101
|
Converting from CT- to MRI-only-based target definition in radiotherapy of localized prostate cancer. Strahlenther Onkol 2015; 191:862-8. [DOI: 10.1007/s00066-015-0868-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/12/2015] [Indexed: 11/30/2022]
|
102
|
Korhonen J, Kapanen M, Sonke JJ, Wee L, Salli E, Keyriläinen J, Seppälä T, Tenhunen M. Feasibility of MRI-based reference images for image-guided radiotherapy of the pelvis with either cone-beam computed tomography or planar localization images. Acta Oncol 2015; 54:889-95. [PMID: 25233439 DOI: 10.3109/0284186x.2014.958197] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE This study introduces methods to conduct image-guided radiotherapy (IGRT) of the pelvis with either cone-beam computed tomography (CBCT) or planar localization images by relying solely on magnetic resonance imaging (MRI)-based reference images. MATERIAL AND METHODS Feasibility of MRI-based reference images for IGRT was evaluated against kV CBCT (50 scans, 5 prostate cancer patients) and kV & MV planar (5 & 5 image pairs and patients) localization images by comparing the achieved patient position corrections to those obtained by standard CT-based reference images. T1/T2*-weighted in-phase MRI, Hounsfield unit conversion-based heterogeneous pseudo-CT, and bulk pseudo-CT images were applied for reference against localization CBCTs, and patient position corrections were obtained by automatic image registration. IGRT with planar localization images was performed manually by 10 observers using reference digitally reconstructed radiographs (DRRs) reconstructed from the pseudo-CTs and standard CTs. Quality of pseudo-DRRs against CT-DRRs was evaluated with image similarity metrics. RESULTS The SDs of differences between CBCT-to-MRI and CBCT-to-CT automatic gray-value registrations were ≤1.0 mm & ≤0.8° and ≤2.5 mm & ≤3.6° with 10 cm diameter cubic VOI and prostate-shaped VOI, respectively. The corresponding values for reference heterogeneous pseudo-CT were ≤1.0 mm & ≤0.7° and ≤2.2 mm & ≤3.3°, respectively. Heterogeneous pseudo-CT was the only type of MRI-based reference image working reliably with automatic bone registration (SDs were ≤0.9 mm & ≤0.7°). The differences include possible residual errors from planning CT to MRI registration. The image similarity metrics were significantly (p≤0.01) better in agreement between heterogeneous pseudo-DRRs and CT-DRRs than between bulk pseudo-DRRs and CT-DRRs. The SDs of differences in manual registrations (3D) with planar kV and MV localization images were ≤1.0 mm and ≤1.7 mm, respectively, between heterogeneous pseudo-DRRs and CT-DRRs, and ≤1.4 mm and ≤2.1 mm between bulk pseudo-DRRs and CT-DRRs. CONCLUSION This study demonstrated that it is feasible to conduct IGRT of the pelvis with MRI-based reference images.
Collapse
Affiliation(s)
- Juha Korhonen
- Clinical Research Institute Helsinki University Central Hospital Ltd , Helsinki , Finland
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Andreasen D, Van Leemput K, Hansen RH, Andersen JAL, Edmund JM. Patch-based generation of a pseudo CT from conventional MRI sequences for MRI-only radiotherapy of the brain. Med Phys 2015; 42:1596-605. [PMID: 25832050 DOI: 10.1118/1.4914158] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Daniel Andreasen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby 2800, Denmark and Department of Oncology, Radiotherapy Research Unit, Copenhagen University Hospital, Herlev 2730, Denmark
| | - Koen Van Leemput
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby 2800, Denmark and A.A. Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Rasmus H Hansen
- Department of Radiology, Copenhagen University Hospital, Herlev 2730, Denmark
| | - Jon A L Andersen
- Department of Oncology, Radiotherapy Research Unit, Copenhagen University Hospital, Herlev 2730, Denmark
| | - Jens M Edmund
- Department of Oncology, Radiotherapy Research Unit, Copenhagen University Hospital, Herlev 2730, Denmark
| |
Collapse
|
104
|
Glide-Hurst CK, Wen N, Hearshen D, Kim J, Pantelic M, Zhao B, Mancell T, Levin K, Movsas B, Chetty IJ, Siddiqui MS. Initial clinical experience with a radiation oncology dedicated open 1.0T MR-simulation. J Appl Clin Med Phys 2015; 16:5201. [PMID: 26103190 PMCID: PMC5690096 DOI: 10.1120/jacmp.v16i2.5201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/10/2014] [Accepted: 12/10/2014] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to describe our experience with 1.0T MR-SIM including characterization, quality assurance (QA) program, and features necessary for treatment planning. Staffing, safety, and patient screening procedures were developed. Utilization of an external laser positioning system (ELPS) and MR-compatible couchtop were illustrated. Spatial and volumetric analyses were conducted between CT-SIM and MR-SIM using a stereotactic QA phantom with known landmarks and volumes. Magnetic field inhomogeneity was determined using phase difference analysis. System-related, in-plane distortion was evaluated and temporal changes were assessed. 3D distortion was characterized for regions of interest (ROIs) 5-20 cm away from isocenter. American College of Radiology (ACR) recommended tests and impact of ELPS on image quality were analyzed. Combined ultrashort echotime Dixon (UTE/Dixon) sequence was evaluated. Amplitude-triggered 4D MRI was implemented using a motion phantom (2-10 phases, ~ 2 cm excursion, 3-5 s periods) and a liver cancer patient. Duty cycle, acquisition time, and excursion were evaluated between maximum intensity projection (MIP) datasets. Less than 2% difference from expected was obtained between CT-SIM and MR-SIM volumes, with a mean distance of < 0.2 mm between landmarks. Magnetic field inhomogeneity was < 2 ppm. 2D distortion was < 2 mm over 28.6-33.6 mm of isocenter. Within 5 cm radius of isocenter, mean 3D geometric distortion was 0.59 ± 0.32 mm (maximum = 1.65 mm) and increased 10-15 cm from isocenter (mean = 1.57 ± 1.06 mm, maximum = 6.26 mm). ELPS interference was within the operating frequency of the scanner and was characterized by line patterns and a reduction in signal-to-noise ratio (4.6-12.6% for TE = 50-150 ms). Image quality checks were within ACR recommendations. UTE/Dixon sequences yielded detectability between bone and air. For 4D MRI, faster breathing periods had higher duty cycles than slow (50.4% (3 s) and 39.4% (5 s), p < 0.001) and ~fourfold acquisition time increase was measured for ten-phase versus two-phase. Superior-inferior object extent was underestimated 8% (6 mm) for two-phase as compared to ten-phase MIPs, although < 2% difference was obtained for ≥ 4 phases. 4D MRI for a patient demonstrated acceptable image quality in ~ 7 min. MR-SIM was integrated into our workflow and QA procedures were developed. Clinical applicability was demonstrated for 4D MRI and UTE imaging to support MR-SIM for single modality treatment planning.
Collapse
|
105
|
Jonsson JH, Akhtari MM, Karlsson MG, Johansson A, Asklund T, Nyholm T. Accuracy of inverse treatment planning on substitute CT images derived from MR data for brain lesions. Radiat Oncol 2015; 10:13. [PMID: 25575414 PMCID: PMC4299127 DOI: 10.1186/s13014-014-0308-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 12/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In this pilot study we evaluated the performance of a substitute CT (s-CT) image derived from MR data of the brain, as a basis for optimization of intensity modulated rotational therapy, final dose calculation and derivation of reference images for patient positioning. METHODS S-CT images were created using a Gaussian mixture regression model on five patients previously treated with radiotherapy. Optimizations were compared using D max, D min, D median and D mean measures for the target volume and relevant risk structures. Final dose calculations were compared using gamma index with 1%/1 mm and 3%/3 mm acceptance criteria. 3D geometric evaluation was conducted using the DICE similarity coefficient for bony structures. 2D geometric comparison of digitally reconstructed radiographs (DRRs) was performed by manual delineation of relevant structures on the s-CT DRR that were transferred to the CT DRR and compared by visual inspection. RESULTS Differences for the target volumes in optimization comparisons were small in general, e.g. a mean difference in both D min and D max within ±0.3%. For the final dose calculation gamma evaluations, 100% of the voxels passed the 1%/1 mm criterion within the PTV. Within the entire external volume between 99.4% and 100% of the voxels passed the 3%/3 mm criterion. In the 3D geometric comparison, the DICE index varied between approximately 0.8-0.9, depending on the position in the skull. In the 2D DRR comparisons, no appreciable visual differences were found. CONCLUSIONS Even though the present work involves a limited number of patients, the results provide a strong indication that optimization and dose calculation based on s-CT data is accurate regarding both geometry and dosimetry.
Collapse
Affiliation(s)
- Joakim H Jonsson
- Department of Radiation Sciences, Umeå University, Umeå, SE-901 87, Sweden.
| | - Mohammad M Akhtari
- Department of Radiation Sciences, Umeå University, Umeå, SE-901 87, Sweden.
| | - Magnus G Karlsson
- Department of Radiation Sciences, Umeå University, Umeå, SE-901 87, Sweden.
| | - Adam Johansson
- Department of Radiation Sciences, Umeå University, Umeå, SE-901 87, Sweden.
| | - Thomas Asklund
- Department of Radiation Sciences, Umeå University, Umeå, SE-901 87, Sweden.
| | - Tufve Nyholm
- Department of Radiation Sciences, Umeå University, Umeå, SE-901 87, Sweden.
| |
Collapse
|
106
|
Edmund JM, Kjer HM, Van Leemput K, Hansen RH, Andersen JAL, Andreasen D. A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times. Phys Med Biol 2014; 59:7501-19. [DOI: 10.1088/0031-9155/59/23/7501] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
107
|
Korhonen J, Kapanen M, Keyriläinen J, Seppälä T, Tenhunen M. A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI-based radiotherapy treatment planning of prostate cancer. Med Phys 2014; 41:011704. [PMID: 24387496 DOI: 10.1118/1.4842575] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The lack of electron density information in magnetic resonance images (MRI) poses a major challenge for MRI-based radiotherapy treatment planning (RTP). In this study the authors convert MRI intensity values into Hounsfield units (HUs) in the male pelvis and thus enable accurate MRI-based RTP for prostate cancer patients with varying tissue anatomy and body fat contents. METHODS T1/T2*-weighted MRI intensity values and standard computed tomography (CT) image HUs in the male pelvis were analyzed using image data of 10 prostate cancer patients. The collected data were utilized to generate a dual model HU conversion technique from MRI intensity values of the single image set separately within and outside of contoured pelvic bones. Within the bone segment local MRI intensity values were converted to HUs by applying a second-order polynomial model. This model was tuned for each patient by two patient-specific adjustments: MR signal normalization to correct shifts in absolute intensity level and application of a cutoff value to accurately represent low density bony tissue HUs. For soft tissues, such as fat and muscle, located outside of the bone contours, a threshold-based segmentation method without requirements for any patient-specific adjustments was introduced to convert MRI intensity values into HUs. The dual model HU conversion technique was implemented by constructing pseudo-CT images for 10 other prostate cancer patients. The feasibility of these images for RTP was evaluated by comparing HUs in the generated pseudo-CT images with those in standard CT images, and by determining deviations in MRI-based dose distributions compared to those in CT images with 7-field intensity modulated radiation therapy (IMRT) with the anisotropic analytical algorithm and 360° volumetric-modulated arc therapy (VMAT) with the Voxel Monte Carlo algorithm. RESULTS The average HU differences between the constructed pseudo-CT images and standard CT images of each test patient ranged from -2 to 5 HUs and from 22 to 78 HUs in soft and bony tissues, respectively. The average local absolute value differences were 11 HUs in soft tissues and 99 HUs in bones. The planning target volume doses (volumes 95%, 50%, 5%) in the pseudo-CT images were within 0.8% compared to those in CT images in all of the 20 treatment plans. The average deviation was 0.3%. With all the test patients over 94% (IMRT) and 92% (VMAT) of dose points within body (lower than 10% of maximum dose suppressed) passed the 1 mm and 1% 2D gamma index criterion. The statistical tests (t- and F-tests) showed significantly improved (p ≤ 0.05) HU and dose calculation accuracies with the soft tissue conversion method instead of homogeneous representation of these tissues in MRI-based RTP images. CONCLUSIONS This study indicates that it is possible to construct high quality pseudo-CT images by converting the intensity values of a single MRI series into HUs in the male pelvis, and to use these images for accurate MRI-based prostate RTP dose calculations.
Collapse
Affiliation(s)
- Juha Korhonen
- Clinical Research Institute Helsinki University Central Hospital Ltd., POB-700, 00029 HUS, Finland and Department of Oncology, Helsinki University Central Hospital, POB-180, 00029 HUS, Finland
| | - Mika Kapanen
- Clinical Research Institute Helsinki University Central Hospital Ltd., POB-700, 00029 HUS, Finland; Department of Oncology, Helsinki University Central Hospital, POB-180, 00029 HUS, Finland; and Department of Medical Physics, Tampere University Hospital, POB-2000, 33521 Tampere, Finland
| | - Jani Keyriläinen
- Department of Oncology, Helsinki University Central Hospital, POB-180, 00029 HUS, Finland
| | - Tiina Seppälä
- Department of Oncology, Helsinki University Central Hospital, POB-180, 00029 HUS, Finland
| | - Mikko Tenhunen
- Department of Oncology, Helsinki University Central Hospital, POB-180, 00029 HUS, Finland
| |
Collapse
|
108
|
Korhonen J, Kapanen M, Keyriläinen J, Seppälä T, Tuomikoski L, Tenhunen M. Influence of MRI-based bone outline definition errors on external radiotherapy dose calculation accuracy in heterogeneous pseudo-CT images of prostate cancer patients. Acta Oncol 2014; 53:1100-6. [PMID: 24998163 DOI: 10.3109/0284186x.2014.929737] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND This work evaluates influences of susceptibility-induced bone outline shift and perturbations, and bone segmentation errors on external radiotherapy dose calculation accuracy in magnetic resonance imaging (MRI)-based pseudo-computed tomography (CT) images of the male pelvis. MATERIAL AND METHODS T₁/T₂*-weighted fast gradient echo, T₁-weighted spin echo and T₂-weighted fast spin echo images were used in bone detection investigation. Bone edge location and bone diameter in MRI were evaluated by comparing those in the images with actual physical measurements of fresh deer bones positioned in a gelatine phantom. Dose calculation accuracy in pseudo-CT images was investigated for 15 prostate cancer patients. Bone outlines in T₁/T₂*-weighted images were contoured and additional segmentation errors were simulated by expanding and contracting the bone contours with 1 mm spacing. Heterogeneous pseudo-CT images were constructed by adopting a technique transforming the MRI intensity values into Hounsfield units with separate conversion models within and outside of bone segment. RESULTS Bone edges and diameter in the phantom were illustrated correctly within a 1 mm-pixel size in MRI. Each 1 mm-sized systematic error in bone segment resulted in roughly 0.4% change to the prostate dose level in the pseudo-CT images. The prostate average (range) dose levels in pseudo-CT images with additional systematic bone segmentation errors of -2 mm, 0 mm and 2 mm were 0.5% (-0.5-1.4%), -0.2% (-1.0-0.7%), and -0.9% (-1.8-0.0%) compared to those in CT images, respectively, in volumetric modulated arc therapy treatment plans calculated by Monte Carlo algorithm. CONCLUSIONS Susceptibility-induced bone outline shift and perturbations do not result in substantial uncertainty for MRI-based dose calculation. Dose consistency of 2% can be achieved reliably for the prostate if heterogeneous pseudo-CT images are constructed with ≤± 2 mm systematic error in bone segment.
Collapse
Affiliation(s)
- Juha Korhonen
- Clinical Research Institute Helsinki University Central Hospital Ltd , Helsinki , Finland
| | | | | | | | | | | |
Collapse
|
109
|
Nyholm T, Jonsson J. Counterpoint: Opportunities and Challenges of a Magnetic Resonance Imaging–Only Radiotherapy Work Flow. Semin Radiat Oncol 2014; 24:175-80. [DOI: 10.1016/j.semradonc.2014.02.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
110
|
Yu H, Caldwell C, Balogh J, Mah K. Toward magnetic resonance-only simulation: segmentation of bone in MR for radiation therapy verification of the head. Int J Radiat Oncol Biol Phys 2014; 89:649-57. [PMID: 24803040 DOI: 10.1016/j.ijrobp.2014.03.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/10/2014] [Accepted: 03/06/2014] [Indexed: 12/19/2022]
Abstract
PURPOSE To develop a practical method to localize bones in magnetic resonance (MR) images, to create "computed tomography-like" MR images (ctMRI) that could be used for radiation therapy verification, and to generate MR-based digitally reconstructed radiographs (DRR). METHODS AND MATERIALS Using T1-weighted MR images, an air mask was derived from the manual contouring of all airways within the head and neck region using axial images at 6 anatomic levels. Compact bone, spongy bone, and soft tissue masks were then automatically generated using the statistical data derived from MR intensities and the air mask. ctMRI were then generated by mapping the MR intensities of the voxels within these masks into the CT number ranges of corresponding tissues. MR-based DRRs created from ctMRI were quantitatively evaluated using the co-registered MR and CT head images of 20 stereotactic radiosurgery patients. Ten anatomical points, positioned on the skull segmented using a threshold of 300 HU, in CT and ctMRI, were used to determine the differences in distance between MR-based DRRs and CT-based DRRs, and to evaluate the geometric accuracy of ctMRI and MR-based DRRs. RESULTS The bony structures were identified on ctMRI and were visible in the MR-based DRRs. From the 20 patient cases, the mean geometric difference and standard deviation between the 10 anatomical points on MR-based and CT-based DRRs was -0.05 ± 0.85 mm, respectively. This included uncertainty in image fusion. The maximum distance difference was 1.88 mm. CONCLUSIONS A practical method was developed to segment bone from MR images. The ctMRI created can be used for radiation treatment verification when MR-only simulation is performed. MR-based DRRs can be used in place of CT-based DRRs.
Collapse
Affiliation(s)
- Huan Yu
- Department of Medical Physics, Odette Cancer Centre, Sunnybrook Health Science Center, Toronto, ON, Canada
| | - Curtis Caldwell
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Medical Imaging, Sunnybrook Health Science Center, Toronto, ON, Canada; Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Judith Balogh
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Science Center, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Katherine Mah
- Department of Medical Physics, Odette Cancer Centre, Sunnybrook Health Science Center, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
111
|
Gunnlaugsson A, Kjellén E, Hagberg O, Thellenberg-Karlsson C, Widmark A, Nilsson P. Change in prostate volume during extreme hypo-fractionation analysed with MRI. Radiat Oncol 2014; 9:22. [PMID: 24410739 PMCID: PMC3901329 DOI: 10.1186/1748-717x-9-22] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 01/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypo-fractionated external beam radiotherapy with narrow CTV-PTV margins is increasingly applied for prostate cancer. This demands a precise target definition and knowledge on target location and extension during treatment. It is unclear how increase in fraction size affects changes in prostate volume during treatment. Our aim was to study prostate volume changes during extreme hypo-fractionation (7 × 6.1 Gy) by using sequential MRIs. METHODS Twenty patients treated with extreme hypo-fractionation were recruited from an on-going prospective randomized phase III trial. An MRI scan was done before start of treatment, at mid treatment and at the end of radiotherapy. The prostate was delineated at each MRI and the volume and maximum extension in left-right, anterior-posterior and cranial-caudal directions were measured. RESULTS There was a significant increase in mean prostate volume (14%) at mid treatment as compared to baseline. The prostate volume remained enlarged (9%) at the end of radiotherapy. Prostate swelling was most pronounced in the anterior-posterior and cranial-caudal directions. CONCLUSIONS Extreme hypo-fractionation induced a significant prostate swelling during treatment that was still present at the time of last treatment fraction. Our results indicate that prostate swelling is an important factor to take into account when applying treatment margins during short extreme hypo-fractionation, and that tight margins should be applied with caution.
Collapse
|
112
|
Korsholm ME, Waring LW, Edmund JM. A criterion for the reliable use of MRI-only radiotherapy. Radiat Oncol 2014; 9:16. [PMID: 24405515 PMCID: PMC3909342 DOI: 10.1186/1748-717x-9-16] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/23/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND MRI-only radiotherapy will eliminate the systematic registration errors introduced when transferring MRI information to the CT. However, challenges concerning the missing information on electron density, necessary for dose calculation and patient setup on bony anatomy are introduced. This study presents a possible statistical approach to evaluate, if deviations based on MRI-only radiotherapy as compared to the CT based radiotherapy are acceptable. METHODS 18 head-and-neck, 21 prostate, 10 vesica and 8 pelvic patients were included in the study. Data from each patient contained a CT and a T2-weighted MRI scan, a structure set and a clinically approved CT based treatment plan, which was re-calculated with identical parameters on the density corrected MRI scans. A statistical analysis including a 95% confidence interval was performed in clinically relevant DVH points. RESULTS The mean differences in the investigated DVH points were in the order of 1.5% for the PTV and up to 4.2% for organs at risk. In addition, a proposed criterion of 2% dose difference in the PTV coverage for 95% of the patients was fulfilled for all diagnostic groups for a bulk segmented MRI in the DVH points, D(median) and D2%, while only head-and-neck and prostate further fulfilled the criterion in D98%. CONCLUSION Here, we suggested a method for establishing a reliable use of MRI-only radiotherapy. A population-based study comparing CT based dose calculations with those obtained on a suggested segmentation of MRI should be initiated and acceptable deviations in clinically relevant DVH points should be established. Such a population-based approach could form a part of the clinical commissioning of MRI-only radiotherapy.
Collapse
Affiliation(s)
- Marie E Korsholm
- Department of Oncology, Radiotherapy Research Unit (52AA), Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Line W Waring
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Cardiac Arrhythmia, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens M Edmund
- Department of Oncology, Radiotherapy Research Unit (52AA), Herlev Hospital, University of Copenhagen, Herlev, Denmark
| |
Collapse
|
113
|
Jonsson JH, Johansson A, Söderström K, Asklund T, Nyholm T. Treatment planning of intracranial targets on MRI derived substitute CT data. Radiother Oncol 2013; 108:118-22. [PMID: 23830190 DOI: 10.1016/j.radonc.2013.04.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND The use of magnetic resonance imaging (MRI) as a complement to computed tomography (CT) in the target definition procedure for radiotherapy is increasing. To eliminate systematic uncertainties due to image registration, a workflow based entirely on MRI may be preferable. In the present pilot study, we investigate dose calculation accuracy for automatically generated substitute CT (s-CT) images of the head based on MRI. We also produce digitally reconstructed radiographs (DRRs) from s-CT data to evaluate the feasibility of patient positioning based on MR images. METHODS AND MATERIALS Five patients were included in the study. The dose calculation was performed on CT, s-CT, s-CT data without inhomogeneity correction and bulk density assigned MRI images. Evaluation of the results was performed using point dose and dose volume histogram (DVH) comparisons, and gamma index evaluation. RESULTS The results demonstrate that the s-CT images improve the dose calculation accuracy compared to the method of non-inhomogeneity corrected dose calculations (mean improvement 2.0% points) and that it performs almost identically to the method of bulk density assignment. The s-CT based DRRs appear to be adequate for patient positioning of intra-cranial targets, although further investigation is needed on this subject. CONCLUSION The s-CT method is very fast and yields data that can be used for treatment planning without sacrificing accuracy.
Collapse
Affiliation(s)
- Joakim H Jonsson
- Radiation Physics, Department of Radiation Sciences, Umeå University, Sweden.
| | | | | | | | | |
Collapse
|
114
|
Nyholm T, Jonsson J, Söderström K, Bergström P, Carlberg A, Frykholm G, Behrens CF, Geertsen PF, Trepiakas R, Hanvey S, Sadozye A, Ansari J, McCallum H, Frew J, McMenemin R, Zackrisson B. Variability in prostate and seminal vesicle delineations defined on magnetic resonance images, a multi-observer, -center and -sequence study. Radiat Oncol 2013; 8:126. [PMID: 23706145 PMCID: PMC3680182 DOI: 10.1186/1748-717x-8-126] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/28/2013] [Indexed: 11/22/2022] Open
Abstract
Background The use of magnetic resonance (MR) imaging as a part of preparation for radiotherapy is increasing. For delineation of the prostate several publications have shown decreased delineation variability using MR compared to computed tomography (CT). The purpose of the present work was to investigate the intra- and inter-physician delineation variability for prostate and seminal vesicles, and to investigate the influence of different MR sequence settings used clinically at the five centers participating in the study. Methods MR series from five centers, each providing five patients, were used. Two physicians from each center delineated the prostate and the seminal vesicles on each of the 25 image sets. The variability between the delineations was analyzed with respect to overall, intra- and inter-physician variability, and dependence between variability and origin of the MR images, i.e. the MR sequence used to acquire the data. Results The intra-physician variability in different directions was between 1.3 - 1.9 mm and 3 – 4 mm for the prostate and seminal vesicles respectively (1 std). The inter-physician variability for different directions were between 0.7 – 1.7 mm and approximately equal for the prostate and seminal vesicles. Large differences in variability were observed for individual patients, and also for individual imaging sequences used at the different centers. There was however no indication of decreased variability with higher field strength. Conclusion The overall delineation variability is larger for the seminal vesicles compared to the prostate, due to a larger intra-physician variability. The imaging sequence appears to have a large influence on the variability, even for different variants of the T2-weighted spin-echo based sequences, which were used by all centers in the study.
Collapse
|
115
|
Korhonen J, Kapanen M, Keyriläinen J, Seppälä T, Tuomikoski L, Tenhunen M. Absorbed doses behind bones with MR image-based dose calculations for radiotherapy treatment planning. Med Phys 2012; 40:011701. [DOI: 10.1118/1.4769407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
116
|
Kapanen M, Collan J, Beule A, Seppälä T, Saarilahti K, Tenhunen M. Commissioning of MRI-only based treatment planning procedure for external beam radiotherapy of prostate. Magn Reson Med 2012; 70:127-35. [DOI: 10.1002/mrm.24459] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 11/08/2022]
|
117
|
Internal Fiducial Markers and Susceptibility Effects in MRI—Simulation and Measurement of Spatial Accuracy. Int J Radiat Oncol Biol Phys 2012; 82:1612-8. [DOI: 10.1016/j.ijrobp.2011.01.046] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 01/04/2011] [Accepted: 01/18/2011] [Indexed: 11/19/2022]
|
118
|
Dean CJ, Sykes JR, Cooper RA, Hatfield P, Carey B, Swift S, Bacon SE, Thwaites D, Sebag-Montefiore D, Morgan AM. An evaluation of four CT-MRI co-registration techniques for radiotherapy treatment planning of prone rectal cancer patients. Br J Radiol 2012; 85:61-8. [PMID: 22190750 DOI: 10.1259/bjr/11855927] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES MRI is the preferred staging modality for rectal carcinoma patients. This work assesses the CT-MRI co-registration accuracy of four commercial rigid-body techniques for external beam radiotherapy treatment planning for patients treated in the prone position without fiducial markers. METHODS 17 patients with biopsy-proven rectal carcinoma were scanned with CT and MRI in the prone position without the use of fiducial markers. A reference co-registration was performed by consensus of a radiologist and two physicists. This was compared with two automated and two manual techniques on two separate treatment planning systems. Accuracy and reproducibility were analysed using a measure of target registration error (TRE) that was based on the average distance of the mis-registration between vertices of the clinically relevant gross tumour volume as delineated on the CT image. RESULTS An automated technique achieved the greatest accuracy, with a TRE of 2.3 mm. Both automated techniques demonstrated perfect reproducibility and were significantly faster than their manual counterparts. There was a significant difference in TRE between registrations performed on the two planning systems, but there were no significant differences between the manual and automated techniques. CONCLUSION For patients with rectal cancer, MRI acquired in the prone treatment position without fiducial markers can be accurately registered with planning CT. An automated registration technique offered a fast and accurate solution with associated uncertainties within acceptable treatment planning limits.
Collapse
Affiliation(s)
- C J Dean
- Department of Medical Physics, St James's Institute of Oncology, Leeds, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
McJury M, O'Neill A, Lawson M, McGrath C, Grey A, Page W, O'Sullivan JM. Assessing the image quality of pelvic MR images acquired with a flat couch for radiotherapy treatment planning. Br J Radiol 2011; 84:750-5. [PMID: 21750138 DOI: 10.1259/bjr/27295679] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To improve the integration of MRI with radiotherapy treatment planning, our department fabricated a flat couch top for our MR scanner. Setting up using this couch top meant that the patients were physically higher up in the scanner and, posteriorly, a gap was introduced between the patient and radiofrequency coil. METHODS Phantom measurements were performed to assess the quantitative impact on image quality. A phantom was set up with and without the flat couch insert in place, and measurements of image uniformity and signal to noise were made. To assess clinical impact, six patients with pelvic cancer were recruited and scanned on both couch types. The image quality of pairs of scans was assessed by two consultant radiologists. RESULTS The use of the flat couch insert led to a drop in image signal to noise of approximately 14%. Uniformity in the anteroposterior direction was affected the most, with little change in right-to-left and feet-to-head directions. All six patients were successfully scanned on the flat couch, although one patient had to be positioned with their arms by their sides. The image quality scores showed no statistically significant change between scans with and without the flat couch in place. CONCLUSION Although the quantitative performance of the coil is affected by the integration of a flat couch top, there is no discernible deterioration of diagnostic image quality, as assessed by two consultant radiologists. Although the flat couch insert moved patients higher in the bore of the scanner, all patients in the study were successfully scanned.
Collapse
Affiliation(s)
- M McJury
- Radiotherapy Physics Department, Northern Ireland Cancer Centre, Belfast, Northern Ireland, UK.
| | | | | | | | | | | | | |
Collapse
|
120
|
Jonsson JH, Brynolfsson P, Garpebring A, Karlsson M, Söderström K, Nyholm T. Registration accuracy for MR images of the prostate using a subvolume based registration protocol. Radiat Oncol 2011; 6:73. [PMID: 21679394 PMCID: PMC3138394 DOI: 10.1186/1748-717x-6-73] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 06/16/2011] [Indexed: 11/24/2022] Open
Abstract
Background In recent years, there has been a considerable research effort concerning the integration of magnetic resonance imaging (MRI) into the external radiotherapy workflow motivated by the superior soft tissue contrast as compared to computed tomography. Image registration is a necessary step in many applications, e.g. in patient positioning and therapy response assessment with repeated imaging. In this study, we investigate the dependence between the registration accuracy and the size of the registration volume for a subvolume based rigid registration protocol for MR images of the prostate. Methods Ten patients were imaged four times each over the course of radiotherapy treatment using a T2 weighted sequence. The images were registered to each other using a mean square distance metric and a step gradient optimizer for registration volumes of different sizes. The precision of the registrations was evaluated using the center of mass distance between the manually defined prostates in the registered images. The optimal size of the registration volume was determined by minimizing the standard deviation of these distances. Results We found that prostate position was most uncertain in the anterior-posterior (AP) direction using traditional full volume registration. The improvement in standard deviation of the mean center of mass distance between the prostate volumes using a registration volume optimized to the prostate was 3.9 mm (p < 0.001) in the AP direction. The optimum registration volume size was 0 mm margin added to the prostate gland as outlined in the first image series. Conclusions Repeated MR imaging of the prostate for therapy set-up or therapy assessment will both require high precision tissue registration. With a subvolume based registration the prostate registration uncertainty can be reduced down to the order of 1 mm (1 SD) compared to several millimeters for registration based on the whole pelvis.
Collapse
Affiliation(s)
- Joakim H Jonsson
- Radiation Physics, Department of Radiation Sciences, Umeå University, 90187 Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
121
|
Johansson A, Karlsson M, Nyholm T. CT substitute derived from MRI sequences with ultrashort echo time. Med Phys 2011; 38:2708-14. [PMID: 21776807 DOI: 10.1118/1.3578928] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Adam Johansson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.
| | | | | |
Collapse
|
122
|
Jonsson JH, Karlsson MG, Karlsson M, Nyholm T. Treatment planning using MRI data: an analysis of the dose calculation accuracy for different treatment regions. Radiat Oncol 2010; 5:62. [PMID: 20591179 PMCID: PMC2909248 DOI: 10.1186/1748-717x-5-62] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/30/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Because of superior soft tissue contrast, the use of magnetic resonance imaging (MRI) as a complement to computed tomography (CT) in the target definition procedure for radiotherapy is increasing. To keep the workflow simple and cost effective and to reduce patient dose, it is natural to strive for a treatment planning procedure based entirely on MRI. In the present study, we investigate the dose calculation accuracy for different treatment regions when using bulk density assignments on MRI data and compare it to treatment planning that uses CT data. METHODS MR and CT data were collected retrospectively for 40 patients with prostate, lung, head and neck, or brain cancers. Comparisons were made between calculations on CT data with and without inhomogeneity corrections and on MRI or CT data with bulk density assignments. The bulk densities were assigned using manual segmentation of tissue, bone, lung, and air cavities. RESULTS The deviations between calculations on CT data with inhomogeneity correction and on bulk density assigned MR data were small. The maximum difference in the number of monitor units required to reach the prescribed dose was 1.6%. This result also includes effects of possible geometrical distortions. CONCLUSIONS The dose calculation accuracy at the investigated treatment sites is not significantly compromised when using MRI data when adequate bulk density assignments are made. With respect to treatment planning, MRI can replace CT in all steps of the treatment workflow, reducing the radiation exposure to the patient, removing any systematic registration errors that may occur when combining MR and CT, and decreasing time and cost for the extra CT investigation.
Collapse
Affiliation(s)
- Joakim H Jonsson
- Radiation Physics Section, Department of Radiation Sciences, Umeå University, 90187 Umeå, Sweden
| | - Magnus G Karlsson
- Department of Radiation Physics, Umeå University Hospital, 90185 Umeå, Sweden
| | - Mikael Karlsson
- Radiation Physics Section, Department of Radiation Sciences, Umeå University, 90187 Umeå, Sweden
| | - Tufve Nyholm
- Section of Oncology, Department of Radiation Sciences, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
123
|
Niyazi M, Bartenstein P, Belka C, Ganswindt U. Choline PET based dose-painting in prostate cancer--modelling of dose effects. Radiat Oncol 2010; 5:23. [PMID: 20298546 PMCID: PMC2848061 DOI: 10.1186/1748-717x-5-23] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 03/18/2010] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Several randomized trials have documented the value of radiation dose escalation in patients with prostate cancer, especially in patients with intermediate risk profile. Up to now dose escalation is usually applied to the whole prostate. IMRT and related techniques currently allow for dose escalation in sub-volumes of the organ. However, the sensitivity of the imaging modality and the fact that small islands of cancer are often dispersed within the whole organ may limit these approaches with regard to a clear clinical benefit. In order to assess potential effects of a dose escalation in certain sub-volumes based on choline PET imaging a mathematical dose-response model was developed. METHODS Based on different assumptions for alpha/beta, gamma 50, sensitivity and specificity of choline PET, the influence of the whole prostate and simultaneous integrated boost (SIB) dose on tumor control probability (TCP) was calculated. Based on the given heterogeneity of all potential variables certain representative permutations of the parameters were chosen and, subsequently, the influence on TCP was assessed. RESULTS Using schedules with 74 Gy within the whole prostate and a SIB dose of 90 Gy the TCP increase ranged from 23.1% (high detection rate of choline PET, low whole prostate dose, high gamma 50/ASTRO definition for tumor control) to 1.4% TCP gain (low sensitivity of PET, high whole prostate dose, CN + 2 definition for tumor control) or even 0% in selected cases. The corresponding initial TCP values without integrated boost ranged from 67.3% to 100%. According to a large data set of intermediate-risk prostate cancer patients the resulting TCP gains ranged from 22.2% to 10.1% (ASTRO definition) or from 13.2% to 6.0% (CN + 2 definition). DISCUSSION Although a simplified mathematical model was employed, the presented model allows for an estimation in how far given schedules are relevant for clinical practice. However, the benefit of a SIB based on choline PET seems less than intuitively expected. Only under the assumption of high detection rates and low initial TCP values the TCP gain has been shown to be relevant. CONCLUSIONS Based on the employed assumptions, specific dose escalation to choline PET positive areas within the prostate may increase the local control rates. Due to the lack of exact PET sensitivity and prostate alpha/beta parameter, no firm conclusions can be made. Small variations may completely abrogate the clinical benefit of a SIB based on choline PET imaging.
Collapse
Affiliation(s)
- Maximilian Niyazi
- Department of Radiation Oncology, Ludwig-Maximilians-University München, Marchioninistr. 15, 81377 München, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, Ludwig-Maximilians-University München, Marchioninistr. 15, 81377 München, Germany
| | - Claus Belka
- Department of Radiation Oncology, Ludwig-Maximilians-University München, Marchioninistr. 15, 81377 München, Germany
| | - Ute Ganswindt
- Department of Radiation Oncology, Ludwig-Maximilians-University München, Marchioninistr. 15, 81377 München, Germany
| |
Collapse
|