eubacterial murein peptidoglycan by N-linked glycoproteins, radically modified its DNA-handling enzymes, and evolved cotranslational protein secretion, but not the isoprenoid-ether lipids of archaebacteria. I focus on this phylogenetic background and on explaining how in response to novel phagotrophic selective pressures and ensuing genome internalisation this prekaryote evolved efficient digestion of prey proteins by retrotranslocation and 26S proteasomes, then internal digestion by phagocytosis, lysosomes, and peroxisomes, and eukaryotic vesicle trafficking and intracellular compartmentation.
Collapse
Affiliation(s)
- T Cavalier-Smith
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
123
|
Macroamphiphilic components of thermophilic actinomycetes: identification of lipoteichoic acid in Thermobifida fusca. J Bacteriol 2008; 191:152-60. [PMID: 18931132 DOI: 10.1128/jb.01105-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The cell envelopes of gram-positive bacteria contain structurally diverse membrane-anchored macroamphiphiles (lipoteichoic acids and lipoglycans) whose functions are poorly understood. Since regulation of membrane composition is an important feature of adaptation to life at higher temperatures, we have examined the nature of the macroamphiphiles present in the thermophilic actinomycetes Thermobifida fusca and Rubrobacter xylanophilus. Following hot-phenol-water extraction and purification by hydrophobic interaction chromatography, Western blotting with a monoclonal antibody against lipoteichoic acid strongly suggested the presence of a polyglycerophosphate lipoteichoic acid in T. fusca. This structure was confirmed by chemical and nuclear magnetic resonance analyses, which confirmed that the lipoteichoic acid is substituted with beta-glucosyl residues, in common with the teichoic acid of this organism. In contrast, several extraction methods failed to recover significant macroamphiphilic carbohydrate- or phosphate-containing material from R. xylanophilus, suggesting that this actinomycete most likely lacks a membrane-anchored macroamphiphile. The finding of a polyglycerophosphate lipoteichoic acid in T. fusca suggests that lipoteichoic acids may be more widely present in the cell envelopes of actinomycetes than was previously assumed. However, the apparent absence of macroamphiphiles in the cell envelope of R. xylanophilus is highly unusual and suggests that macroamphiphiles may not always be essential for cell envelope homeostasis in gram-positive bacteria.
Collapse
|
124
|
Boussau B, Guéguen L, Gouy M. Accounting for horizontal gene transfers explains conflicting hypotheses regarding the position of aquificales in the phylogeny of Bacteria. BMC Evol Biol 2008; 8:272. [PMID: 18834516 PMCID: PMC2584045 DOI: 10.1186/1471-2148-8-272] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 10/03/2008] [Indexed: 01/09/2023] Open
Abstract
Background Despite a large agreement between ribosomal RNA and concatenated protein phylogenies, the phylogenetic tree of the bacterial domain remains uncertain in its deepest nodes. For instance, the position of the hyperthermophilic Aquificales is debated, as their commonly observed position close to Thermotogales may proceed from horizontal gene transfers, long branch attraction or compositional biases, and may not represent vertical descent. Indeed, another view, based on the analysis of rare genomic changes, places Aquificales close to epsilon-Proteobacteria. Results To get a whole genome view of Aquifex relationships, all trees containing sequences from Aquifex in the HOGENOM database were surveyed. This study revealed that Aquifex is most often found as a neighbour to Thermotogales. Moreover, informational genes, which appeared to be less often transferred to the Aquifex lineage than non-informational genes, most often placed Aquificales close to Thermotogales. To ensure these results did not come from long branch attraction or compositional artefacts, a subset of carefully chosen proteins from a wide range of bacterial species was selected for further scrutiny. Among these genes, two phylogenetic hypotheses were found to be significantly more likely than the others: the most likely hypothesis placed Aquificales as a neighbour to Thermotogales, and the second one with epsilon-Proteobacteria. We characterized the genes that supported each of these two hypotheses, and found that differences in rates of evolution or in amino-acid compositions could not explain the presence of two incongruent phylogenetic signals in the alignment. Instead, evidence for a large Horizontal Gene Transfer between Aquificales and epsilon-Proteobacteria was found. Conclusion Methods based on concatenated informational proteins and methods based on character cladistics led to different conclusions regarding the position of Aquificales because this lineage has undergone many horizontal gene transfers. However, if a tree of vertical descent can be reconstructed for Bacteria, our results suggest Aquificales should be placed close to Thermotogales.
Collapse
Affiliation(s)
- Bastien Boussau
- Université de Lyon; Université Lyon 1; CNRS; INRIA; Laboratoire de Biométrie et Biologie Evolutive, 43 boulevard du 11 novembre 1918, Villeurbanne F-69622, France.
| | | | | |
Collapse
|
125
|
Glansdorff N, Xu Y, Labedan B. The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct 2008; 3:29. [PMID: 18613974 PMCID: PMC2478661 DOI: 10.1186/1745-6150-3-29] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 07/09/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since the reclassification of all life forms in three Domains (Archaea, Bacteria, Eukarya), the identity of their alleged forerunner (Last Universal Common Ancestor or LUCA) has been the subject of extensive controversies: progenote or already complex organism, prokaryote or protoeukaryote, thermophile or mesophile, product of a protracted progression from simple replicators to complex cells or born in the cradle of "catalytically closed" entities? We present a critical survey of the topic and suggest a scenario. RESULTS LUCA does not appear to have been a simple, primitive, hyperthermophilic prokaryote but rather a complex community of protoeukaryotes with a RNA genome, adapted to a broad range of moderate temperatures, genetically redundant, morphologically and metabolically diverse. LUCA's genetic redundancy predicts loss of paralogous gene copies in divergent lineages to be a significant source of phylogenetic anomalies, i.e. instances where a protein tree departs from the SSU-rRNA genealogy; consequently, horizontal gene transfer may not have the rampant character assumed by many. Examining membrane lipids suggest LUCA had sn1,2 ester fatty acid lipids from which Archaea emerged from the outset as thermophilic by "thermoreduction," with a new type of membrane, composed of sn2,3 ether isoprenoid lipids; this occurred without major enzymatic reconversion. Bacteria emerged by reductive evolution from LUCA and some lineages further acquired extreme thermophily by convergent evolution. This scenario is compatible with the hypothesis that the RNA to DNA transition resulted from different viral invasions as proposed by Forterre. Beyond the controversy opposing "replication first" to metabolism first", the predictive arguments of theories on "catalytic closure" or "compositional heredity" heavily weigh in favour of LUCA's ancestors having emerged as complex, self-replicating entities from which a genetic code arose under natural selection. CONCLUSION Life was born complex and the LUCA displayed that heritage. It had the "body "of a mesophilic eukaryote well before maturing by endosymbiosis into an organism adapted to an atmosphere rich in oxygen. Abundant indications suggest reductive evolution of this complex and heterogeneous entity towards the "prokaryotic" Domains Archaea and Bacteria. The word "prokaryote" should be abandoned because epistemologically unsound. REVIEWERS This article was reviewed by Anthony Poole, Patrick Forterre, and Nicolas Galtier.
Collapse
Affiliation(s)
- Nicolas Glansdorff
- JM Wiame Research Institute for Microbiology and Vrije Universiteit Brussel, 1 ave E. Gryzon, B-1070 Brussels, Belgium.
| | | | | |
Collapse
|
126
|
Tuon FF, Neto VA, Amato VS. Leishmania: origin, evolution and future since the Precambrian. ACTA ACUST UNITED AC 2008; 54:158-66. [PMID: 18631183 DOI: 10.1111/j.1574-695x.2008.00455.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This brief review discusses the history of leishmaniasis, considering its origin from the Paleoartic, Neoartic or Neotropic. We reassess some of the theories of the likely origin of this protozoan since the beginning of life on Earth, passing through the Mesozoic and continuing to the appearance of humans. The relationship between this parasite or its ancestors, possible vectors and hosts with regard to ecological modifications is discussed. Recent molecular techniques have helped to elucidate some of the evolutionary questions regarding Leishmania, but have also brought doubts about the origin and evolution of this human parasite. PCR has been used for studies in the new discipline of paleoparasitology, helping to elucidate some of the remaining evolutionary questions. Understanding of this global condition is fundamental in determining the best approach to use against the parasite, specifically for the development of an efficient vaccine.
Collapse
Affiliation(s)
- Felipe Francisco Tuon
- Department of Infectious Diseases, University of São Paulo, Medical School, São Paulo, Brazil
| | | | | |
Collapse
|
127
|
Valas RE, Bourne PE. Rethinking proteasome evolution: two novel bacterial proteasomes. J Mol Evol 2008; 66:494-504. [PMID: 18389302 PMCID: PMC3235984 DOI: 10.1007/s00239-008-9075-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 01/23/2008] [Accepted: 01/25/2008] [Indexed: 12/22/2022]
Abstract
The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes. Despite this variation in complexity, all the proteasomes are composed of homologous subunits. We searched 238 complete bacterial genomes for structures related to the proteasome and found evidence of two novel groups of bacterial proteasomes. The first, which we name Anbu, is sparsely distributed among cyanobacteria and proteobacteria. We hypothesize that Anbu must be very ancient because of its distribution within the cyanobacteria, and that it has been lost in many more recent species. We also present evidence for a fourth type of bacterial proteasome found in a few beta-proteobacteria, which we call beta-proteobacteria proteasome homologue (BPH). Sequence and structural analyses show that Anbu and BPH are both distinct from known bacterial proteasomes but have homologous structures. Anbu is encoded by one gene, so we postulate a duplication of Anbu created the 20S proteasome. Anbu's function appears to be related to transglutaminase activity, not the general stress response associated with HslV. We have found different combinations of Anbu, BPH, and HslV within these bacterial genomes, which raises questions about specialized protein degradation systems.
Collapse
Affiliation(s)
- Ruben E Valas
- Bioinformatics Program, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
128
|
Vesteg M, Krajcovic J. Origin of eukaryotic cells as a symbiosis of parasitic alpha-proteobacteria in the periplasm of two-membrane-bounded sexual pre-karyotes. Commun Integr Biol 2008; 1:104-13. [PMID: 19513207 PMCID: PMC2633810 DOI: 10.4161/cib.1.1.6349] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 05/29/2008] [Indexed: 11/19/2022] Open
Abstract
The last universal common ancestor (LUCA) might have been either prokaryotic- or eukaryotic-like. Nevertheless, the universally distributed components suggest rather LUCA consistent with the pre-cell theory of Kandler. The hypotheses for the origin of eukaryotes are briefly summarized. The models under which prokaryotes or their chimeras were direct ancestors of eukaryotes are criticized. It is proposed that the pre-karyote (a host entity for alpha-proteobacteria) was a remnant of pre-cellular world, and was unlucky to have evolved fusion prohibiting cell surface, and thus could have evolved sex. The DNA damage checkpoint pathway could have represented the only pre-karyotic checkpoint control allowing division only when DNA was completely replicated without mistakes. The fusion of two partially diploid (in S-phase blocked) pre-karyotes might have represented another repair strategy. After completing replication of both haploid sets, DNA damage checkpoint would allow two subsequent rounds of fission. Alternatively, pre-karyote might have possessed two membranes inherited from LUCA. Under this hypothesis symbiotic alpha-proteobacterial ancestors of mitochondria might have ancestrally been selfish parasites of pre-karyote intermembrane space whose infection might have been analogous to infection of G(-)-bacterial periplasm by Bdellovibrio sp. It is suggested that eukaryotic plasma membrane might be derived from pre-karyote outer membrane and nuclear/ER membrane might be derived from pre-karyote inner membrane. Thus the nucleoplasm might be derived from pre-karyote cytoplasm and eukaryotic cytoplasm might be homologous to pre-karyote periplasm.
Collapse
Affiliation(s)
- Matej Vesteg
- Institute of Cell Biology; Faculty of Natural Sciences; Comenius University; Bratislava, Slovakia
| | | |
Collapse
|
129
|
Poole AM, Willerslev E. Can identification of a fourth domain of life be made from sequence data alone, and could it be done on Mars? ASTROBIOLOGY 2007; 7:801-814. [PMID: 17963478 DOI: 10.1089/ast.2006.0094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A central question in astrobiology is whether life exists elsewhere in the universe. If so, is it related to Earth life? Technologies exist that enable identification of DNA- or RNA-based microbial life directly from environmental samples here on Earth. Such technologies could, in principle, be applied to the search for life elsewhere; indeed, efforts are underway to initiate such a search. However, surveying for nucleic acid-based life on other planets, if attempted, must be carried out with caution, owing to the risk of contamination by Earth-based life. Here we argue that the null hypothesis must be that any DNA discovered and sequenced from samples taken elsewhere in the universe are Earth-based contaminants. Experience from studies of low-biomass ancient DNA demonstrates that some results, by their very nature, will not enable complete rejection of the null hypothesis. In terms of eliminating contamination as an explanation of the data, there may be value in identification of sequences that lie outside the known diversity of the three domains of life. We therefore have examined whether a fourth domain could be readily identified from environmental DNA sequence data alone. We concluded that, even on Earth, this would be far from trivial, and we illustrate this point by way of examples drawn from the literature. Overall, our conclusions do not bode well for planned PCR-based surveys for life on Mars, and we argue that other independent biosignatures will be essential in corroborating any claims for the presence of life based on nucleic acid sequences.
Collapse
Affiliation(s)
- Anthony M Poole
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden.
| | | |
Collapse
|
130
|
Wong JTF, Chen J, Mat WK, Ng SK, Xue H. Polyphasic evidence delineating the root of life and roots of biological domains. Gene 2007; 403:39-52. [PMID: 17884304 DOI: 10.1016/j.gene.2007.07.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2007] [Revised: 07/22/2007] [Accepted: 07/23/2007] [Indexed: 12/29/2022]
Abstract
Twenty different lines of polyphasic evidence obtained from tRNA and protein sequences, anticodon usages, gene contents, metabolism and geochemistry have made possible the identification of a Last Universal Common Ancestor (LUCA) phylogenetically located proximal to the hyperthermophilic methanogenic archaeon Methanopyrus. Combined with analysis of high-similarity cross-domain tRNA pairs, the evidence also suggests a Thermotoga-proximal Last Bacterial Common Ancestor (LBACA) that originated from Crenarchaeota close to Aeropyrum, and a Plasmodium-proximal Last Eukaryotic Common Ancestor (LECA) derived from Ferroplasma through endosymbiosis.
Collapse
Affiliation(s)
- J Tze-Fei Wong
- Department of Biochemistry and Applied Genomics Center, Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China.
| | | | | | | | | |
Collapse
|
131
|
Fondi M, Brilli M, Emiliani G, Paffetti D, Fani R. The primordial metabolism: an ancestral interconnection between leucine, arginine, and lysine biosynthesis. BMC Evol Biol 2007; 7 Suppl 2:S3. [PMID: 17767731 PMCID: PMC1963480 DOI: 10.1186/1471-2148-7-s2-s3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND It is generally assumed that primordial cells had small genomes with simple genes coding for enzymes able to react with a wide range of chemically related substrates, interconnecting different metabolic routes. New genes coding for enzymes with a narrowed substrate specificity arose by paralogous duplication(s) of ancestral ones and evolutionary divergence. In this way new metabolic pathways were built up by primordial cells. Useful hints to disclose the origin and evolution of ancestral metabolic routes and their interconnections can be obtained by comparing sequences of enzymes involved in the same or different metabolic routes. From this viewpoint, the lysine, arginine, and leucine biosynthetic routes represent very interesting study-models. Some of the lys, arg and leu genes are paralogs; this led to the suggestion that their ancestor genes might interconnect the three pathways. The aim of this work was to trace the evolutionary pathway leading to the appearance of the extant biosynthetic routes and to try to disclose the interrelationships existing between them and other pathways in the early stages of cellular evolution. RESULTS The comparative analysis of the genes involved in the biosynthesis of lysine, leucine, and arginine, their phylogenetic distribution and analysis revealed that the extant metabolic "grids" and their interrelationships might be the outcome of a cascade of duplication of ancestral genes that, according to the patchwork hypothesis, coded for unspecific enzymes able to react with a wide range of substrates. These genes belonged to a single common pathway in which the three biosynthetic routes were highly interconnected between them and also to methionine, threonine, and cell wall biosynthesis. A possible evolutionary model leading to the extant metabolic scenarios was also depicted. CONCLUSION The whole body of data obtained in this work suggests that primordial cells synthesized leucine, lysine, and arginine through a single common metabolic pathway, whose genes underwent a set of duplication events, most of which can have predated the appearance of the last common universal ancestor of the three cell domains (Archaea, Bacteria, and Eucaryotes). The model proposes a relative timing for the appearance of the three routes and also suggests a possible evolutionary pathway for the assembly of bacterial cell-wall.
Collapse
Affiliation(s)
- Marco Fondi
- Dipartimento di Biologia Animale e Genetica, Università di Firenze, Via Romana 17\19, Firenze, Italia
| | - Matteo Brilli
- Dipartimento di Biologia Animale e Genetica, Università di Firenze, Via Romana 17\19, Firenze, Italia
| | - Giovanni Emiliani
- Dipartimento di Scienze e Tecnologie Ambientali Forestali, Università di Firenze, Via S. Bonaventura 13, Firenze, Italia
| | - Donatella Paffetti
- Dipartimento di Scienze e Tecnologie Ambientali Forestali, Università di Firenze, Via S. Bonaventura 13, Firenze, Italia
| | - Renato Fani
- Dipartimento di Biologia Animale e Genetica, Università di Firenze, Via Romana 17\19, Firenze, Italia
| |
Collapse
|
132
|
Fosmids of novel marine Planctomycetes from the Namibian and Oregon coast upwelling systems and their cross-comparison with planctomycete genomes. ISME JOURNAL 2007; 1:419-35. [DOI: 10.1038/ismej.2007.63] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
133
|
Davidov Y, Jurkevitch E. Comments of Poole and Penny's essay "Evaluating hypotheses for the origin of eukaryotes", BioEssays 29:74-84. Bioessays 2007; 29:615-6. [PMID: 17508407 DOI: 10.1002/bies.20587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
134
|
Lee J, Michael AJ, Martynowski D, Goldsmith EJ, Phillips MA. Phylogenetic diversity and the structural basis of substrate specificity in the beta/alpha-barrel fold basic amino acid decarboxylases. J Biol Chem 2007; 282:27115-27125. [PMID: 17626020 DOI: 10.1074/jbc.m704066200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta/alpha-barrel fold type basic amino acid decarboxylases include eukaryotic ornithine decarboxylases (ODC) and bacterial and plant enzymes with activity on L-arginine and meso-diaminopimelate. These enzymes catalyze essential steps in polyamine and lysine biosynthesis. Phylogenetic analysis suggests that diverse bacterial species also contain ODC-like enzymes from this fold type. However, in comparison with the eukaryotic ODCs, amino acid differences were identified in the sequence of the 3(10)-helix that forms a key specificity element in the active site, suggesting they might function on novel substrates. Putative decarboxylases from a phylogenetically diverse range of bacteria were characterized to determine their substrate preference. Enzymes from species within Methanosarcina, Pseudomonas, Bartonella, Nitrosomonas, Thermotoga, and Aquifex showed a strong preference for L-ornithine, whereas the enzyme from Vibrio vulnificus (VvL/ODC) had dual specificity functioning well on both L-ornithine and L-lysine. The x-ray structure of VvL/ODC was solved in the presence of the reaction products putrescine and cadaverine to 1.7 and 2.15A, respectively. The overall structure is similar to eukaryotic ODC; however, reorientation of the 3(10)-helix enlarging the substrate binding pocket allows L-lysine to be accommodated. The structure of the putrescine-bound enzyme suggests that a bridging water molecule between the shorter L-ornithine and key active site residues provides the structural basis for VvL/ODC to also function on this substrate. Our data demonstrate that there is greater structural and functional diversity in bacterial polyamine biosynthetic decarboxylases than previously suspected.
Collapse
Affiliation(s)
- Jeongmi Lee
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041
| | - Anthony J Michael
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | - Dariusz Martynowski
- Departments of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041 and the
| | - Elizabeth J Goldsmith
- Departments of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041 and the
| | - Margaret A Phillips
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041.
| |
Collapse
|
135
|
De Mot R. Actinomycete-like proteasomes in a Gram-negative bacterium. Trends Microbiol 2007; 15:335-8. [PMID: 17587582 DOI: 10.1016/j.tim.2007.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/22/2007] [Accepted: 06/11/2007] [Indexed: 12/23/2022]
Abstract
Cultivation-independent proteogenomic exploration of mine-drainage biofilm has revealed proteasomes in Gram-negative bacteria of the Nitrospirae phylum (Leptospirillum group II) dominating this acidophilic community. Most probably, the proteasome genes were acquired from actinobacteria, the only eubacteria previously known to contain proteasomes. In addition, this study shows that the proteasome and the evolutionarily related ATP-dependent protease HslVU (also known as ClpQY) are not mutually exclusive in prokaryotes.
Collapse
Affiliation(s)
- René De Mot
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B-3001 Heverlee-Leuven, Belgium.
| |
Collapse
|
136
|
Abstract
We present BLAST on Orthologous groups (BLASTO), a modified BLAST tool for searching orthologous group data. It treats each orthologous group as a unit and outputs a ranked list of orthologous groups instead of single sequences. By filtering out redundancy and putative paralogs, sequence comparisons to orthologous groups, instead of to single sequences in the database, can improve both functional prediction and phylogenetic inference. BLASTO computes the significance score of each orthologous group based on the individual BLAST hits in the orthologous group, using the number of taxa in the group as an optional weight. This allows users to control the species diversity of the orthologous groups. BLASTO incorporates the best-known multispecies ortholog databases, including NCBI Clusters of Orthologous Group, NCBI euKaryotic Orthologous Group database, OrthoMCL, MultiParanoid and TIGR Eukaryotic Gene Orthologues database, and offers a useful platform to integrate orthology information into functional inference and evolutionary studies of individual sequences. BLASTO is accessible online at http://oxytricha.princeton.edu/BlastO.
Collapse
Affiliation(s)
| | - Laura F. Landweber
- *To whom correspondence should be addressed: +1 609 258 1947+1 609 258 7892
| |
Collapse
|
137
|
Sghaier H, Narumi I, Satoh K, Ohba H, Mitomo H. Problems with the current deinococcal hypothesis: an alternative theory. Theory Biosci 2007; 126:43-5. [DOI: 10.1007/s12064-007-0004-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 03/06/2007] [Indexed: 01/08/2023]
|
138
|
Doolittle WF, Bapteste E. Pattern pluralism and the Tree of Life hypothesis. Proc Natl Acad Sci U S A 2007; 104:2043-9. [PMID: 17261804 PMCID: PMC1892968 DOI: 10.1073/pnas.0610699104] [Citation(s) in RCA: 366] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Indexed: 11/18/2022] Open
Abstract
Darwin claimed that a unique inclusively hierarchical pattern of relationships between all organisms based on their similarities and differences [the Tree of Life (TOL)] was a fact of nature, for which evolution, and in particular a branching process of descent with modification, was the explanation. However, there is no independent evidence that the natural order is an inclusive hierarchy, and incorporation of prokaryotes into the TOL is especially problematic. The only data sets from which we might construct a universal hierarchy including prokaryotes, the sequences of genes, often disagree and can seldom be proven to agree. Hierarchical structure can always be imposed on or extracted from such data sets by algorithms designed to do so, but at its base the universal TOL rests on an unproven assumption about pattern that, given what we know about process, is unlikely to be broadly true. This is not to say that similarities and differences between organisms are not to be accounted for by evolutionary mechanisms, but descent with modification is only one of these mechanisms, and a single tree-like pattern is not the necessary (or expected) result of their collective operation. Pattern pluralism (the recognition that different evolutionary models and representations of relationships will be appropriate, and true, for different taxa or at different scales or for different purposes) is an attractive alternative to the quixotic pursuit of a single true TOL.
Collapse
Affiliation(s)
- W Ford Doolittle
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada B3H 1X5.
| | | |
Collapse
|
139
|
Jékely G. Origin of phagotrophic eukaryotes as social cheaters in microbial biofilms. Biol Direct 2007; 2:3. [PMID: 17239231 PMCID: PMC1794243 DOI: 10.1186/1745-6150-2-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 01/19/2007] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The origin of eukaryotic cells was one of the most dramatic evolutionary transitions in the history of life. It is generally assumed that eukaryotes evolved later then prokaryotes by the transformation or fusion of prokaryotic lineages. However, as yet there is no consensus regarding the nature of the prokaryotic group(s) ancestral to eukaryotes. Regardless of this, a hardly debatable fundamental novel characteristic of the last eukaryotic common ancestor was the ability to exploit prokaryotic biomass by the ingestion of entire cells, i.e. phagocytosis. The recent advances in our understanding of the social life of prokaryotes may help to explain the origin of this form of total exploitation. PRESENTATION OF THE HYPOTHESIS Here I propose that eukaryotic cells originated in a social environment, a differentiated microbial mat or biofilm that was maintained by the cooperative action of its members. Cooperation was costly (e.g. the production of developmental signals or an extracellular matrix) but yielded benefits that increased the overall fitness of the social group. I propose that eukaryotes originated as selfish cheaters that enjoyed the benefits of social aggregation but did not contribute to it themselves. The cheaters later evolved into predators that lysed other cells and eventually became professional phagotrophs. During several cycles of social aggregation and dispersal the number of cheaters was contained by a chicken game situation, i.e. reproductive success of cheaters was high when they were in low abundance but was reduced when they were over-represented. Radical changes in cell structure, including the loss of the rigid prokaryotic cell wall and the development of endomembranes, allowed the protoeukaryotes to avoid cheater control and to exploit nutrients more efficiently. Cellular changes were buffered by both the social benefits and the protective physico-chemical milieu of the interior of biofilms. Symbiosis with the mitochondial ancestor evolved after phagotrophy as alphaproteobacterial prey developed post-ingestion defence mechanisms to circumvent digestion in the food vacuole. Mitochondrial symbiosis triggered the origin of the nucleus. Cilia evolved last and allowed eukaryotes to predate also on planktonic prey. I will discuss how this scenario may possibly fit into the contrasting phylogenetic frameworks that have been proposed. TESTING THE HYPOTHESIS Some aspects of the hypothesis can be tested experimentally by studying the level of exploitation cheaters can reach in social microbes. It would be interesting to test whether absorption of nutrients from lysed fellow colony members can happen and if cheaters can evolve into predators that actively digest neighbouring cells. IMPLICATIONS OF THE HYPOTHESIS The hypothesis highlights the importance of social exploitation in cell evolution and how a social environment can buffer drastic cellular transformations that would be lethal for planktonic forms.
Collapse
Affiliation(s)
- Gáspár Jékely
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
140
|
Forterre P, Gribaldo S, Gadelle D, Serre MC. Origin and evolution of DNA topoisomerases. Biochimie 2007; 89:427-46. [PMID: 17293019 DOI: 10.1016/j.biochi.2006.12.009] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 12/12/2006] [Indexed: 12/28/2022]
Abstract
The DNA topoisomerases are essential for DNA replication, transcription, recombination, as well as for chromosome compaction and segregation. They may have appeared early during the formation of the modern DNA world. Several families and subfamilies of the two types of DNA topoisomerases (I and II) have been described in the three cellular domains of life (Archaea, Bacteria and Eukarya), as well as in viruses infecting eukaryotes or bacteria. The main families of DNA topoisomerases, Topo IA, Topo IB, Topo IC (Topo V), Topo IIA and Topo IIB (Topo VI) are not homologous, indicating that they originated independently. However, some of them share homologous modules or subunits that were probably recruited independently to produce different topoisomerase activities. The puzzling phylogenetic distribution of the various DNA topoisomerase families and subfamilies cannot be easily reconciled with the classical models of early evolution describing the relationships between the three cellular domains. A possible scenario is based on a Last Universal Common Ancestor (LUCA) with a RNA genome (i.e. without the need for DNA topoisomerases). Different families of DNA topoisomerases (some of them possibly of viral origin) would then have been independently introduced in the different cellular domains. We review here the main characteristics of the different families and subfamilies of DNA topoisomerases in a historical and evolutionary perspective, with the hope to stimulate further works and discussions on the origin and evolution of these fascinating enzymes.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut de Génétique et Microbiologie, UMR8621, Université Paris-Sud 11, Bat. 400-409, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
141
|
Jékely G. Did the last common ancestor have a biological membrane? Biol Direct 2006; 1:35. [PMID: 17129384 PMCID: PMC1675992 DOI: 10.1186/1745-6150-1-35] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Accepted: 11/27/2006] [Indexed: 12/24/2022] Open
Abstract
All theories about the origin and evolution of membrane bound cells necessarily have to cope with the nature of the last common ancestor of cellular life. One of the most important aspect of this ancestor, whether it had a closed biological membrane or not, has recently been intensely debated. Having a consensus about it would be an important step towards an eventual (though probably still remote) synthesis of the best elements of the current multitude of cell evolution models. Here I analyse the structural and functional conservation of the few universally distributed proteins that were undoubtedly present in the last common ancestor and that carry out membrane-associated functions. These include the SecY subunit of the protein-conducting channel, the signal recognition particle, the signal recognition particle receptor, the signal peptidase, and the proton ATPase. The conserved structural and functional aspects of these proteins indicate that the last common ancestor was associated with a hydrophobic layer with two hydrophilic sides (an inside and an outside) that had a full-fledged and asymmetric protein insertion and translocation machinery and served as a permeability barrier for protons and other small molecules. It is difficult to escape the conclusion that the last common ancestor had a closed biological membrane from which all cellular membranes evolved.
Collapse
Affiliation(s)
- Gáspár Jékely
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany.
| |
Collapse
|
142
|
Bredemeier R, Schlegel T, Ertel F, Vojta A, Borissenko L, Bohnsack MT, Groll M, von Haeseler A, Schleiff E. Functional and phylogenetic properties of the pore-forming beta-barrel transporters of the Omp85 family. J Biol Chem 2006; 282:1882-90. [PMID: 17088246 DOI: 10.1074/jbc.m609598200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
beta-Barrel-shaped channels of the Omp85 family are involved in the translocation or assembly of proteins of bacterial, mitochondrial, and plastidic outer membranes. We have compared these proteins to understand the evolutionary development of the translocators. We have demonstrated that the proteins from proteobacteria and mitochondria have a pore diameter that is at least five times smaller than found for the Omp85 in cyanobacteria and plastids. This finding can explain why Omp85 from cyanobacteria (but not the homologous protein from proteobacteria) was remodeled to become the protein translocation pore after endosymbiosis. Further, the pore-forming region of the Omp85 proteins is restricted to the C terminus. Based on a phylogenetic analysis we have shown that the pore-forming domain displays a different evolutionary relationship than the N-terminal domain. In line with this, the affinity of the N-terminal domain to the C-terminal region of the Omp85 from plastids and cyanobacteria differs, even though the N-terminal domain is involved in gating of the pore in both groups. We have further shown that the N-terminal domain of nOmp85 takes part in homo-oligomerization. Thereby, the differences in the phylogeny of the two domains are explained by different functional constraints acting on the regions. The pore-forming domain, however, is further divided into two functional regions, where the distal C terminus itself forms a dimeric pore. Based on functional and phylogenetic analysis, we suggest an evolutionary scenario that explains the origin of the contemporary translocon.
Collapse
Affiliation(s)
- Rolf Bredemeier
- Ludwig Maximilians University (LMU), Department of Biology I, Menzinger Strasse 67, 80638 München, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Cavalier-Smith T. Cell evolution and Earth history: stasis and revolution. Philos Trans R Soc Lond B Biol Sci 2006; 361:969-1006. [PMID: 16754610 PMCID: PMC1578732 DOI: 10.1098/rstb.2006.1842] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This synthesis has three main parts. The first discusses the overall tree of life and nature of the last common ancestor (cenancestor). I emphasize key steps in cellular evolution important for ordering and timing the major evolutionary innovations in the history of the biosphere, explaining especially the origins of the eukaryote cell and of bacterial flagella and cell envelope novelties. Second, I map the tree onto the fossil record and discuss dates of key events and their biogeochemical impact. Finally, I present a broad synthesis, discussing evidence for a three-phase history of life. The first phase began perhaps ca 3.5 Gyr ago, when the origin of cells and anoxic photosynthesis generated the arguably most primitive prokaryote phylum, Chlorobacteria (= Chloroflexi), the first negibacteria with cells bounded by two acyl ester phospholipid membranes. After this 'chlorobacterial age' of benthic anaerobic evolution protected from UV radiation by mineral grains, two momentous quantum evolutionary episodes of cellular innovation and microbial radiation dramatically transformed the Earth's surface: the glycobacterial revolution initiated an oxygenic 'age of cyanobacteria' and, as the ozone layer grew, the rise of plankton; immensely later, probably as recently as ca 0.9 Gyr ago, the neomuran revolution ushered in the 'age of eukaryotes', Archaebacteria (arguably the youngest bacterial phylum), and morphological complexity. Diversification of glycobacteria ca 2.8 Gyr ago, predominantly inhabiting stratified benthic mats, I suggest caused serial depletion of 13C by ribulose 1,5-bis-phosphate caboxylase/oxygenase (Rubisco) to yield ultralight late Archaean organic carbon formerly attributed to methanogenesis plus methanotrophy. The late origin of archaebacterial methanogenesis ca 720 Myr ago perhaps triggered snowball Earth episodes by slight global warming increasing weathering and reducing CO2 levels, to yield runaway cooling; the origin of anaerobic methane oxidation ca 570 Myr ago reduced methane flux at source, stabilizing Phanerozoic climates. I argue that the major cellular innovations exhibit a pattern of quantum evolution followed by very rapid radiation and then substantial stasis, as described by Simpson. They yielded organisms that are a mosaic of extremely conservative and radically novel features, as characterized by De Beer's phrase 'mosaic evolution'. Evolution is not evenly paced and there are no real molecular clocks.
Collapse
|