101
|
Abstract
Puberty is a fascinating developmental phase that involves the attainment of reproductive capacity and the completion of sexual and somatic maturation. As a life-changing event, puberty onset is precisely controlled by interconnected regulatory pathways that are sensitive to numerous endogenous signals and environmental cues. The mechanisms of normal puberty and its potential deviations have been thoroughly studied in humans and model species. Yet, characterization of the neurobiological basis of puberty is still incomplete. Progress on this front is not only relevant from a physiological perspective but would also help to unravel the underlying causes for the observed changes in the timing of puberty in humans, with a trend for earlier puberty onset, especially in girls. In this review, we will provide a synoptic overview of some recent developments in the field that have deepened our understanding of the neuroendocrine and molecular basis for the control of puberty onset. These include not only the demonstration of the involvement of the hypothalamic Kiss1 system in the control of puberty and its modulation by metabolic cues but also the identification of the roles of other neuropeptide pathways and molecular mediators in the regulation of puberty. In addition, the potential contribution of novel regulatory mechanisms, such as epigenetics, in the central control of puberty will be briefly discussed. Characterization of these novel players and regulatory mechanisms will improve our understanding of the basis of normal puberty and its eventual alterations in various pathological conditions.
Collapse
Affiliation(s)
- Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain.
| |
Collapse
|
102
|
Alteration in neonatal nutrition causes perturbations in hypothalamic neural circuits controlling reproductive function. J Neurosci 2012; 32:11486-94. [PMID: 22895731 DOI: 10.1523/jneurosci.6074-11.2012] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is increasingly accepted that alterations of the early life environment may have lasting impacts on physiological functions. In particular, epidemiological and animal studies have indicated that changes in growth and nutrition during childhood and adolescence can impair reproductive function. However, the precise biological mechanisms that underlie these programming effects of neonatal nutrition on reproduction are still poorly understood. Here, we used a mouse model of divergent litter size to investigate the effects of early postnatal overnutrition and undernutrition on the maturation of hypothalamic circuits involved in reproductive function. Neonatally undernourished females display attenuated postnatal growth associated with delayed puberty and defective development of axonal projections from the arcuate nucleus to the preoptic region. These alterations persist into adulthood and specifically affect the organization of neural projections containing kisspeptin, a key neuropeptide involved in pubertal activation and fertility. Neonatal overfeeding also perturbs the development of neural projections from the arcuate nucleus to the preoptic region, but it does not result in alterations in kisspeptin projections. These studies indicate that alterations in the early nutritional environment cause lasting and deleterious effects on the organization of neural circuits involved in the control of reproduction, and that these changes are associated with lifelong functional perturbations.
Collapse
|
103
|
Dungan Lemko HM, Elias CF. Kiss of the mutant mouse: how genetically altered mice advanced our understanding of kisspeptin's role in reproductive physiology. Endocrinology 2012; 153:5119-29. [PMID: 23011921 PMCID: PMC3473196 DOI: 10.1210/en.2012-1494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The kisspeptin system has emerged as one of the most important circuits within the central network governing reproduction. Although kisspeptin physiology has been examined in many species, much of our understanding of this system has come from mice. Recently, the study of several innovative strains of genetically engineered mouse models has revealed intriguing and unexpected insights into the functions of kisspeptin signaling in the hypothalamus. Here, we review the advancements in our knowledge of the central kisspeptin system through the use of mutant mice.
Collapse
Affiliation(s)
- Heather M Dungan Lemko
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, 75390, USA.
| | | |
Collapse
|
104
|
Roa J, Herbison AE. Direct regulation of GnRH neuron excitability by arcuate nucleus POMC and NPY neuron neuropeptides in female mice. Endocrinology 2012; 153:5587-99. [PMID: 22948210 DOI: 10.1210/en.2012-1470] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hypothalamic neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons act to sense and coordinate the brain's responses to metabolic cues. One neuronal network that is very sensitive to metabolic status is that controlling fertility. In this study, we investigated the impact of neuropeptides released by NPY and POMC neurons on the cellular excitability of GnRH neurons, the final output cells of the brain controlling fertility. The majority (∼70%) of GnRH neurons were activated by α-melanocyte-stimulating hormone, and this resulted from the direct postsynaptic activation of melanocortin receptor 3 and melanocortin receptor 4. A small population of GnRH neurons (∼15%) was excited by cocaine and amphetamine-regulated transcript or inhibited by β-endorphin. Agouti-related peptide, released by NPY neurons, was found to have variable inhibitory (∼10%) and stimulatory (∼25%) effects upon subpopulations of GnRH neurons. A variety of NPY and pancreatic polypeptide analogs was used to examine potential NPY interactions with GnRH neurons. Although porcine NPY (Y1/Y2/Y5 agonist) directly inhibited the firing of approximately 45% of GnRH neurons, [Leu(31),Pro(34)]-NPY (Y1/Y4/Y5 agonist) could excite (56%) or inhibit (19%). Experiments with further agonists indicated that Y1 receptors were responsible for suppressing GnRH neuron activity, whereas postsynaptic Y4 receptors were stimulatory. These results show that the activity of GnRH neurons is regulated in a complex manner by neuropeptides released by POMC and NPY neurons. This provides a direct route through which different metabolic cues can regulate fertility.
Collapse
Affiliation(s)
- Juan Roa
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | | |
Collapse
|
105
|
Affiliation(s)
- A Christine Könner
- Department of Mouse Genetics and Metabolism, Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, D-50674 Cologne, Germany ; Max Planck Institute for Neurological Research, Gleueler Str. 50, D-50931 Cologne, Germany ; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, D-50924 Cologne, Germany
| | | |
Collapse
|
106
|
Elias CF, Purohit D. Leptin signaling and circuits in puberty and fertility. Cell Mol Life Sci 2012; 70:841-62. [PMID: 22851226 PMCID: PMC3568469 DOI: 10.1007/s00018-012-1095-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/05/2012] [Accepted: 07/09/2012] [Indexed: 12/22/2022]
Abstract
Leptin is an adipocyte-derived hormone involved in a myriad of physiological process, including the control of energy balance and several neuroendocrine axes. Leptin-deficient mice and humans are obese, diabetic, and display a series of neuroendocrine and autonomic abnormalities. These individuals are infertile due to a lack of appropriate pubertal development and inadequate synthesis and secretion of gonadotropins and gonadal steroids. Leptin receptors are expressed in many organs and tissues, including those related to the control of reproductive physiology (e.g., the hypothalamus, pituitary gland, and gonads). In the last decade, it has become clear that leptin receptors located in the brain are major players in most leptin actions, including reproduction. Moreover, the recent development of molecular techniques for brain mapping and the use of genetically modified mouse models have generated crucial new findings for understanding leptin physiology and the metabolic influences on reproductive health. In the present review, we will highlight the new advances in the field, discuss the apparent contradictions, and underline the relevance of this complex physiological system to human health. We will focus our review on the hypothalamic circuitry and potential signaling pathways relevant to leptin’s effects in reproductive control, which have been identified with the use of cutting-edge technologies of molecular mapping and conditional knockouts.
Collapse
Affiliation(s)
- Carol F Elias
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Y6-220B, Dallas, TX, 75390-9077, USA.
| | | |
Collapse
|
107
|
Leptin action via LepR-b Tyr1077 contributes to the control of energy balance and female reproduction. Mol Metab 2012; 1:61-9. [PMID: 24024119 DOI: 10.1016/j.molmet.2012.05.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/21/2012] [Accepted: 05/21/2012] [Indexed: 01/10/2023] Open
Abstract
Leptin action in the brain signals the repletion of adipose energy stores, suppressing feeding and permitting energy expenditure on a variety of processes, including reproduction. Leptin binding to its receptor (LepR-b) promotes the tyrosine phosphorylation of three sites on LepR-b, each of which mediates distinct downstream signals. While the signals mediated by LepR-b Tyr1138 and Tyr985 control important aspects of energy homeostasis and LepR-b signal attenuation, respectively, the role of the remaining LepR-b phosphorylation site (Tyr1077) in leptin action has not been studied. To examine the function of Tyr1077, we generated a "knock-in" mouse model expressing LepR-b (F1077), which is mutant for LepR-b Tyr1077. Mice expressing LepR-b (F1077) demonstrate modestly increased body weight and adiposity. Furthermore, females display impairments in estrous cycling. Our results suggest that signaling by LepR-b Tyr1077 plays a modest role in the control of metabolism by leptin, and is an important link between body adiposity and the reproductive axis.
Collapse
Key Words
- ARC, arcuate nucleus
- AgRP, agouti-related peptide
- BAT, brown adipose tissue
- Estrus
- HD, high-fat diet
- IVGTT, intravenous glucose tolerance test
- Kiss, kisspeptin
- LepR-b, leptin receptor
- Leptin
- NC, normal chow
- NPY, neuropeptide Y
- Obesity
- PMv, ventral premammilary nucleus
- POMC, proopiomelanocortin
- Reproduction
- STAT5
- STAT5, signal transducer and activator of transcription-5
- TAC2, tachykinin-2
- Tyrosine phosphorylation
- WAT, white adipose tissue
Collapse
|
108
|
Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and Reproduction: Physiological Roles and Regulatory Mechanisms. Physiol Rev 2012; 92:1235-316. [DOI: 10.1152/physrev.00037.2010] [Citation(s) in RCA: 529] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Procreation is essential for survival of species. Not surprisingly, complex neuronal networks have evolved to mediate the diverse internal and external environmental inputs that regulate reproduction in vertebrates. Ultimately, these regulatory factors impinge, directly or indirectly, on a final common pathway, the neurons producing the gonadotropin-releasing hormone (GnRH), which stimulates pituitary gonadotropin secretion and thereby gonadal function. Compelling evidence, accumulated in the last few years, has revealed that kisspeptins, a family of neuropeptides encoded by the Kiss1 gene and produced mainly by neuronal clusters at discrete hypothalamic nuclei, are pivotal upstream regulators of GnRH neurons. As such, kisspeptins have emerged as important gatekeepers of key aspects of reproductive maturation and function, from sexual differentiation of the brain and puberty onset to adult regulation of gonadotropin secretion and the metabolic control of fertility. This review aims to provide a comprehensive account of the state-of-the-art in the field of kisspeptin physiology by covering in-depth the consensus knowledge on the major molecular features, biological effects, and mechanisms of action of kisspeptins in mammals and, to a lesser extent, in nonmammalian vertebrates. This review will also address unsolved and contentious issues to set the scene for future research challenges in the area. By doing so, we aim to endow the reader with a critical and updated view of the physiological roles and potential translational relevance of kisspeptins in the integral control of reproductive function.
Collapse
Affiliation(s)
- Leonor Pinilla
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Enrique Aguilar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos Dieguez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert P. Millar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
109
|
Abstract
Leptin, a peptide hormone secreted by adipocytes in proportion of the amount of energy stored in fat, plays a central role in regulating human energy homeostasis. In addition, leptin plays a significant permissive role in the physiological regulation of several neuroendocrine axes, including the hypothalamic-pituitary-gonadal, -thyroid, -growth hormone, and -adrenal axes. Decreased levels of leptin, also known as hypoleptinemia, signal to the brain a state of energy deprivation. Hypoleptinemia can be a congenital or acquired condition, and is associated with alterations of the aforementioned axes aimed at promoting survival. More specifically, gonadotropin levels decrease and become less pulsatile under conditions of energy deprivation, and these changes can be at least partially reversed through leptin administration in physiological replacement doses. Similarly, leptin deficiency is associated with thyroid axis abnormalities including abnormal levels of thyrotropin-releasing hormone, and leptin administration may at least partially attenuate this effect. Leptin deficiency results in decreased insulin-like growth factor 1 levels which can be partially ameliorated through leptin administration, and leptin appears to have a much more pronounced effect on the growth of rodents than that of humans. Similarly, adrenal axis function is regulated more tightly by low leptin in rodents than in humans. In addition to congenital leptin deficiency, conditions that may be associated with decreased leptin levels include hypothalamic amenorrhea, anorexia nervosa, and congenital or acquired lipodystrophy syndromes. Accumulating evidence from proof of concept studies suggests that leptin administration, in replacement doses, may ameliorate neuroendocrine abnormalities in individuals who suffer from these conditions.
Collapse
Affiliation(s)
- Sami M. Khan
- Division of Endocrinology, Diabetes & Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ole-Petter R. Hamnvik
- Division of Endocrinology, Diabetes & Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Section of Endocrinology, Boston VA Healthcare System, Boston, MA, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary Brinkoetter
- Division of Endocrinology, Diabetes & Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Section of Endocrinology, Boston VA Healthcare System, Boston, MA, USA
| | - Christos S. Mantzoros
- Division of Endocrinology, Diabetes & Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Section of Endocrinology, Boston VA Healthcare System, Boston, MA, USA
| |
Collapse
|
110
|
Roubos EW, Dahmen M, Kozicz T, Xu L. Leptin and the hypothalamo-pituitary-adrenal stress axis. Gen Comp Endocrinol 2012; 177:28-36. [PMID: 22293575 DOI: 10.1016/j.ygcen.2012.01.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 12/20/2022]
Abstract
Leptin is a 16-kDa protein mainly produced and secreted by white adipose tissue and informing various brain centers via leptin receptor long and short forms about the amount of fat stored in the body. In this way leptin exerts a plethora of regulatory functions especially related to energy intake and metabolism, one of which is controlling the activity of the hypothalamo-pituitary-adrenal (HPA) stress axis. First, this review deals with the basic properties of leptin's structure and signaling at the organ, cell and molecule level, from lower vertebrates to humans but with emphasis on rodents because these have been investigated in most detail. Then, attention is given to the various interactions of adipose leptin with the HPA-axis, at the levels of the hypothalamus (especially the paraventricular nucleus), the anterior lobe of the pituitary gland (action on corticotropes) and the adrenal gland, where it releases corticosteroids needed for adequate stress adaptation. Also, possible local production and autocrine and paracrine actions of leptin at the hypothalamic and pituitary levels of the HPA-axis are being considered. Finally, a schematic model is presented showing the ways peripherally and centrally produced leptin may modulate, via the HPA-axis, stress adaptation in conjunction with the control of energy homeostasis.
Collapse
Affiliation(s)
- Eric W Roubos
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
111
|
Evans JJ, Anderson GM. Balancing ovulation and anovulation: integration of the reproductive and energy balance axes by neuropeptides. Hum Reprod Update 2012; 18:313-32. [DOI: 10.1093/humupd/dms004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
112
|
Electrophysiological analysis of circuits controlling energy homeostasis. Mol Neurobiol 2012; 45:258-78. [PMID: 22331510 DOI: 10.1007/s12035-012-8241-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/26/2012] [Indexed: 10/28/2022]
Abstract
Since the discovery of leptin and the central melanocortin circuit, electrophysiological studies have played a major role in elucidating mechanisms underlying energy homeostasis. This review highlights the contribution of findings made by electrophysiological measurements to the current understanding of hypothalamic neuronal networks involved in energy homeostasis with a specific focus on the arcuate-paraventricular nucleus circuit.
Collapse
|
113
|
Tolson KP, Chappell PE. The Changes They are A-Timed: Metabolism, Endogenous Clocks, and the Timing of Puberty. Front Endocrinol (Lausanne) 2012; 3:45. [PMID: 22645521 PMCID: PMC3355854 DOI: 10.3389/fendo.2012.00045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 03/08/2012] [Indexed: 11/16/2022] Open
Abstract
Childhood obesity has increased dramatically over the last several decades, particularly in industrialized countries, often accompanied by acceleration of pubertal progression and associated reproductive abnormalities (Biro et al., 2006; Rosenfield et al., 2009). The timing of pubertal initiation and progression in mammals is likely influenced by nutritional and metabolic state, leading to the hypothesis that deviations from normal metabolic rate, such as those seen in obesity, may contribute to observed alterations in the rate of pubertal progression. While several recent reviews have addressed the effects of metabolic disorders on reproductive function in general, this review will explore previous and current models of pubertal timing, outlining a potential role of endogenous timing mechanisms such as cellular circadian clocks in the initiation of puberty, and how these clocks might be altered by metabolic factors. Additionally, we will examine recently elucidated neuroendocrine regulators of pubertal progression such as kisspeptin, explore models detailing how the mammalian reproductive axis is silenced during the juvenile period and reactivated at appropriate developmental times, and emphasize how metabolic dysfunction such as childhood obesity may alter timing cues that advance or delay pubertal progression, resulting in diminished reproductive capacity.
Collapse
Affiliation(s)
- Kristen P. Tolson
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State UniversityCorvallis, OR, USA
| | - Patrick E. Chappell
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State UniversityCorvallis, OR, USA
- *Correspondence: Patrick E. Chappell, Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA. e-mail:
| |
Collapse
|
114
|
Elias CF. Leptin action in pubertal development: recent advances and unanswered questions. Trends Endocrinol Metab 2012; 23:9-15. [PMID: 21978495 PMCID: PMC3251729 DOI: 10.1016/j.tem.2011.09.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/01/2011] [Accepted: 09/08/2011] [Indexed: 11/18/2022]
Abstract
In recent years we have witnessed a considerable advance in the understanding of the processes involved in pubertal development. This is partially due to the discovery of the kisspeptin system and its fundamental role in the control of reproductive physiology. In addition, the suspected relationship between increasing rates of childhood obesity and the apparent reduction in the age of puberty onset in girls has generated a growing interest in identifying the mechanisms by which nutrition may influence reproductive maturation. This review will focus on recent data unveiling the sites of leptin action in pubertal development that were generated using novel molecular techniques and genetically engineered mouse models. It will also emphasize areas of contention and the many relevant questions that remain unanswered.
Collapse
Affiliation(s)
- Carol F Elias
- Department of Internal Medicine, Division of Hypothalamic Research and Green Center for Reproductive Biology Sciences, University of Texas Southwestern (UTSW) Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
115
|
Expanding neurotransmitters in the hypothalamic neurocircuitry for energy balance regulation. Protein Cell 2011; 2:800-13. [PMID: 22058035 DOI: 10.1007/s13238-011-1112-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/10/2011] [Indexed: 01/06/2023] Open
Abstract
The current epidemic of obesity and its associated metabolic syndromes impose unprecedented challenges to our society. Despite intensive research on obesity pathogenesis, an effective therapeutic strategy to treat and cure obesity is still lacking. Exciting studies in last decades have established the importance of the leptin neural pathway in the hypothalamus in the regulation of body weight homeostasis. Important hypothalamic neuropeptides have been identified as critical neurotransmitters from leptin-sensitive neurons to mediate leptin action. Recent research advance has significantly expanded the list of neurotransmitters involved in body weight-regulating neural pathways, including fast-acting neurotransmitters, gamma-aminobutyric acid (GABA) and glutamate. Given the limited knowledge on the leptin neural pathway for body weight homeostasis, understanding the function of neurotransmitters released from key neurons for energy balance regulation is essential for delineating leptin neural pathway and eventually for designing effective therapeutic drugs against the obesity epidemic.
Collapse
|
116
|
Navarro VM, Tena-Sempere M. Neuroendocrine control by kisspeptins: role in metabolic regulation of fertility. Nat Rev Endocrinol 2011; 8:40-53. [PMID: 21912400 DOI: 10.1038/nrendo.2011.147] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neurohormonal control of reproduction involves a hierarchical network of central and peripheral signals in the hypothalamic-pituitary-gonadal (HPG) axis. Development and function of this neuroendocrine system is the result of a lifelong delicate balance between endogenous regulators and environmental cues, including nutritional and metabolic factors. Kisspeptins are the peptide products of KISS1, which operate via the G-protein-coupled receptor GPR54 (also known as Kiss1R). These peptides have emerged as essential upstream regulators of neurons secreting gonadotropin-releasing hormone (GnRH), the major hypothalamic node for the stimulatory control of the HPG axis. They are potent elicitors of gonadotropin secretion in various species and physiological settings. Moreover, Kiss1 neurons in the hypothalamus participate in crucial features of reproductive maturation and function, such as brain-level sex differentiation, puberty onset and the neuroendocrine regulation of gonadotropin secretion and ovulation. Cotransmitters of Kiss1 neurons, such as neurokinin B, with roles in controlling the HPG axis have been identified by genetic, neuroanatomical and physiological studies. In addition, a putative role has been proposed for Kiss1 neurons in transmitting metabolic information to GnRH neurons, although the precise mechanisms are as yet unclear. In this Review, we present the major reproductive features of kisspeptins, especially their interplay with neurokinin B and potential roles in the metabolic control of puberty and fertility, and suggest new avenues for research.
Collapse
Affiliation(s)
- Victor M Navarro
- Department of Cell Biology, Physiology and Immunology and CIBERobn, Faculty of Medicine, University of Córdoba, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| | | |
Collapse
|
117
|
|
118
|
Donato J, Elias CF. The ventral premammillary nucleus links metabolic cues and reproduction. Front Endocrinol (Lausanne) 2011; 2:57. [PMID: 22649378 PMCID: PMC3355867 DOI: 10.3389/fendo.2011.00057] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/04/2011] [Indexed: 11/15/2022] Open
Abstract
The amount of body fat and the energy balance are important factors that influence the timing of puberty and the normal reproductive function. Leptin is a key hormone that conveys to the central nervous system information about the individual energy reserve and modulates the hypothalamus-pituitary-gonad (HPG) axis. Recent findings suggest that the ventral premammillary nucleus (PMV) mediates the effects of leptin as a permissive factor for the onset of puberty and the coordinated secretion of luteinizing hormone during conditions of negative energy balance. In this review, we will summarize the existing literature about the potential role played by PMV neurons in the regulation of the HPG axis.
Collapse
Affiliation(s)
- Jose Donato
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical CenterDallas, TX, USA
- *Correspondence: Jose Donato Jr., Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Y6.206, Dallas, TX 75390, USA. e-mail:
| | - Carol Fuzeti Elias
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical CenterDallas, TX, USA
| |
Collapse
|
119
|
Xu Y, Faulkner LD, Hill JW. Cross-Talk between Metabolism and Reproduction: The Role of POMC and SF1 Neurons. Front Endocrinol (Lausanne) 2011; 2:98. [PMID: 22649394 PMCID: PMC3355979 DOI: 10.3389/fendo.2011.00098] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/22/2011] [Indexed: 01/22/2023] Open
Abstract
Energy homeostasis and reproduction require tight coordination, but the mechanisms underlying their interaction are not fully understood. Two sets of hypothalamic neurons, namely pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and steroidogenic factor-1 (SF1) neurons in the ventromedial hypothalamic nucleus, are emerging as critical nodes where metabolic and reproductive signals communicate. This view is supported by recent genetic studies showing that disruption of metabolic signals (e.g., leptin and insulin) or reproductive signals (e.g., estradiol) in these neurons leads to impaired regulation of both energy homeostasis and fertility. In this review, we will examine the potential mechanisms of neuronal communication between POMC, SF1, and gonadotropin-releasing hormone neurons in the regulation of metabolism and reproduction.
Collapse
Affiliation(s)
- Yong Xu
- Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of MedicineHouston, TX, USA
- *Correspondence: Yong Xu, Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA e-mail: ; Jennifer W. Hill, Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine, The University of Toledo, Toledo, OH, USA e-mail:
| | - Latrice D. Faulkner
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine, The University of ToledoToledo, OH, USA
| | - Jennifer W. Hill
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine, The University of ToledoToledo, OH, USA
- Department of Obstetrics and Gynecology, College of Medicine, The University of ToledoToledo, OH, USA
- *Correspondence: Yong Xu, Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA e-mail: ; Jennifer W. Hill, Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine, The University of Toledo, Toledo, OH, USA e-mail:
| |
Collapse
|
120
|
True C, Grove KL, Smith MS. Beyond Leptin: Emerging Candidates for the Integration of Metabolic and Reproductive Function during Negative Energy Balance. Front Endocrinol (Lausanne) 2011; 2:53. [PMID: 22645510 PMCID: PMC3355832 DOI: 10.3389/fendo.2011.00053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 09/29/2011] [Indexed: 12/19/2022] Open
Abstract
Reproductive status is tightly coupled to metabolic state in females, and ovarian cycling in mammals is halted when energy output exceeds energy input, a metabolic condition known as negative energy balance. This inhibition of reproductive function during negative energy balance occurs due to suppression of gonadotropin-releasing hormone (GnRH) release in the hypothalamus. The GnRH secretagogue kisspeptin is also inhibited during negative energy balance, indicating that inhibition of reproductive neuroendocrine circuits may occur upstream of GnRH itself. Understanding the metabolic signals responsible for the inhibition of reproductive pathways has been a compelling research focus for many years. A predominant theory in the field is that the status of energy balance is conveyed to reproductive neuroendocrine circuits via the adipocyte hormone leptin. Leptin is stimulatory for GnRH release and lower levels of leptin during negative energy balance are believed to result in decreased stimulatory drive for GnRH cells. However, recent evidence found that restoring leptin to physiological levels did not restore GnRH function in three different models of negative energy balance. This suggests that although leptin may be an important permissive signal for reproductive function as indicated by many years of research, factors other than leptin must critically contribute to negative energy balance-induced reproductive inhibition. This review will focus on emerging candidates for the integration of metabolic status and reproductive function during negative energy balance.
Collapse
Affiliation(s)
- Cadence True
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science UniversityBeaverton, OR, USA
| | - Kevin L. Grove
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science UniversityBeaverton, OR, USA
| | - M. Susan Smith
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science UniversityBeaverton, OR, USA
- *Correspondence: M. Susan Smith, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA. e-mail:
| |
Collapse
|