101
|
Bromham L, Duchêne S, Hua X, Ritchie AM, Duchêne DA, Ho SYW. Bayesian molecular dating: opening up the black box. Biol Rev Camb Philos Soc 2017; 93:1165-1191. [DOI: 10.1111/brv.12390] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Lindell Bromham
- Macroevolution & Macroecology, Division of Ecology & Evolution, Research School of Biology; Australian National University; Canberra ACT 2601 Australia
| | - Sebastián Duchêne
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute; The University of Melbourne; Melbourne VIC 3010 Australia
- School of Life and Environmental Sciences; University of Sydney; Sydney NSW 2006 Australia
| | - Xia Hua
- Macroevolution & Macroecology, Division of Ecology & Evolution, Research School of Biology; Australian National University; Canberra ACT 2601 Australia
| | - Andrew M. Ritchie
- School of Life and Environmental Sciences; University of Sydney; Sydney NSW 2006 Australia
| | - David A. Duchêne
- Macroevolution & Macroecology, Division of Ecology & Evolution, Research School of Biology; Australian National University; Canberra ACT 2601 Australia
- School of Life and Environmental Sciences; University of Sydney; Sydney NSW 2006 Australia
| | - Simon Y. W. Ho
- School of Life and Environmental Sciences; University of Sydney; Sydney NSW 2006 Australia
| |
Collapse
|
102
|
Kealy S, Beck R. Total evidence phylogeny and evolutionary timescale for Australian faunivorous marsupials (Dasyuromorphia). BMC Evol Biol 2017; 17:240. [PMID: 29202687 PMCID: PMC5715987 DOI: 10.1186/s12862-017-1090-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The order Dasyuromorphia is a diverse radiation of faunivorous marsupials, comprising >80 modern species in Australia and New Guinea. It includes dasyurids, the numbat (the myrmecobiid Myrmecobius fasciatus) and the recently extinct thylacine (the thylacinid Thylacinus cyncocephalus). There is also a diverse fossil record of dasyuromorphians and "dasyuromorphian-like" taxa known from Australia. We present the first total evidence phylogenetic analyses of the order, based on combined morphological and molecular data (including a novel set of 115 postcranial characters), to resolve relationships and calculate divergence dates. We use this information to analyse the diversification dynamics of modern dasyuromorphians. RESULTS Our morphology-only analyses are poorly resolved, but our molecular and total evidence analyses confidently resolve most relationships within the order, and are strongly congruent with recent molecular studies. Thylacinidae is the first family to diverge within the order, and there is strong support for four tribes within Dasyuridae (Dasyurini, Phascogalini, Planigalini and Sminthopsini). Among fossil taxa, Ankotarinja and Keeuna do not appear to be members of Dasyuromorphia, whilst Barinya and Mutpuracinus are of uncertain relationships within the order. Divergence dates calculated using total evidence tip-and-node dating are younger than both molecular node-dating and total evidence tip-dating, but appear more congruent with the fossil record and are relatively insensitive to calibration strategy. The tip-and-node divergence dates indicate that Dasyurini, Phascogalini and Sminthopsini began to radiate almost simultaneously during the middle-to-late Miocene (11.5-13.1 MYA; composite 95% HPD: 9.5-15.9 MYA); the median estimates for these divergences are shortly after a drop in global temperatures (the middle Miocene Climatic Transition), and coincide with a faunal turnover event in the mammalian fossil record of Australia. Planigalini radiated much later, during the latest Miocene to earliest Pliocene (6.5 MYA; composite 95% HPD: 4.4-8.9 MYA); the median estimates for these divergences coincide with an increase in grass pollen in the Australian palynological record that suggests the development of more open habitats, which are preferred by modern planigale species. CONCLUSIONS Our results provide a phylogenetic and temporal framework for interpreting the evolution of modern and fossil dasyuromorphians, but future progress will require a much improved fossil record.
Collapse
Affiliation(s)
- Shimona Kealy
- Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Acton, ACT Australia
| | - Robin Beck
- School of Environment and Life Sciences, University of Salford, Salford, M5 4WT UK
| |
Collapse
|
103
|
Kong H, Condamine FL, Harris AJ, Chen J, Pan B, Möller M, Hoang VS, Kang M. Both temperature fluctuations and East Asian monsoons have driven plant diversification in the karst ecosystems from southern China. Mol Ecol 2017; 26:6414-6429. [PMID: 28960701 DOI: 10.1111/mec.14367] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/07/2017] [Accepted: 08/14/2017] [Indexed: 01/19/2023]
Abstract
Karst ecosystems in southern China are species-rich and have high levels of endemism, yet little is known regarding the evolutionary processes responsible for the origin and diversification of karst biodiversity. The genus Primulina (Gesneriaceae) comprises ca. 170 species endemic to southern China with high levels of ecological (edaphic) specialization, providing an exceptional model to study the plant diversification in karsts. We used molecular data from nine chloroplast and 11 nuclear regions and macroevolutionary analyses to assess the origin and cause of species diversification due to palaeoenvironmental changes and edaphic specialization in Primulina. We found that speciation was positively associated with changes in past temperatures and East Asian monsoons through the evolutionary history of Primulina. Climatic change around the mid-Miocene triggered an early burst followed by a slowdown of diversification rate towards the present with the climate cooling. We detected different speciation rates among edaphic types, and transitions among soil types were infrequently and did not impact the overall speciation rate. Our findings suggest that both global temperature changes and East Asian monsoons have played crucial roles in floristic diversification within the karst ecosystems in southern China, such that speciation was higher when climate was warmer and wetter. This is the first study to directly demonstrate that past monsoon activity is positively correlated with speciation rate in East Asia. This case study could motivate further investigations to assess the impacts of past environmental changes on the origin and diversification of biodiversity in global karst ecosystems, most of which are under threat.
Collapse
Affiliation(s)
- Hanghui Kong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Fabien L Condamine
- CNRS, UMR 5554 Institut des Sciences de l'Evolution (Université de Montpellier), Montpellier, France
| | - A J Harris
- Department of Botany, MRC 166, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Junlin Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Bo Pan
- Guangxi Institute of Botany, Guangxi Zhang Autonomous Region and the Chinese Academy of Sciences, Guilin, China
| | | | - Van Sam Hoang
- Forest Plant Department, Vietnam National University of Forestry, Hanoi, Vietnam
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw, Myanmar
| |
Collapse
|
104
|
Herrera JP. Primate diversification inferred from phylogenies and fossils. Evolution 2017; 71:2845-2857. [PMID: 28913907 DOI: 10.1111/evo.13366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/07/2017] [Accepted: 09/10/2017] [Indexed: 02/06/2023]
Abstract
Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ∼600 fossil species and 90% complete phylogenies of living species: (1) diversification rates increased through time; (2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ∼34 Ma, but also elevated extinction ∼10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses.
Collapse
Affiliation(s)
- James P Herrera
- Richard Gilder Graduate School, Department of Mammalogy and Division of Vertebrate Paleontology, American Museum of Natural History, New York, New York 10024.,Department of Mammalogy, American Museum of Natural History, New York, New York 10024
| |
Collapse
|
105
|
Cryptic diversity, sympatry, and other integrative taxonomy scenarios in the Mexican Ceratozamia miqueliana complex (Zamiaceae). ORG DIVERS EVOL 2017. [DOI: 10.1007/s13127-017-0341-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
106
|
Fagua G, Condamine FL, Horak M, Zwick A, Sperling FAH. Diversification shifts in leafroller moths linked to continental colonization and the rise of angiosperms. Cladistics 2017; 33:449-466. [PMID: 34724755 DOI: 10.1111/cla.12185] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2016] [Indexed: 11/28/2022] Open
Abstract
Tectonic dynamics and niche availability play intertwined roles in determining patterns of diversification. Such drivers explain the current distribution of many clades, whereas events such as the rise of angiosperms can have more specific impacts, such as on the diversification rates of herbivores. The Tortricidae, a diverse group of phytophagous moths, are ideal for testing the effects of these determinants on the diversification of herbivorous clades. To estimate ancestral areas and diversification patterns in Tortricidae, a complete tribal-level dated tree was inferred using molecular markers (one mitochondrial and five nuclear) and calibrated using fossil constraints. We found that Tortricidae diverged from their sister group c. 120 Myr ago (Ma) and diversified c. 97 Ma, a timeframe synchronous with the rise of angiosperms in the Early-mid Cretaceous. Ancestral areas analysis, based on updated Wallace's biogeographical regions, supports the hypothesis of a Gondwanan origin of Tortricidae in the South American plate. We also detected an increase in speciation rate that coincided with the peak of angiosperm diversification in the Cretaceous. This in turn probably was further heightened by continental colonization of the Palaeotropics when angiosperms became dominant by the end of the Late Cretaceous.
Collapse
Affiliation(s)
- Giovanny Fagua
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.,Department of Biology, Pontificia Universidad Javeriana, Carrera 7 No. 40-62, Bogotá, D.C., Colombia
| | - Fabien L Condamine
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.,CNRS, UMR 5554 Institut des Sciences de l'Evolution (Université de Montpellier), Place Eugène Bataillon, 34095, Montpellier, France
| | - Marianne Horak
- Australian National Insect Collection, CSIRO National Research Collections Australia, Canberra, ACT, 2601, Australia
| | - Andreas Zwick
- Australian National Insect Collection, CSIRO National Research Collections Australia, Canberra, ACT, 2601, Australia
| | - Felix A H Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
107
|
Roodt D, Lohaus R, Sterck L, Swanepoel RL, Van de Peer Y, Mizrachi E. Evidence for an ancient whole genome duplication in the cycad lineage. PLoS One 2017; 12:e0184454. [PMID: 28886111 PMCID: PMC5590961 DOI: 10.1371/journal.pone.0184454] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/24/2017] [Indexed: 11/26/2022] Open
Abstract
Contrary to the many whole genome duplication events recorded for angiosperms (flowering plants), whole genome duplications in gymnosperms (non-flowering seed plants) seem to be much rarer. Although ancient whole genome duplications have been reported for most gymnosperm lineages as well, some are still contested and need to be confirmed. For instance, data for ginkgo, but particularly cycads have remained inconclusive so far, likely due to the quality of the data available and flaws in the analysis. We extracted and sequenced RNA from both the cycad Encephalartos natalensis and Ginkgo biloba. This was followed by transcriptome assembly, after which these data were used to build paralog age distributions. Based on these distributions, we identified remnants of an ancient whole genome duplication in both cycads and ginkgo. The most parsimonious explanation would be that this whole genome duplication event was shared between both species and had occurred prior to their divergence, about 300 million years ago.
Collapse
Affiliation(s)
- Danielle Roodt
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private bag X20, Pretoria, South Africa
- Centre for Bioinformatics and Computational Biology, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, South Africa
| | - Rolf Lohaus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- VIB Center for Plant Systems Biology, Gent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- VIB Center for Plant Systems Biology, Gent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Riaan L. Swanepoel
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private bag X20, Pretoria, South Africa
- Centre for Bioinformatics and Computational Biology, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, South Africa
| | - Yves Van de Peer
- Centre for Bioinformatics and Computational Biology, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, South Africa
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- VIB Center for Plant Systems Biology, Gent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Eshchar Mizrachi
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private bag X20, Pretoria, South Africa
- Centre for Bioinformatics and Computational Biology, Genomics Research Institute, University of Pretoria, Private bag X20, Pretoria, South Africa
- * E-mail:
| |
Collapse
|
108
|
Mankga LT, Yessoufou K. Factors driving the global decline of cycad diversity. AOB PLANTS 2017; 9:plx022. [PMID: 28721186 PMCID: PMC5506724 DOI: 10.1093/aobpla/plx022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/21/2017] [Accepted: 05/26/2017] [Indexed: 06/01/2023]
Abstract
Mounting evidence indicates that we are witnessing the sixth mass extinction period. Given the important goods and services biodiversity delivers to humans, there is a need for a continued commitment to investigate what pre-disposes some taxa to greater risk of extinction. Here, we investigate this question using a phylogenetic comparative method and fitting a cumulative link mixed effect model on biological, ecological and evolutionary data of cycads, the most threatened lineage in the plant kingdom. We identified nine groups of threats to cycads, with habitat loss, over-collection, fire and reproduction failure being the most prominent, but only four of these threats (habitat loss, over-collection, medicinal uses and reproduction failure) clustered on the cycad tree of life. This clustering suggests that closely related species may be exposed to similar threats, perhaps because of geographic regionalization of cycad genera. Nonetheless, the diversity of threats and several variables linked to the biology and ecology of cycads correlate with extinction risk (e.g. altitude, height, diameter, geographic range), and different variables seem to be linked to different IUCN status of cycads. Although their predictive power is generally < 50 %, geographic range and maximum diameter stood out as the best predictors particularly for the Vulnerable (VU) category, with a predictive power of 87 % and 69 %, respectively. Using our best model for VU, we predicted all five Data Deficient (DD) species of cycads to be in the VU category. Collectively, our results elucidate the pattern of extinction risk in cycads and, since most threats that we identified as drivers of extinction risk of cycads are anthropogenically mediated, we recommend stronger legislation to regulate human-cycad interactions and the commitment of all governments globally to implement this regulation.
Collapse
Affiliation(s)
- Ledile T. Mankga
- Department of Life and Consumer Sciences, University of South Africa, Florida campus, Florida 1710, South Africa
| | - Kowiyou Yessoufou
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, APK Campus, Auckland Park 2006, Johannesburg, South Africa
| |
Collapse
|
109
|
Bezeng B, Davies T, Daru B, Kabongo R, Maurin O, Yessoufou K, van der Bank H, van der Bank M. Ten years of barcoding at the African Centre for DNA Barcoding. Genome 2017; 60:629-638. [DOI: 10.1139/gen-2016-0198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The African Centre for DNA Barcoding (ACDB) was established in 2005 as part of a global initiative to accurately and rapidly survey biodiversity using short DNA sequences. The mitochondrial cytochrome c oxidase 1 gene (CO1) was rapidly adopted as the de facto barcode for animals. Following the evaluation of several candidate loci for plants, the Plant Working Group of the Consortium for the Barcoding of Life in 2009 recommended that two plastid genes, rbcLa and matK, be adopted as core DNA barcodes for terrestrial plants. To date, numerous studies continue to test the discriminatory power of these markers across various plant lineages. Over the past decade, we at the ACDB have used these core DNA barcodes to generate a barcode library for southern Africa. To date, the ACDB has contributed more than 21 000 plant barcodes and over 3000 CO1 barcodes for animals to the Barcode of Life Database (BOLD). Building upon this effort, we at the ACDB have addressed questions related to community assembly, biogeography, phylogenetic diversification, and invasion biology. Collectively, our work demonstrates the diverse applications of DNA barcoding in ecology, systematics, evolutionary biology, and conservation.
Collapse
Affiliation(s)
- B.S. Bezeng
- African Centre for DNA Barcoding, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa
| | - T.J. Davies
- African Centre for DNA Barcoding, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC H3A 0G4, Quebec, Canada
| | - B.H. Daru
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - R.M. Kabongo
- African Centre for DNA Barcoding, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa
| | - O. Maurin
- African Centre for DNA Barcoding, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW93AB, United Kingdom
| | - K. Yessoufou
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, APK Campus 2006, Johannesburg, South Africa
| | - H. van der Bank
- African Centre for DNA Barcoding, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa
| | - M. van der Bank
- African Centre for DNA Barcoding, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa
| |
Collapse
|
110
|
Yessoufou K, Daru BH, Tafirei R, Elansary HO, Rampedi I. Integrating biogeography, threat and evolutionary data to explore extinction crisis in the taxonomic group of cycads. Ecol Evol 2017; 7:2735-2746. [PMID: 28428864 PMCID: PMC5395460 DOI: 10.1002/ece3.2660] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/30/2016] [Accepted: 11/08/2016] [Indexed: 11/16/2022] Open
Abstract
Will the ongoing extinction crisis cause a severe loss of evolutionary information accumulated over millions of years on the tree of life? This question has been largely explored, particularly for vertebrates and angiosperms. However, no equivalent effort has been devoted to gymnosperms. Here, we address this question focusing on cycads, the gymnosperm group exhibiting the highest proportion of threatened species in the plant kingdom. We assembled the first complete phylogeny of cycads and assessed how species loss under three scenarios would impact the cycad tree of life. These scenarios are as follows: (1) All top 50% of evolutionarily distinct (ED) species are lost; (2) all threatened species are lost; and (3) only all threatened species in each IUCN category are lost. Finally, we analyzed the biogeographical pattern of cycad diversity hotspots and tested for gaps in the current global conservation network. First, we showed that threatened species are not significantly clustered on the cycad tree of life. Second, we showed that the loss of all vulnerable or endangered species does not depart significantly from random loss. In contrast, the loss of all top 50% ED, all threatened or all critically endangered species, would result in a greater loss of PD (Phylogenetic Diversity) than expected. To inform conservation decisions, we defined five hotpots of diversity, and depending on the diversity metric used, these hotspots are located in Southern Africa, Australia, Indo‐Pacific, and Mexico and all are found within protected areas. We conclude that the phylogenetic diversity accumulated over millions of years in the cycad tree of life would not survive the current extinction crisis. As such, prioritizing efforts based on ED and concentrating efforts on critically endangered species particularly in southern Africa, Australia, Indo‐Pacific, and Mexico are required to safeguarding the evolutionary diversity in the cycad tree of life.
Collapse
Affiliation(s)
- Kowiyou Yessoufou
- Department of Geography Environmental Management and Energy Studies University of Johannesburg Johannesburg South Africa
| | - Barnabas H Daru
- Department of Organismic and Evolutionary Biology and Harvard University Herbaria Harvard University Cambridge MA USA.,Department of Plant Sciences University of Pretoria Pretoria South Africa
| | - Respinah Tafirei
- Department of Geography Environmental Management and Energy Studies University of Johannesburg Johannesburg South Africa
| | - Hosam O Elansary
- Department of Floriculture Ornamental Horticulture and Garden Design Alexandria University Alexandria Egypt
| | - Isaac Rampedi
- Department of Geography Environmental Management and Energy Studies University of Johannesburg Johannesburg South Africa
| |
Collapse
|
111
|
Coiro M, Pott C. Eobowenia gen. nov. from the Early Cretaceous of Patagonia: indication for an early divergence of Bowenia? BMC Evol Biol 2017; 17:97. [PMID: 28388891 PMCID: PMC5383990 DOI: 10.1186/s12862-017-0943-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Even if they are considered the quintessential "living fossils", the fossil record of the extant genera of the Cycadales is quite poor, and only extends as far back as the Cenozoic. This lack of data represents a huge hindrance for the reconstruction of the recent history of this important group. Among extant genera, Bowenia (or cuticles resembling those of extant Bowenia) has been recorded in sediments from the Late Cretaceous and the Eocene of Australia, but its phylogenetic placement and the inference from molecular dating still imply a long ghost lineage for this genus. RESULTS We re-examine the fossil foliage Almargemia incrassata from the Lower Cretaceous Anfiteatro de Ticó Formation in Patagonia, Argentina, in the light of a comparative cuticular analysis of extant Zamiaceae. We identify important differences with the other member of the genus, viz. A. dentata, and bring to light some interesting characters shared exclusively between A. incrassata and extant Bowenia. We interpret our results to necessitate the erection of the new genus Eobowenia to accommodate the fossil leaf earlier assigned as Almargemia incrassata. We then perfom phylogenetic analyses, including the first combined morphological and molecular analysis of the Cycadales, that indicate that the newly erected genus could be related to extant Bowenia. CONCLUSION Eobowenia incrassata could represent an important clue for the understanding of evolution and biogeography of the extant genus Bowenia, as the presence of Eobowenia in Patagonia is yet another piece of the biogeographic puzzle that links southern South America with Australasia.
Collapse
Affiliation(s)
- Mario Coiro
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse, 107 8008, Zurich, Switzerland.
| | - Christian Pott
- Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, SE-104 05, Stockholm, Sweden
| |
Collapse
|
112
|
Saladin B, Leslie AB, Wüest RO, Litsios G, Conti E, Salamin N, Zimmermann NE. Fossils matter: improved estimates of divergence times in Pinus reveal older diversification. BMC Evol Biol 2017; 17:95. [PMID: 28376717 PMCID: PMC5381128 DOI: 10.1186/s12862-017-0941-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 03/16/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The taxonomy of pines (genus Pinus) is widely accepted and a robust gene tree based on entire plastome sequences exists. However, there is a large discrepancy in estimated divergence times of major pine clades among existing studies, mainly due to differences in fossil placement and dating methods used. We currently lack a dated molecular phylogeny that makes use of the rich pine fossil record, and this study is the first to estimate the divergence dates of pines based on a large number of fossils (21) evenly distributed across all major clades, in combination with applying both node and tip dating methods. RESULTS We present a range of molecular phylogenetic trees of Pinus generated within a Bayesian framework. We find the origin of crown Pinus is likely up to 30 Myr older (Early Cretaceous) than inferred in most previous studies (Late Cretaceous) and propose generally older divergence times for major clades within Pinus than previously thought. Our age estimates vary significantly between the different dating approaches, but the results generally agree on older divergence times. We present a revised list of 21 fossils that are suitable to use in dating or comparative analyses of pines. CONCLUSIONS Reliable estimates of divergence times in pines are essential if we are to link diversification processes and functional adaptation of this genus to geological events or to changing climates. In addition to older divergence times in Pinus, our results also indicate that node age estimates in pines depend on dating approaches and the specific fossil sets used, reflecting inherent differences in various dating approaches. The sets of dated phylogenetic trees of pines presented here provide a way to account for uncertainties in age estimations when applying comparative phylogenetic methods.
Collapse
Affiliation(s)
- Bianca Saladin
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Andrew B. Leslie
- Department of Ecology and Evolutionary Biology, Brown University, Providence, USA
| | - Rafael O. Wüest
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Glenn Litsios
- Department of Computational Biology, Biophore building, University of Lausanne, Lausanne, Switzerland
- Species, Ecosystems, Landscapes Division, Federal Office for the Environment FOEN, Bern, Switzerland
| | - Elena Conti
- Department of Systematic and Evolutionary Botany and Botanical Garden, University of Zurich, Zurich, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, Biophore building, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
113
|
Gohli J, Kirkendall LR, Smith SM, Cognato AI, Hulcr J, Jordal BH. Biological factors contributing to bark and ambrosia beetle species diversification. Evolution 2017; 71:1258-1272. [DOI: 10.1111/evo.13219] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 02/27/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Jostein Gohli
- Department of Natural History, University Museum of Bergen; University of Bergen; P.O. box 7800, 5020 Bergen Norway
| | | | - Sarah M. Smith
- Department of Entomology; Michigan State University; 288 Farm Lane East Lansing Michigan 48824
| | - Anthony I. Cognato
- Department of Entomology; Michigan State University; 288 Farm Lane East Lansing Michigan 48824
| | - Jiri Hulcr
- School of Forest Resources and Conservation and the Department of Entomology; University of Florida; Gainesville Florida 32611
| | - Bjarte H. Jordal
- Department of Natural History, University Museum of Bergen; University of Bergen; P.O. box 7800, 5020 Bergen Norway
| |
Collapse
|
114
|
Jones KE, Korotkova N, Petersen J, Henning T, Borsch T, Kilian N. Dynamic diversification history with rate upshifts in Holarctic bell-flowers (Campanulaand allies). Cladistics 2017; 33:637-666. [DOI: 10.1111/cla.12187] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 12/15/2022] Open
Affiliation(s)
- Katy E. Jones
- Freie Universität Berlin Botanischer Garten und Botanisches Museum Berlin-Dahlem; Königin-Luise-Straße 6-8 Berlin 14195 Germany
| | - Nadja Korotkova
- Freie Universität Berlin Botanischer Garten und Botanisches Museum Berlin-Dahlem; Königin-Luise-Straße 6-8 Berlin 14195 Germany
| | - Jörn Petersen
- Freie Universität Berlin Botanischer Garten und Botanisches Museum Berlin-Dahlem; Königin-Luise-Straße 6-8 Berlin 14195 Germany
| | - Tilo Henning
- Freie Universität Berlin Botanischer Garten und Botanisches Museum Berlin-Dahlem; Königin-Luise-Straße 6-8 Berlin 14195 Germany
| | - Thomas Borsch
- Freie Universität Berlin Botanischer Garten und Botanisches Museum Berlin-Dahlem; Königin-Luise-Straße 6-8 Berlin 14195 Germany
| | - Norbert Kilian
- Freie Universität Berlin Botanischer Garten und Botanisches Museum Berlin-Dahlem; Königin-Luise-Straße 6-8 Berlin 14195 Germany
| |
Collapse
|
115
|
A 4000-species dataset provides new insight into the evolution of ferns. Mol Phylogenet Evol 2016; 105:200-211. [DOI: 10.1016/j.ympev.2016.09.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/03/2016] [Accepted: 09/07/2016] [Indexed: 01/17/2023]
|
116
|
Donoghue PCJ, Yang Z. The evolution of methods for establishing evolutionary timescales. Philos Trans R Soc Lond B Biol Sci 2016; 371:20160020. [PMID: 27325838 PMCID: PMC4920342 DOI: 10.1098/rstb.2016.0020] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 11/12/2022] Open
Abstract
The fossil record is well known to be incomplete. Read literally, it provides a distorted view of the history of species divergence and extinction, because different species have different propensities to fossilize, the amount of rock fluctuates over geological timescales, as does the nature of the environments that it preserves. Even so, patterns in the fossil evidence allow us to assess the incompleteness of the fossil record. While the molecular clock can be used to extend the time estimates from fossil species to lineages not represented in the fossil record, fossils are the only source of information concerning absolute (geological) times in molecular dating analysis. We review different ways of incorporating fossil evidence in modern clock dating analyses, including node-calibrations where lineage divergence times are constrained using probability densities and tip-calibrations where fossil species at the tips of the tree are assigned dates from dated rock strata. While node-calibrations are often constructed by a crude assessment of the fossil evidence and thus involves arbitrariness, tip-calibrations may be too sensitive to the prior on divergence times or the branching process and influenced unduly affected by well-known problems of morphological character evolution, such as environmental influence on morphological phenotypes, correlation among traits, and convergent evolution in disparate species. We discuss the utility of time information from fossils in phylogeny estimation and the search for ancestors in the fossil record.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.
Collapse
Affiliation(s)
- Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
117
|
Ruhfel BR, Bove CP, Philbrick CT, Davis CC. Dispersal largely explains the Gondwanan distribution of the ancient tropical clusioid plant clade. AMERICAN JOURNAL OF BOTANY 2016; 103:1117-1128. [PMID: 27335391 DOI: 10.3732/ajb.1500537] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 05/18/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY The clusioid clade (Malpighiales) has an ancient fossil record (∼90 Ma) and extant representatives exhibit a pantropical distribution represented on all former Gondwanan landmasses (Africa, Australia, India, Madagascar, and South America) except Antarctica. Several biogeographers have hypothesized that the clusioid distribution is an example of Gondwanan vicariance. Our aim is to test the hypothesis that the modern distribution of the clusioid clade is largely explained by Gondwanan fragmentation. METHODS Using a four gene, 207-taxon data set we simultaneously estimated the phylogeny and divergence times of the clusioid clade using a Bayesian Markov chain Monte Carlo approach. Ancestral Area Reconstructions (AARs) were then conducted on a distribution of 1000 trees and summarized on a reduced phylogeny. KEY RESULTS Divergence time estimates and AARs revealed only two or four cladogenic events that are potentially consistent with Gondwanan vicariance, depending on the placement of the ancient fossil Paleoclusia. In contrast, dispersal occurred on > 25% of the branches, indicating the current distribution of the clade likely reflects extensive recent dispersal during the Cenozoic (< 65 Ma), most of which occurred after the beginning of the Eocene (∼56 Ma). CONCLUSIONS These results support growing evidence that suggests many traditionally recognized angiosperm clades (families and genera) are too young for their distributions to have been influenced strictly by Gondwanan fragmentation. Instead, it appears that corridors of dispersal may be the best explanation for numerous angiosperm clades with Gondwanan distributions.
Collapse
Affiliation(s)
- Brad R Ruhfel
- Department of Biological Sciences, Eastern Kentucky University, 521 Lancaster Avenue, Richmond, Kentucky 40475 USA Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, 22 Divinity Avenue, Cambridge, Massachusetts 02138 USA
| | - Claudia P Bove
- Departamento de Botânica, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, Rio de Janeiro 20940-040, Brazil
| | - C Thomas Philbrick
- Biological & Environmental Sciences, Western Connecticut State University, 181 White Street, Danbury, Connecticut 06810 USA
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, 22 Divinity Avenue, Cambridge, Massachusetts 02138 USA
| |
Collapse
|
118
|
Phylogeny and Divergence Times of Lemurs Inferred with Recent and Ancient Fossils in the Tree. Syst Biol 2016; 65:772-91. [DOI: 10.1093/sysbio/syw035] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 03/30/2016] [Indexed: 01/14/2023] Open
|
119
|
Beaulieu JM, O'Meara BC. Detecting Hidden Diversification Shifts in Models of Trait-Dependent Speciation and Extinction. Syst Biol 2016; 65:583-601. [PMID: 27016728 DOI: 10.1093/sysbio/syw022] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/08/2016] [Indexed: 01/21/2023] Open
Abstract
The distribution of diversity can vary considerably from clade to clade. Attempts to understand these patterns often employ state-dependent speciation and extinction models to determine whether the evolution of a particular novel trait has increased speciation rates and/or decreased extinction rates. It is still unclear, however, whether these models are uncovering important drivers of diversification, or whether they are simply pointing to more complex patterns involving many unmeasured and co-distributed factors. Here we describe an extension to the popular state-dependent speciation and extinction models that specifically accounts for the presence of unmeasured factors that could impact diversification rates estimated for the states of any observed trait, addressing at least one major criticism of BiSSE (Binary State Speciation and Extinction) methods. Specifically, our model, which we refer to as HiSSE (Hidden State Speciation and Extinction), assumes that related to each observed state in the model are "hidden" states that exhibit potentially distinct diversification dynamics and transition rates than the observed states in isolation. We also demonstrate how our model can be used as character-independent diversification models that allow for a complex diversification process that is independent of the evolution of a character. Under rigorous simulation tests and when applied to empirical data, we find that HiSSE performs reasonably well, and can at least detect net diversification rate differences between observed and hidden states and detect when diversification rate differences do not correlate with the observed states. We discuss the remaining issues with state-dependent speciation and extinction models in general, and the important ways in which HiSSE provides a more nuanced understanding of trait-dependent diversification.
Collapse
Affiliation(s)
- Jeremy M Beaulieu
- National Institute for Biological and Mathematical Synthesis, University of Tennessee, Knoxville, TN 37996, USA Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-1610, USA
| | - Brian C O'Meara
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-1610, USA
| |
Collapse
|
120
|
Wang Q, Mao KS. Puzzling rocks and complicated clocks: how to optimize molecular dating approaches in historical phytogeography. THE NEW PHYTOLOGIST 2016; 209:1353-1358. [PMID: 26355284 DOI: 10.1111/nph.13676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Qian Wang
- Key Laboratory for Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Kang-Shan Mao
- Key Laboratory for Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
121
|
Wang W, Ma L, Becher H, Garcia S, Kovarikova A, Leitch IJ, Leitch AR, Kovarik A. Astonishing 35S rDNA diversity in the gymnosperm species Cycas revoluta Thunb. Chromosoma 2015; 125:683-99. [PMID: 26637996 PMCID: PMC5023732 DOI: 10.1007/s00412-015-0556-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/05/2015] [Indexed: 11/28/2022]
Abstract
In all eukaryotes, the highly repeated 35S ribosomal DNA (rDNA) sequences encoding 18S-5.8S-26S ribosomal RNA (rRNA) typically show high levels of intragenomic uniformity due to homogenisation processes, leading to concerted evolution of 35S rDNA repeats. Here, we compared 35S rDNA divergence in several seed plants using next generation sequencing and a range of molecular and cytogenetic approaches. Most species showed similar 35S rDNA homogeneity indicating concerted evolution. However, Cycas revoluta exhibits an extraordinary diversity of rDNA repeats (nucleotide sequence divergence of different copies averaging 12 %), influencing both the coding and non-coding rDNA regions nearly equally. In contrast, its rRNA transcriptome was highly homogeneous suggesting that only a minority of genes (<20 %) encode functional rRNA. The most common SNPs were C > T substitutions located in symmetrical CG and CHG contexts which were also highly methylated. Both functional genes and pseudogenes appear to cluster on chromosomes. The extraordinary high levels of 35S rDNA diversity in C. revoluta, and probably other species of cycads, indicate that the frequency of repeat homogenisation has been much lower in this lineage, compared with all other land plant lineages studied. This has led to the accumulation of methylation-driven mutations and pseudogenisation. Potentially, the reduced homology between paralogs prevented their elimination by homologous recombination, resulting in long-term retention of rDNA pseudogenes in the genome.
Collapse
Affiliation(s)
- Wencai Wang
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Lu Ma
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Hannes Becher
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Sònia Garcia
- Laboratori de Botànica-Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, 08028, Barcelona, Catalonia, Spain
| | - Alena Kovarikova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, CZ-61265, Czech Republic
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Ales Kovarik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, CZ-61265, Czech Republic.
| |
Collapse
|
122
|
Dziki A, Binford GJ, Coddington JA, Agnarsson I. Spintharus flavidus in the Caribbean-a 30 million year biogeographical history and radiation of a 'widespread species'. PeerJ 2015; 3:e1422. [PMID: 26618089 PMCID: PMC4655100 DOI: 10.7717/peerj.1422] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/02/2015] [Indexed: 01/30/2023] Open
Abstract
The Caribbean island biota is characterized by high levels of endemism, the result of an interplay between colonization opportunities on islands and effective oceanic barriers among them. A relatively small percentage of the biota is represented by ‘widespread species,’ presumably taxa for which oceanic barriers are ineffective. Few studies have explored in detail the genetic structure of widespread Caribbean taxa. The cobweb spider Spintharus flavidus Hentz, 1850 (Theridiidae) is one of two described Spintharus species and is unique in being widely distributed from northern N. America to Brazil and throughout the Caribbean. As a taxonomic hypothesis, Spintharus “flavidus” predicts maintenance of gene flow among Caribbean islands, a prediction that seems contradicted by known S. flavidus biology, which suggests limited dispersal ability. As part of an extensive survey of Caribbean arachnids (project CarBio), we conducted the first molecular phylogenetic analysis of S. flavidus with the primary goal of testing the ‘widespread species’ hypothesis. Our results, while limited to three molecular loci, reject the hypothesis of a single widespread species. Instead this lineage seems to represent a radiation with at least 16 species in the Caribbean region. Nearly all are short range endemics with several distinct mainland groups and others are single island endemics. While limited taxon sampling, with a single specimen from S. America, constrains what we can infer about the biogeographical history of the lineage, clear patterns still emerge. Consistent with limited overwater dispersal, we find evidence for a single colonization of the Caribbean about 30 million years ago, coinciding with the timing of the GAARLandia landbridge hypothesis. In sum, S. “flavidus” is not a single species capable of frequent overwater dispersal, but rather a 30 my old radiation of single island endemics that provides preliminary support for a complex and contested geological hypothesis.
Collapse
Affiliation(s)
- Austin Dziki
- Department of Biology, University of Vermont , Burlington, VT , USA
| | - Greta J Binford
- Department of Biology, Lewis and Clark College , Portland, OR , USA
| | - Jonathan A Coddington
- Department of Entomology, National Museum of Natural History, Smithsonian Institution , Washington, DC , USA
| | - Ingi Agnarsson
- Department of Biology, University of Vermont , Burlington, VT , USA ; Department of Entomology, National Museum of Natural History, Smithsonian Institution , Washington, DC , USA
| |
Collapse
|
123
|
Aduse-Poku K, Brattström O, Kodandaramaiah U, Lees DC, Brakefield PM, Wahlberg N. Systematics and historical biogeography of the old world butterfly subtribe Mycalesina (Lepidoptera: Nymphalidae: Satyrinae). BMC Evol Biol 2015; 15:167. [PMID: 26289424 PMCID: PMC4545879 DOI: 10.1186/s12862-015-0449-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Butterflies of the subtribe Mycalesina have radiated successfully in almost all habitat types in Africa, Madagascar, the Indian subcontinent, Indo-China and Australasia. Studies aimed at understanding the reasons behind the evolutionary success of this spectacular Old World butterfly radiation have been hampered by the lack of a stable phylogeny for the group. Here, we have reconstructed a robust phylogenetic framework for the subtribe using 10 genes from 195 exemplar taxa. RESULTS We recovered seven well supported clades within the subtribe corresponding to the five traditional genera (Lohora, Heteropsis, Hallelesis, Bicyclus, Mycalesis), one as recently revised (Mydosama) and one newly revised genus (Culapa). The phylogenetic relationships of these mycalesine genera have been robustly established for the first time. Within the proposed phylogenetic framework, we estimated the crown age of the subtribe to be 40 Million years ago (Mya) and inferred its ultimate origin to be in Asia. Our results reveal both vicariance and dispersal as factors responsible for the current widespread distribution of the group in the Old World tropics. We inferred that the African continent has been colonized at least twice by Asian mycalesines within the last 26 and 23 Mya. In one possible scenario, an Asian ancestor gave rise to Heteropsis on continental Africa, which later dispersed into Madagascar and most likely back colonised Asia. The second colonization of Africa by Asian ancestors resulted in Hallelesis and Bicyclus on continental Africa, the descendants of which did not colonise other regions but rather diversified only in continental Africa. The genera Lohora and Mydosama are derivatives of ancestors from continental Asia. CONCLUSION Our proposed time-calibrated phylogeny now provides a solid framework within which we can implement mechanistic studies aimed at unravelling the ecological and evolutionary processes that culminated in the spectacular radiation of mycalesines in the Old World tropics.
Collapse
Affiliation(s)
- Kwaku Aduse-Poku
- Department of Zoology, Radiating Butterflies Group, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Oskar Brattström
- Department of Zoology, Radiating Butterflies Group, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Ullasa Kodandaramaiah
- Department of Zoology, Radiating Butterflies Group, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK. .,School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), CET campus, Sreekaryam, Thiruvananthapuram Kerala, 695016, India.
| | - David C Lees
- Department of Zoology, Radiating Butterflies Group, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Paul M Brakefield
- Department of Zoology, Radiating Butterflies Group, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Niklas Wahlberg
- Department of Biology, NSG, Laboratory of Genetics, University of Turku, Turku, 20014, Finland.
| |
Collapse
|
124
|
Condamine FL, Nagalingum NS, Marshall CR, Morlon H. Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating. BMC Evol Biol 2015; 15:65. [PMID: 25884423 PMCID: PMC4449600 DOI: 10.1186/s12862-015-0347-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/02/2015] [Indexed: 01/21/2023] Open
Abstract
Background Bayesian relaxed-clock dating has significantly influenced our understanding of the timeline of biotic evolution. This approach requires the use of priors on the branching process, yet little is known about their impact on divergence time estimates. We investigated the effect of branching priors using the iconic cycads. We conducted phylogenetic estimations for 237 cycad species using three genes and two calibration strategies incorporating up to six fossil constraints to (i) test the impact of two different branching process priors on age estimates, (ii) assess which branching prior better fits the data, (iii) investigate branching prior impacts on diversification analyses, and (iv) provide insights into the diversification history of cycads. Results Using Bayes factors, we compared divergence time estimates and the inferred dynamics of diversification when using Yule versus birth-death priors. Bayes factors were calculated with marginal likelihood estimated with stepping-stone sampling. We found striking differences in age estimates and diversification dynamics depending on prior choice. Dating with the Yule prior suggested that extant cycad genera diversified in the Paleogene and with two diversification rate shifts. In contrast, dating with the birth-death prior yielded Neogene diversifications, and four rate shifts, one for each of the four richest genera. Nonetheless, dating with the two priors provided similar age estimates for the divergence of cycads from Ginkgo (Carboniferous) and their crown age (Permian). Of these, Bayes factors clearly supported the birth-death prior. Conclusions These results suggest the choice of the branching process prior can have a drastic influence on our understanding of evolutionary radiations. Therefore, all dating analyses must involve a model selection process using Bayes factors to select between a Yule or birth-death prior, in particular on ancient clades with a potential pattern of high extinction. We also provide new insights into the history of cycad diversification because we found (i) periods of extinction along the long branches of the genera consistent with fossil data, and (ii) high diversification rates within the Miocene genus radiations. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0347-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabien L Condamine
- CNRS, UMR 7641 Centre de Mathématiques Appliquées (École Polytechnique), Route de Saclay, 91128, Palaiseau, France. .,Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30, Göteborg, Sweden.
| | - Nathalie S Nagalingum
- National Herbarium of New South Wales, Royal Botanic Gardens & Domain Trust, Mrs Macquaries Road, Sydney, NSW, 2000, Australia.
| | - Charles R Marshall
- Department of Integrative Biology and Museum of Paleontology, University of California, 1101 Valley Life Sciences Building, Berkeley, CA, 94720-4780, USA.
| | - Hélène Morlon
- CNRS, UMR 8197 Institut de Biologie de l'École Normale Supérieure, 46 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|