101
|
Li XY, Yang X, Zhao QD, Han ZP, Liang L, Pan XR, Zhu JN, Li R, Wu MC, Wei LX. Lipopolysaccharide promotes tumorigenicity of hepatic progenitor cells by promoting proliferation and blocking normal differentiation. Cancer Lett 2017; 386:35-46. [DOI: 10.1016/j.canlet.2016.10.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 12/19/2022]
|
102
|
Huang C, Pan L, Lin F, Dai H, Fu R. Monoclonal antibody against Toll-like receptor 4 attenuates ventilator-induced lung injury in rats by inhibiting MyD88- and NF-κB-dependent signaling. Int J Mol Med 2017; 39:693-700. [PMID: 28204830 DOI: 10.3892/ijmm.2017.2873] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/04/2017] [Indexed: 11/06/2022] Open
Abstract
The mechanisms through which mechanical ventilation causes non-infectious inflammatory diseases and lung injury are poorly understood. Animals models of this type of injury suggest that it involves signaling mediated by Toll‑like receptor (TLR)4 and 9. In this study, in order to gain further insight into the involvement of TLR4 in this type of injury, we performed in vivo and in vitro experiments to determine the mechanisms through which TLR4 triggers inflammation. We also examined whether the use of TLR4 monoclonal antibody (mAb) can alleviate this type of injury. For this purpose, rats were tracheotomized and administered intratracheal injections of anti‑TLR4 mAb or saline, and then ventilated for 4 h at a high tidal volume (HTV) of 40 ml/ kg or allowed to breathe spontaneously for the same period of time (controls). Alveolar macrophages (AMs) were isolated from the bronchoalveolar lavage fluid (BALF) of the rats and stimulated for 16 h with tumor necrosis factor (TNF)‑α in the presence or absence of anti‑TLR4 mAb. Lung injury was assessed by examining lung histopathology, lung wet/dry weight ratio, BALF total protein and cytokine levels in BALF and plasma. The mRNA and protein expression levels of TLR4, TLR9, myeloid differentiation factor 88 (Myd88) and nuclear factor (NF)‑κB were measured in cultured macrophages. Compared to the controls (spontaneous breathing), the ventilated rats exhibited greater pulmonary permeability, more severe inflammatory cell infiltration/lung edema, and higher levels of interleukin (IL)‑1β, IL‑6 and TNF‑α in BALF and plasma. The AMs from the ventilated rats expressed higher mRNA and protein levels of TLR4, TLR9, Myd88 and NF‑κB compared with the macrophages from the spontaneously breathing rats. The ventilated rats pre‑treated with anti‑TLR4 mAb exhibited markedly attenuated signs of ventilation‑induced injury, such as less lung inflammation and pulmonary edema, fewer cells in BALF, and lower levels of ILs and TNF‑α in BALF and plasma. Similarly, the TNF‑α‑dependent increases in the mRNA and protein expression of TLR4, Myd88 and NF‑κB in AMs were attenuated when TNF‑α was co‑administered with anti‑TLR4 mAb than when TNF-α was administered alone. Co‑administering anti-TLR4 mAb also reduced the TNF‑α‑dependent secretion of ILs. On the whole, our data demonstrate that TLR4 contributes significantly to ventilation‑induced lung injury by activating the Myd88/NF‑κB pathway, and pre‑treating rats with anti‑TLR4 mAb partially protects them against this type of injury by inhibiting Myd88/NF-κB signaling.
Collapse
Affiliation(s)
- Cuiyuan Huang
- Department of Anesthesiology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Linghui Pan
- Department of Anesthesiology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Fei Lin
- Department of Anesthesiology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Huijun Dai
- Department of Anesthesiology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ruili Fu
- Department of Anesthesiology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
103
|
LPS-TLR4 Pathway Mediates Ductular Cell Expansion in Alcoholic Hepatitis. Sci Rep 2016; 6:35610. [PMID: 27752144 PMCID: PMC5067590 DOI: 10.1038/srep35610] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/29/2016] [Indexed: 02/06/2023] Open
Abstract
Alcoholic hepatitis (AH) is the most severe form of alcoholic liver disease for which there are no effective therapies. Patients with AH show impaired hepatocyte proliferation, expansion of inefficient ductular cells and high lipopolysaccharide (LPS) levels. It is unknown whether LPS mediates ductular cell expansion. We performed transcriptome studies and identified keratin 23 (KRT23) as a new ductular cell marker. KRT23 expression correlated with mortality and LPS serum levels. LPS-TLR4 pathway role in ductular cell expansion was assessed in human and mouse progenitor cells, liver slices and liver injured TLR4 KO mice. In AH patients, ductular cell expansion correlated with portal hypertension and collagen expression. Functional studies in ductular cells showed that KRT23 regulates collagen expression. These results support a role for LPS-TLR4 pathway in promoting ductular reaction in AH. Maneuvers aimed at decreasing LPS serum levels in AH patients could have beneficial effects by preventing ductular reaction development.
Collapse
|
104
|
NF-κB decoy oligodeoxynucleotide mitigates wear particle-associated bone loss in the murine continuous infusion model. Acta Biomater 2016; 41:273-81. [PMID: 27260104 DOI: 10.1016/j.actbio.2016.05.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED Total joint replacement is a cost-effective surgical procedure for patients with end-stage arthritis. Wear particle-induced chronic inflammation is associated with the development of periprosthetic osteolysis. Modulation of NF-κB signaling in macrophages, osteoclasts, and mesenchymal stem cells could potentially mitigate this disease. In the current study, we examined the effects of local delivery of decoy NF-κB oligo-deoxynucleotide (ODN) on wear particle-induced bone loss in a murine continuous femoral particle infusion model. Ultra-high molecular weight polyethylene particles (UHMWPE) with or without lipopolysaccharide (LPS) were infused via osmotic pumps into hollow titanium rods placed in the distal femur of mice for 4weeks. Particle-induced bone loss was evaluated by μCT, and immunohistochemical analysis of sections from the femur. Particle infusion alone resulted in reduced bone mineral density and trabecular bone volume fraction in the distal femur. The decoy ODN reversed the particle-associated bone volume fraction loss around the implant, irrespective of the presence of LPS. Particle-infusion with LPS increased bone mineral density in the distal femur compared with particle-infusion alone. NF-κB decoy ODN reversed or further increased the bone mineral density in the femur (3-6mm from the distal end) exposed to particles alone or particles plus LPS. NF-κB decoy ODN also inhibited macrophage infiltration and osteoclast number, but had no significant effects on osteoblast numbers in femurs exposed to wear particles and LPS. Our study suggests that targeting NF-κB activity via local delivery of decoy ODN has great potential to mitigate wear particle-induced osteolysis. STATEMENT OF SIGNIFICANCE Total joint replacement is a cost-effective surgical procedure for patients with end-stage arthritis. Chronic inflammation is crucial for the development of wear particle-associated bone loss. Modulation of NF-κB signaling in macrophages (pro-inflammatory cells), osteoclasts (bone-resorbing cells), and osteoblasts (bone-forming cells) could potentially mitigate this disease. Here we demonstrated that local delivery of decoy NF-κB oligo-deoxynucleotide (ODN) mitigated ultra-high molecular weight polyethylene (UHMWPE) wear particle induced bone loss in a clinically relevant murine model. The protective effects of decoy ODN was associated with reduced macrophage infiltration and osteoclast activation, but had no significant effects on osteoblast numbers. Our study suggests that targeting NF-κB activity via local delivery of decoy ODN has great potential to mitigate wear particle-induced bone loss.
Collapse
|
105
|
Innate Immune Response of Human Embryonic Stem Cell-Derived Fibroblasts and Mesenchymal Stem Cells to Periodontopathogens. Stem Cells Int 2016; 2016:8905365. [PMID: 27642305 PMCID: PMC5014959 DOI: 10.1155/2016/8905365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/04/2016] [Accepted: 05/18/2016] [Indexed: 12/11/2022] Open
Abstract
Periodontitis involves complex interplay of bacteria and host immune response resulting in destruction of supporting tissues of the tooth. Toll-like receptors (TLRs) play a role in recognizing microbial pathogens and eliciting an innate immune response. Recently, the potential application of multipotent stem cells and pluripotent stem cells including human embryonic stem cells (hESCs) in periodontal regenerative therapy has been proposed. However, little is known about the impact of periodontopathogens on hESC-derived progenies. This study investigates the effects of heat-killed periodontopathogens, namely, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, on TLR and cytokine expression profile of hESC-derived progenies, namely, fibroblasts (hESC-Fib) and mesenchymal stem cells (hESC-MSCs). Additionally, the serotype-dependent effect of A. actinomycetemcomitans on hESC-derived progenies was explored. Both hESC-Fib and hESC-MSCs constitutively expressed TLR-2 and TLR-4. hESC-Fib upon exposure to periodontopathogens displayed upregulation of TLRs and release of cytokines (IL-1β, IL-6, and IL-8). In contrast, hESC-MSCs were largely nonresponsive to bacterial challenge, especially in terms of cytokine production. Further, exposure of hESC-Fib to A. actinomycetemcomitans serotype c was associated with higher IL-8 production than serotype b. In contrast, the hESC-MSCs displayed no serotype-dependent response. Differential response of the two hESC progenies implies a phenotype-dependent response to periodontopathogens and supports the concept of immunomodulatory properties of MSCs.
Collapse
|
106
|
Soluble CD14 Enhances the Response of Periodontal Ligament Stem Cells to P. gingivalis Lipopolysaccharide. PLoS One 2016; 11:e0160848. [PMID: 27504628 PMCID: PMC4978456 DOI: 10.1371/journal.pone.0160848] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/26/2016] [Indexed: 02/06/2023] Open
Abstract
Periodontal ligament stem cells (PDLSCs) are lacking membrane CD14, which is an important component of lipopolysaccharide (LPS) signaling through toll-like receptor (TLR) 4. In the present study we investigated the effect of soluble CD14 on the response of human PDLSCs to LPS of Porphyromonas (P.) gingivalis. Human PDLSCs (hPDLSCs) were stimulated with P. gingivalis LPS in the presence or in the absence of soluble CD14 (sCD14) and the production of interleukin (IL)-6, chemokine C-X-C motif ligand 8 (CXCL8), and chemokine C-C motif ligand 2 (CCL2) was measured. The response to P. gingivalis LPS was compared with that to TLR4 agonist Escherichia coli LPS and TLR2-agonist Pam3CSK4. The response of hPDLSCs to both P. gingivalis LPS and E. coli LPS was significantly enhanced by sCD14. In the absence of sCD14, no significant difference in the hPDLSCs response to two kinds of LPS was observed. These responses were significantly lower compared to that to Pam3CSK4. In the presence of sCD14, the response of hPdLSCs to P. gingivalis LPS was markedly higher than that to E. coli LPS and comparable with that to Pam3CSK4. The response of hPdLSCs to bacterial LPS is strongly augmented by sCD14. Local levels of sCD14 could be an important factor for modulation of the host response against periodontal pathogens.
Collapse
|
107
|
Gursoy UK, He Q, Pussinen P, Huumonen S, Könönen E. Alveolar bone loss in relation to toll-like receptor 4 and 9 genotypes and Porphyromonas gingivalis carriage. Eur J Clin Microbiol Infect Dis 2016; 35:1871-1876. [DOI: 10.1007/s10096-016-2741-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/24/2016] [Indexed: 10/21/2022]
|
108
|
Xue P, Li B, An Y, Sun J, He X, Hou R, Dong G, Fei D, Jin F, Wang Q, Jin Y. Decreased MORF leads to prolonged endoplasmic reticulum stress in periodontitis-associated chronic inflammation. Cell Death Differ 2016; 23:1862-1872. [PMID: 27447113 DOI: 10.1038/cdd.2016.74] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 02/06/2023] Open
Abstract
The association between inflammation and endoplasmic reticulum (ER) stress has been described in many diseases. However, if and how chronic inflammation governs the unfolded protein response (UPR) and promotes ER homeostasis of chronic inflammatory disease remains elusive. In this study, chronic inflammation resulted in ER stress in mesenchymal stem cells in the setting of periodontitis. Long-term proinflammatory cytokines induced prolonged ER stress and decreased the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Interestingly, we showed that chronic inflammation decreases the expression of lysine acetyltransferase 6B (KAT6B, also called MORF), a histone acetyltransferase, and causes the upregulation of a key UPR sensor, PERK, which lead to the persistent activation of the UPR in PDLSCs. Furthermore, we found that the activation of UPR mediated by MORF in chronic inflammation contributes to the PERK-related deterioration of the osteogenic differentiation of PDLSCs both in vivo and in vitro. Taken together, our results suggest that chronic inflammation compromises UPR function through MORF-mediated-PERK transcription, which is a previously unrecognized mechanism that contributes to impaired ER function, prolonged ER stress and defective osteogenic differentiation of PDLSCs in periodontitis.
Collapse
Affiliation(s)
- Peng Xue
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi 710032, China.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Bei Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ying An
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi 710032, China.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jin Sun
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,Department of Stomatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Xiaoning He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Rui Hou
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Guangying Dong
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi 710032, China
| | - Dongdong Fei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi 710032, China.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fang Jin
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qintao Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi 710032, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
109
|
Chen N, Sui B, Hu C, Cao J, Zheng C, Hou R, Yang Z, Zhao P, Chen Q, Yang Q, Jin Y, Jin F. microRNA-21 Contributes to Orthodontic Tooth Movement. J Dent Res 2016; 95:1425-1433. [DOI: 10.1177/0022034516657043] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
microRNAs could be mechanosensitive and emerge as critical posttranscriptional regulators in the bone-remodeling process. During orthodontic tooth movement (OTM), the application of mechanical force induces alveolar bone remodeling, but whether microRNAs respond to orthodontic force and contribute to OTM is unknown. microRNA-21 (miR-21) has been previously reported in vitro to mediate stretch-induced osteogenic differentiation of periodontal ligament stem cells and support osteoclast differentiation. In this study, the authors show that miR-21 responded to orthodontic force in periodontal tissue in a dose- and time-dependent manner and regulated the osteogenesis of human periodontal ligament stem cells following OTM. Using mmu-miR-21-deficient (miR-21-/-) mice, the authors discovered that mmu-miR-21 deficiency inhibited OTM and prevented force-induced maxillary bone loss. The authors found that miR-21-/- mice showed a normal skeletal phenotype in development and a similar alveolar bone formation rate to wild-type mice postnatally. During OTM, mmu-miR-21 regulated force-induced alveolar osteoblastogenesis in the tensile side, while no effects were detected in the compressive side. However, miR-21-/- mice showed inhibited alveolar osteoclastogenesis when compared with wild-type mice. During OTM, mmu-miR-21 deficiency blocked alveolar bone resorption in both the compressive and tensile sides. To dissect the mechanism by which miR-21 regulates alveolar bone remodeling, the authors screened the reported functional targets of miR-21 and found that periodontal expression of programmed cell death 4 ( Pdcd4) was inhibited following OTM. Furthermore, mmu-miR-21 deficiency removed the suppression of Pdcd4 at both the mRNA and protein levels in the periodontium, resulting in upregulation of the downstream effector C-fos. Further analysis of OTM under lipopolysaccharide-induced periodontal inflammation showed that mmu-miR-21 mediated lipopolysaccharide (LPS)-accelerated OTM and that mmu-miR-21 deficiency blocked lipopolysaccharide-induced maxillary bone loss. In summary, these findings reveal a previously unrecognized mechanism that a microRNA can modulate OTM and alveolar bone remodeling under both normal and inflammatory microenvironments in vivo.
Collapse
Affiliation(s)
- N. Chen
- Center for Tissue Engineering, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi’an, China
- Department of Orthodontics, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi’an, China
- Xi’an Institute of Tissue Engineering and Regenerative Medicine, Xi’an, China
| | - B.D. Sui
- Center for Tissue Engineering, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi’an, China
- Xi’an Institute of Tissue Engineering and Regenerative Medicine, Xi’an, China
| | - C.H. Hu
- Center for Tissue Engineering, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi’an, China
- Xi’an Institute of Tissue Engineering and Regenerative Medicine, Xi’an, China
| | - J. Cao
- Department of Orthodontics, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi’an, China
| | - C.X. Zheng
- Center for Tissue Engineering, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi’an, China
- Xi’an Institute of Tissue Engineering and Regenerative Medicine, Xi’an, China
| | - R. Hou
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Z.K. Yang
- Department of Orthodontics, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi’an, China
| | - P. Zhao
- Center for Tissue Engineering, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi’an, China
- Xi’an Institute of Tissue Engineering and Regenerative Medicine, Xi’an, China
| | - Q. Chen
- Department of Orthodontics, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi’an, China
| | - Q.J. Yang
- Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Y. Jin
- Center for Tissue Engineering, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi’an, China
- Xi’an Institute of Tissue Engineering and Regenerative Medicine, Xi’an, China
| | - F. Jin
- Center for Tissue Engineering, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi’an, China
- Department of Orthodontics, State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
110
|
Sun JY, Li DL, Dong Y, Zhu CH, Liu J, Li JD, Zhou T, Gou JZ, Li A, Zang WJ. Baicalin inhibits toll-like receptor 2/4 expression and downstream signaling in rat experimental periodontitis. Int Immunopharmacol 2016; 36:86-93. [DOI: 10.1016/j.intimp.2016.04.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/26/2016] [Accepted: 04/07/2016] [Indexed: 01/07/2023]
|
111
|
GCN5 modulates osteogenic differentiation of periodontal ligament stem cells through DKK1 acetylation in inflammatory microenvironment. Sci Rep 2016; 6:26542. [PMID: 27216891 PMCID: PMC4877597 DOI: 10.1038/srep26542] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/04/2016] [Indexed: 12/21/2022] Open
Abstract
Periodontal ligament stem cells (PDLSCs) from periodontitis patients showed defective osteogenic differentiation. However, the mechanism of impaired osteogenic differentiation of PDLSCs in inflammatory microenvironments is still unclear. In this study, we found that inflammation in the microenvironment resulted in downregulation of histone acetyltransferase GCN5 expression and lack of GCN5 caused decreased osteogenic differentiation of PDLSCs. Previous study showed activated Wnt/β-cateinin pathway of PDLSCs resulted in defective osteogenic differentiation. Here we found knockdown of GCN5 decreased the expression of DKK1, an inhibitor of Wnt/β-cateinin pathway, thus activated Wnt/β-catenin pathway of PDLSCs. Mechanistically, GCN5 regulated DKK1 expression by acetylation of Histone H3 lysine 9 (H3K9) and Histone H3 lysine 14 (H3K14) at its promoter region. Interestingly, we found that in vivo injection of aspirin rescued the periodontitis of rats through inhibiting inflammation and upregulating GCN5 expression. Furthermore, aspirin treatment of PDLSCs upregulated GCN5 expression and increased osteogenic differentiation of PDLSCs. In conclusion, GCN5 plays a protective role in periodontitis through acetylation of DKK1 and applying drugs targeting GCN5, such as aspirin, could be a new approach for periodontitis treatment.
Collapse
|
112
|
Tan J, Zhou L, Xue P, An Y, Luo L, Zhang R, Wu G, Wang Y, Zhu H, Wang Q. Tumor Necrosis Factor-α Attenuates the Osteogenic Differentiation Capacity of Periodontal Ligament Stem Cells by Activating PERK Signaling. J Periodontol 2016; 87:e159-71. [PMID: 27086613 DOI: 10.1902/jop.2016.150718] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Human periodontal ligament stem cells (PDLSCs) display efficient osteogenic differentiation capacity but fail to rescue bone breakdown associated with periodontitis. Endoplasmic reticulum (ER) stress and the unfolded protein response have recently been linked to inflammation and osteogenic differentiation. Therefore, the role of the double-stranded RNA-activated protein kinase (PKR)-like ER kinase (PERK) pathway in the impaired osteogenic differentiation ability of PDLSCs treated with tumor necrosis factor (TNF)-α was investigated. METHODS PDLSCs were isolated and stimulated with osteogenic media containing 1, 10, or 20 ng/mL TNF-α. Assessment included: 1) expression of runt-related transcription factor 2 and osteocalcin; 2) mRNA expression and activity of alkaline phosphatase; and 3) formation of mineralization nodules. Furthermore, expression of PERK pathway-related factors: 1) glucose-regulated protein (GRP) 78; 2) PERK; 3) activating transcription factor (ATF) 4; and 4) CCAAT-enhancer-binding proteins (C/EBP) homologous protein were also measured. Osteogenic differentiation and inhibition of the PERK pathway were also examined in cells pretreated with an inhibitor of ER stress, 4-phenylbutyric acid (PBA), followed by TNF-α stimulation. Finally, PERK small interfering RNA was used to examine osteogenic differentiation attenuated by TNF-α. RESULTS Higher concentrations of TNF-α (10 and 20 ng/mL) impaired osteogenic differentiation of PDLSCs but activated the PERK pathway. Pretreatment of PDLSCs with lower concentrations of 4-PBA prevented the TNF-α-induced upregulation of GRP78, PERK, and ATF4 and recovered differentiation ability. Finally, PERK knockdown also restored osteogenic differentiation. CONCLUSION TNF-α attenuates osteogenic differentiation ability of PDLSCs through activation of the PERK pathway.
Collapse
Affiliation(s)
- Jun Tan
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi, China.,Department of Stomatology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong, China
| | - Lihua Zhou
- Department of Stomatology, General Hospital of Beijing Military Area, Beijing, China
| | - Peng Xue
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi, China
| | - Ying An
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi, China
| | - Lankun Luo
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi, China
| | - Rong Zhang
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi, China
| | - Guangsheng Wu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi, China.,Department of Stomatology, Qingdao First Sanatorium of Jinan Military Area Command, Qingdao, Shandong, China
| | - Ying Wang
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi, China
| | - Hong Zhu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi, China
| | - Qintao Wang
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi, China
| |
Collapse
|
113
|
Abstract
Adult or somatic stem cells are tissue-resident cells with the ability to proliferate, exhibit self-maintenance as well as to generate new cells with the principal phenotypes of the tissue in response to injury or disease. Due to their easy accessibility and their potential use in regenerative medicine, adult stem cells raise the hope for future personalisable therapies. After infection or during injury, they are exposed to broad range of pathogen or damage-associated molecules leading to changes in their proliferation, migration and differentiation. The sensing of such damage and infection signals is mostly achieved by Toll-Like Receptors (TLRs) with Toll-like receptor 4 being responsible for recognition of bacterial lipopolysaccharides (LPS) and endogenous danger-associated molecular patterns (DAMPs). In this review, we examine the current state of knowledge on the TLR4-mediated signalling in different adult stem cell populations. Specifically, we elaborate on the role of TLR4 and its ligands on proliferation, differentiation and migration of mesenchymal stem cells, hematopoietic stem cells as well as neural stem cells. Finally, we discuss conceptual and technical pitfalls in investigation of TLR4 signalling in stem cells.
Collapse
|
114
|
Song B, Zhang YL, Chen LJ, Zhou T, Huang WK, Zhou X, Shao LQ. The role of Toll-like receptors in periodontitis. Oral Dis 2016; 23:168-180. [PMID: 26923115 DOI: 10.1111/odi.12468] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/08/2016] [Accepted: 02/21/2016] [Indexed: 12/14/2022]
Abstract
Periodontitis is a common infectious disease. Recent studies have indicated that the progression of periodontitis may be regulated by interactions between host immunity and periodontopathic bacteria. Although periodontopathic bacteria can destroy periodontal tissue, a dysfunctional host immune response triggered by the bacteria can lead to more severe and persistent destruction. Toll-like receptors (TLRs), a type of pattern recognition receptor (PRR) that recognizes pathogens, have been implicated in host innate immune responses to periodontopathic bacteria and in the activation of adaptive immunity. TLR-targeted drugs may hold promise to treat periodontal disease. This review summarizes recent studies on the role of TLRs in periodontitis and discusses areas needing further research. We believe TLRs may be an effective biomarker for the prevention, diagnosis, and treatment of periodontitis in the near future.
Collapse
Affiliation(s)
- B Song
- Guizhou Provincial People's Hospital, Guiyang, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Y L Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - L J Chen
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - T Zhou
- Guizhou Provincial People's Hospital, Guiyang, China
| | - W K Huang
- Guizhou Provincial People's Hospital, Guiyang, China
| | - X Zhou
- Guizhou Provincial People's Hospital, Guiyang, China
| | - L Q Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
115
|
Ossola CA, Surkin PN, Mohn CE, Elverdin JC, Fernández-Solari J. Anti-Inflammatory and Osteoprotective Effects of Cannabinoid-2 Receptor Agonist HU-308 in a Rat Model of Lipopolysaccharide-Induced Periodontitis. J Periodontol 2016; 87:725-34. [PMID: 26846967 DOI: 10.1902/jop.2016.150612] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Anti-inflammatory and immunologic properties of cannabinoids have been reported in several tissues. Expression of cannabinoid receptor Type 2 was reported in osteoblasts and osteoclasts, suggesting a key role in bone metabolism. The aim of this study is to assess the effect of treatment with cannabinoid-2 receptor agonist HU-308 in the oral health of rats subjected to lipopolysaccharide (LPS)-induced periodontitis. METHODS Twenty-four rats were distributed in four groups (six rats per group): 1) control rats; 2) sham rats; 3) rats submitted to experimental periodontitis (LPS); and 4) rats submitted to experimental periodontitis and treated with HU-308 (LPS+HU). In groups LPS and LPS+HU, periodontitis was induced by LPS (1 mg/mL) injected into the gingival tissue (GT) of maxillary and mandibular first molars and into the interdental space between the first and second molars, 3 days per week for 6 weeks. In group LPS+HU, HU-308 (500 ng/mL) was applied topically to the GT daily. RESULTS Alveolar bone loss resulting from LPS-induced periodontitis was significantly attenuated with HU-308 treatment (LPS+HU), measured by macroscopic and histologic examination. Treatment also reduced gingival production of inflammatory mediators augmented in LPS-injected rats, such as: 1) inducible nitric oxide (iNOS) activity (LPS: 90.18 ± 36.51 pmol/minute/mg protein versus LPS+HU: 16.37 ± 4.73 pmol/minute/mg protein; P <0.05); 2) tumor necrosis factor alpha (LPS: 185.70 ± 25.63 pg/mg protein versus LPS+HU: 95.89 ± 17.47 pg/mg protein; P <0.05); and 3) prostaglandin E2 (PGE2) (LPS: 159.20 ± 38.70 pg/mg wet weight versus LPS+HU: 71.25 ± 17.75 pg/mg wet weight; P <0.05). Additionally, HU-308 treatment prevented the inhibitory effect of LPS-induced periodontitis on the salivary secretory response to pilocarpine. Moreover, iNOS activity and PGE2 content, which were increased by LPS-induced periodontitis in the submandibular gland, returned to control values after HU-308 treatment. CONCLUSION This study demonstrates anti-inflammatory, osteoprotective, and prohomeostatic effects of HU-308 in oral tissues of rats with LPS-induced periodontitis.
Collapse
Affiliation(s)
- Cesar A Ossola
- Department of Physiology, Faculty of Dentistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Pablo N Surkin
- Department of Physiology, Faculty of Dentistry, University of Buenos Aires, Buenos Aires, Argentina.,National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Claudia E Mohn
- Department of Physiology, Faculty of Dentistry, University of Buenos Aires, Buenos Aires, Argentina.,National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Juan C Elverdin
- Department of Physiology, Faculty of Dentistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Javier Fernández-Solari
- Department of Physiology, Faculty of Dentistry, University of Buenos Aires, Buenos Aires, Argentina.,National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| |
Collapse
|
116
|
Fawzy El-Sayed KM, Klingebiel P, Dörfer CE. Toll-like Receptor Expression Profile of Human Dental Pulp Stem/Progenitor Cells. J Endod 2016; 42:413-7. [PMID: 26769027 DOI: 10.1016/j.joen.2015.11.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Human dental pulp stem/progenitor cells (DPSCs) show remarkable regenerative potential in vivo. During regeneration, DPSCs may interact with their inflammatory environment via toll-like receptors (TLRs). The present study aimed to depict for the first time the TLR expression profile of DPSCs. METHODS Cells were isolated from human dental pulp, STRO-1-immunomagnetically sorted, and seeded out to obtain single colony-forming units. DPSCs were characterized for CD14, CD34, CD45, CD73, CD90, CD105, and CD146 expression and for their multilineage differentiation potential. After incubation of DPSCs in basic or inflammatory medium (interleukin-1β, interferon-γ, interferon-α, tumor necrosis factor-α), TLR expression profiles were generated (DPSCs and DPSCs-i). RESULTS DPSCs showed all characteristics of stem/progenitor cells. In basic medium DPSCs expressed TLRs 1-10 in different quantities. The inflammatory medium upregulated the expression of TLRs 2, 3, 4, 5, and 8, downregulated TLRs 1, 7, 9, and 10, and abolished TLR6. CONCLUSIONS The current study describes for the first time the distinctive TLR expression profile of DPSCs in uninflamed and inflamed conditions.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany; Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo, Egypt.
| | - Pauline Klingebiel
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Christof E Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
117
|
Wang D, Gilbert JR, Shaw MA, Shakir S, Losee JE, Billiar TR, Cooper GM. Toll-like receptor 4 mediates the regenerative effects of bone grafts for calvarial bone repair. Tissue Eng Part A 2016; 21:1299-308. [PMID: 25603990 DOI: 10.1089/ten.tea.2014.0215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Craniofacial trauma is difficult to repair and presents a significant burden to the healthcare system. The inflammatory response following bone trauma is critical to initiate healing, serving to recruit inflammatory and progenitor cells and to promote angiogenesis. A role for inflammation in graft-induced bone regeneration has been suggested, but is still not well understood. The current study assessed the impact of Toll-like receptor (TLR4) signaling on calvarial repair in the presence of morselized bone components. Calvarial defects in wild-type and global TLR4(-/-) knockout mouse strains were treated with fractionated bone components in the presence or absence of a TLR4 neutralizing peptide. Defect healing was subsequently evaluated over 28 days by microcomputed tomography and histology. The matrix-enriched fraction of morselized bone stimulated calvarial bone repair comparably with intact bone graft, although the capacity for grafts to induce calvarial bone repair was significantly diminished by inhibition or genetic ablation of TLR4. Overall, our findings suggest that the matrix component of bone graft stimulates calvarial bone repair in a TLR4-dependent manner. These results support the need to better understand the role of inflammation in the design and implementation of strategies to improve bone healing.
Collapse
Affiliation(s)
- Dan Wang
- 1 Department of Stomatology, Tenth People's Hospital of Tongji University , Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
118
|
Liu H, Hao W, Wang X, Su H. miR-23b targets Smad 3 and ameliorates the LPS-inhibited osteogenic differentiation in preosteoblast MC3T3-E1 cells. J Toxicol Sci 2016; 41:185-93. [PMID: 26961602 DOI: 10.2131/jts.41.185] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Hongzhi Liu
- Department of Orthopedic Trauma, Yantai Yuhuangding Hospital of Qingdao University, China
| | - Wei Hao
- Department of Orthopedic Trauma, Yantai Yuhuangding Hospital of Qingdao University, China
| | - Xin Wang
- Department of Orthopedic Trauma, Yantai Yuhuangding Hospital of Qingdao University, China
| | - Hao Su
- Department of Orthopedic Trauma, Yantai Yuhuangding Hospital of Qingdao University, China
| |
Collapse
|
119
|
Fawzy-El-Sayed K, Mekhemar M, Adam-Klages S, Kabelitz D, Dörfer C. TlR expression profile of human gingival margin-derived stem progenitor cells. Med Oral Patol Oral Cir Bucal 2016; 21:e30-8. [PMID: 26615501 PMCID: PMC4765758 DOI: 10.4317/medoral.20593] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 08/07/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Gingival margin-derived stem/progenitor cells (G-MSCs) show remarkable periodontal regenerative potential in vivo. During regeneration, G-MSCs may interact with their inflammatory environment via toll-like-receptors (TLRs). The present study aimed to depict the G-MSCs TLRs expression profile. MATERIAL AND METHODS Cells were isolated from free gingival margins, STRO-1-immunomagnetically sorted and seeded to obtain single colony forming units (CFUs). G-MSCs were characterized for CD14, CD34, CD45, CD73, CD90, CD105, CD146 and STRO-1 expression, and for multilineage differentiation potential. Following G-MSCs' incubation in basic or inflammatory medium (IL-1β, IFN-γ, IFN-α, TNF-α) a TLR expression profile was generated. RESULTS G-MSCs showed all stem/progenitor cells' characteristics. In basic medium G-MSCs expressed TLRs 1, 2, 3, 4, 5, 6, 7, and 10. The inflammatory medium significantly up-regulated TLRs 1, 2, 4, 5, 7 and 10 and diminished TLR 6 (p≤0.05, Wilcoxon-Signed-Ranks-Test). CONCLUSIONS The current study describes for the first time the distinctive TLRs expression profile of G-MSCs under uninflamed and inflamed conditions.
Collapse
Affiliation(s)
- Karim Fawzy-El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts-Universität zu Kiel, Arnold-Heller-Str. 3, Haus 26, 24105 Kiel, Germany,
| | | | | | | | | |
Collapse
|
120
|
Albiero ML, Amorim BR, Martins L, Casati MZ, Sallum EA, Nociti FH, Silvério KG. Exposure of periodontal ligament progenitor cells to lipopolysaccharide from Escherichia coli changes osteoblast differentiation pattern. J Appl Oral Sci 2015; 23:145-52. [PMID: 26018305 PMCID: PMC4428458 DOI: 10.1590/1678-775720140334] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/01/2014] [Indexed: 01/09/2023] Open
Abstract
Periodontal ligament mesenchymal stem cells (PDLMSCs) are an important alternative source of adult stem cells and may be applied for periodontal tissue regeneration, neuroregenerative medicine, and heart valve tissue engineering. However, little is known about the impact of bacterial toxins on the biological properties of PDLSMSCs, including self-renewal, differentiation, and synthesis of extracellular matrix.
Collapse
Affiliation(s)
- Mayra Laino Albiero
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Bruna Rabelo Amorim
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Luciane Martins
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Márcio Zaffalon Casati
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Enilson Antonio Sallum
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Francisco Humberto Nociti
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Karina Gonzales Silvério
- Division of Periodontics, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
121
|
Croes M, Oner FC, Kruyt MC, Blokhuis TJ, Bastian O, Dhert WJA, Alblas J. Proinflammatory Mediators Enhance the Osteogenesis of Human Mesenchymal Stem Cells after Lineage Commitment. PLoS One 2015; 10:e0132781. [PMID: 26176237 PMCID: PMC4503569 DOI: 10.1371/journal.pone.0132781] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 06/18/2015] [Indexed: 01/09/2023] Open
Abstract
Several inflammatory processes underlie excessive bone formation, including chronic inflammation of the spine, acute infections, or periarticular ossifications after trauma. This suggests that local factors in these conditions have osteogenic properties. Mesenchymal stem cells (MSCs) and their differentiated progeny contribute to bone healing by synthesizing extracellular matrix and inducing mineralization. Due to the variation in experimental designs used in vitro, there is controversy about the osteogenic potential of proinflammatory factors on MSCs. Our goal was to determine the specific conditions allowing the pro-osteogenic effects of distinct inflammatory stimuli. Human bone marrow MSCs were exposed to tumor necrosis factor alpha (TNF-α) and lipopolysaccharide (LPS). Cells were cultured in growth medium or osteogenic differentiation medium. Alternatively, bone morphogenetic protein 2 (BMP-2) was used as osteogenic supplement to simulate the conditions in vivo. Alkaline phosphatase activity and calcium deposition were indicators of osteogenicity. To elucidate lineage commitment-dependent effects, MSCs were pre-differentiated prior treatment. Our results show that TNF-α and LPS do not affect the expression of osteogenic markers by MSCs in the absence of an osteogenic supplement. In osteogenic differentiation medium or together with BMP-2 however, these mediators highly stimulated their alkaline phosphatase activity and subsequent matrix mineralization. In pre-osteoblasts, matrix mineralization was significantly increased by these mediators, but irrespective of the culture conditions. Our study shows that inflammatory factors potently enhance the osteogenic capacity of MSCs. These properties may be harnessed in bone regenerative strategies. Importantly, the commitment of MSCs to the osteogenic lineage greatly enhances their responsiveness to inflammatory signals.
Collapse
Affiliation(s)
- Michiel Croes
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - F. Cumhur Oner
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Moyo C. Kruyt
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Taco J. Blokhuis
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Okan Bastian
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wouter J. A. Dhert
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jacqueline Alblas
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
122
|
Tang J, Wu T, Xiong J, Su Y, Zhang C, Wang S, Tang Z, Liu Y. Porphyromonas gingivalis lipopolysaccharides regulate functions of bone marrow mesenchymal stem cells. Cell Prolif 2015; 48:239-48. [PMID: 25676907 DOI: 10.1111/cpr.12173] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/11/2014] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Periodontitis is one of the most widespread inflammatory diseases; it causes tooth loss and is also associated with a variety of systemic diseases. Mesenchymal stem cells (MSCs) have been used to treat periodontitis. However, it is unknown whether bacterial toxins in the periodontal environment affect MSC-mediated periodontal regeneration. Porphyromonas gingivalis lipopolysaccharides (Pg-LPS) are key toxins for development of periodontitis. The purpose of the present study was to investigate effects of P. gingivalis LPS on biological properties of MSCs. MATERIALS AND METHODS Mesenchymal stem cells from bone marrow (BMMSCs) were treated with different concentrations of P. gingivalis LPS (0.1-10 μg/ml), then its effects were evaluated on biological properties of BMMSCs including proliferation, apoptosis, osteogenic differentiation and capacities to inhibit activated T cells. RESULTS Low concentration of P. gingivalis LPS (0.1 μg/ml) accelerated MSC proliferation, osteogenic differentiation and capacities to inhibit activated T cells via up-regulation of nitric oxide. However, high concentration of P. gingivalis LPS (10 μg/ml) reduced MSC proliferation, osteogenic differentiation and capacities to inhibit activated T cells. CONCLUSIONS Mesenchymal stem cells were functionally different following exposure to P. gingivalis LPS at the investigated concentrations. These findings suggest that MSC-mediated periodontal regeneration may be regulated by P. gingivalis LPS.
Collapse
Affiliation(s)
- J Tang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, 410008, China; Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Zhang J, Li ZG, Si YM, Chen B, Meng J. The difference on the osteogenic differentiation between periodontal ligament stem cells and bone marrow mesenchymal stem cells under inflammatory microenviroments. Differentiation 2014; 88:97-105. [PMID: 25498523 DOI: 10.1016/j.diff.2014.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/26/2014] [Accepted: 10/29/2014] [Indexed: 12/14/2022]
Abstract
Periodontitis is a major cause of tooth loss in adults and periodontal ligament stem cells (PDLSCs) is the most favorable candidate for the reconstruction of tissues destroyed by periodontal diseases. However, pathological alterations caused by inflammatory insults might impact the regenerative capacities of these cells. Bone-marrow-derived human mesenchymal stem cells (hBMSCs) would accelerate alveolar bone regeneration by transplantation, compared to PDLSCs. Therefore, a better understanding of the osteogenic differentiation between PDLSCs and BMSCs in inflammatory microenviroments is therefore warranted. In this study, human PDLSCs were investigated for their stem cell characteristics via analysis of cell surface marker expression, colony forming unit efficiency, osteogenic differentiation and adipogenic differentiation, and compared to BMSCs. To determine the impact of both inflammation and the NF-κβ signal pathway on osteogenic differentiation, cells were challenged with TNF-α under osteogenic induction conditions and investigated for mineralization, alkaline phosphatase (ALP) activity, cell proliferation and relative genes expression. Results showed that PDLSCs exhibit weaker mineralization and ALP activity compared to BMSCs. TNF-α inhibited genes expression of osteogenic differentiation in PDLSCs, while, it stimulates gene expressions (BSP and Runx2) in BMSCs. Enhanced NF-κβ activity in PDLSCs decreases expression of Runx2 but it does not impede the osteogenic differentiation of BMSCs. Taken together, these results may suggest that the BMSCs owned the stronger immunomodulation in local microenvironment via anti-inflammatory functions, compared to PDLSCs.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Stomatology, The Affiliated School of Clinical Medicine of Xuzhou Medical College, Xuzhou Central Hospital, Xuzhou, China
| | - Zhi-Gang Li
- Department of Urology, The Affiliated School of Clinical Medicine of Xuzhou Medical College, Xuzhou Central Hospital, Xuzhou, China
| | - Ya-Meng Si
- Department of Stomatology, The Affiliated School of Clinical Medicine of Xuzhou Medical College, Xuzhou Central Hospital, Xuzhou, China
| | - Bin Chen
- Department of Stomatology, The Affiliated School of Clinical Medicine of Xuzhou Medical College, Xuzhou Central Hospital, Xuzhou, China
| | - Jian Meng
- Department of Stomatology, The Affiliated School of Clinical Medicine of Xuzhou Medical College, Xuzhou Central Hospital, Xuzhou, China.
| |
Collapse
|
124
|
Implantation of human umbilical cord mesenchymal stem cells for ischemic stroke: perspectives and challenges. Front Med 2014; 9:20-9. [DOI: 10.1007/s11684-014-0371-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 08/12/2014] [Indexed: 01/01/2023]
|