101
|
You J, Belenkaya T, Lin X. Sulfated is a negative feedback regulator of wingless in Drosophila. Dev Dyn 2011; 240:640-8. [PMID: 21305649 DOI: 10.1002/dvdy.22562] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2010] [Indexed: 01/21/2023] Open
Abstract
Drosophila Wingless (Wg) acts as a morphogen to control pattern formation in a concentration dependent manner. Previous studies demonstrated important roles of heparan sulfate proteoglycans (HSPGs) in controlling Wg signaling and distribution. Here, we examined the role of Sulfated (Sulf1), a Drosophila homolog of vertebrate heparan sulfate 6-O endosulfatase, in Wg signaling and distribution. We show that sulf1 is specifically up-regulated by Wg signaling in the wing disc. We found that expression of Wg target gene senseless (sens) was elevated in the sulf1 mutant wing discs. Sulf1 also negatively regulate extracellular levels of Wg. Genetic interaction experiments indicate that Wg antagonist Notum may work synergistically with Sulf1 to restrict Wg signaling, and Dally, a member of Drosophila HSPGs, is a potential target of Sulf1. Our results demonstrate that sulf1 is a novel Wg target gene and by a feedback mechanism, it negatively regulated Wg signaling and distribution in vivo.
Collapse
|
102
|
Chou YH, Zheng X, Beachy PA, Luo L. Patterning axon targeting of olfactory receptor neurons by coupled hedgehog signaling at two distinct steps. Cell 2010; 142:954-66. [PMID: 20850015 DOI: 10.1016/j.cell.2010.08.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 05/23/2010] [Accepted: 07/26/2010] [Indexed: 02/04/2023]
Abstract
We present evidence for a coupled two-step action of Hedgehog signaling in patterning axon targeting of Drosophila olfactory receptor neurons (ORNs). In the first step, differential Hedgehog pathway activity in peripheral sensory organ precursors creates ORN populations with different levels of the Patched receptor. Different Patched levels in ORNs then determine axonal responsiveness to target-derived Hedgehog in the brain: only ORN axons that do not express high levels of Patched are responsive to and require a second step of Hedgehog signaling for target selection. Hedgehog signaling in the imaginal sensory organ precursors thus confers differential ORN responsiveness to Hedgehog-mediated axon targeting in the brain. This mechanism contributes to the spatial coordination of ORN cell bodies in the periphery and their glomerular targets in the brain. Such coupled two-step signaling may be more generally used to coordinate other spatially and temporally segregated developmental events.
Collapse
Affiliation(s)
- Ya-Hui Chou
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
103
|
Abstract
During development, secreted morphogens such as Wnt, Hedgehog (Hh), and BMP emit from their producing cells in a morphogenetic field, and specify different cell fates in a direct concentration-dependent manner. Understanding how morphogens form their concentration gradients to pattern tissues has been a central issue in developmental biology. Various experimental studies from Drosophila have led to several models to explain the formation of morphogen gradients. Over the past decade, one of the main findings in this field is the characterization of heparan sulfate proteoglycan (HSPG) as an essential regulator for morphogen gradient formation. Genetic and cell biological studies have showed that HSPGs can regulate morphogen activities at various steps including control of morphogen movement, signaling, and intracellular trafficking. Here, we review these data, highlighting recent findings that reveal mechanistic roles of HSPGs in controlling morphogen gradient formation.
Collapse
Affiliation(s)
- Dong Yan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|
104
|
Reijnders CMA, Waaijer CJF, Hamilton A, Buddingh EP, Dijkstra SPD, Ham J, Bakker E, Szuhai K, Karperien M, Hogendoorn PCW, Stringer SE, Bovée JVMG. No haploinsufficiency but loss of heterozygosity for EXT in multiple osteochondromas. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1946-57. [PMID: 20813973 DOI: 10.2353/ajpath.2010.100296] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Multiple osteochondromas (MO) is an autosomal dominant disorder caused by germline mutations in EXT1 and/or EXT2. In contrast, solitary osteochondroma (SO) is nonhereditary. Products of the EXT gene are involved in heparan sulfate (HS) biosynthesis. In this study, we investigated whether osteochondromas arise via either loss of heterozygosity (2 hits) or haploinsufficiency. An in vitro three-dimensional chondrogenic pellet model was used to compare heterozygous bone marrow-derived mesenchymal stem cells (MSCs EXT(wt/-)) of MO patients with normal MSCs and the corresponding tumor specimens (presumed EXT(-/-)). We demonstrated a second hit in EXT in five of eight osteochondromas. HS chain length and structure, in vitro chondrogenesis, and EXT expression levels were identical in both EXT(wt/-) and normal MSCs. Immunohistochemistry for HS, HS proteoglycans, and HS-dependent signaling pathways (eg, TGF-β/BMP, Wnt, and PTHLH) also showed no differences. The cartilaginous cap of osteochondroma contained a mixture of HS-positive and HS-negative cells. Because a heterozygous EXT mutation does not affect chondrogenesis, EXT, HS, or downstream signaling pathways in MSCs, our results refute the haploinsufficiency theory. We found a second hit in 63% of analyzed osteochondromas, supporting the hypothesis that osteochondromas arise via loss of heterozygosity. The detection of the second hit may depend on the ratio of HS-positive (normal) versus HS-negative (mutated) cells in the cartilaginous cap of the osteochondroma.
Collapse
|
105
|
Yasugi T, Sugie A, Umetsu D, Tabata T. Coordinated sequential action of EGFR and Notch signaling pathways regulates proneural wave progression in the Drosophila optic lobe. Development 2010; 137:3193-203. [PMID: 20724446 DOI: 10.1242/dev.048058] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During neurogenesis in the medulla of the Drosophila optic lobe, neuroepithelial cells are programmed to differentiate into neuroblasts at the medial edge of the developing optic lobe. The wave of differentiation progresses synchronously in a row of cells from medial to the lateral regions of the optic lobe, sweeping across the entire neuroepithelial sheet; it is preceded by the transient expression of the proneural gene lethal of scute [l(1)sc] and is thus called the proneural wave. We found that the epidermal growth factor receptor (EGFR) signaling pathway promotes proneural wave progression. EGFR signaling is activated in neuroepithelial cells and induces l(1)sc expression. EGFR activation is regulated by transient expression of Rhomboid (Rho), which is required for the maturation of the EGF ligand Spitz. Rho expression is also regulated by the EGFR signal. The transient and spatially restricted expression of Rho generates sequential activation of EGFR signaling and assures the directional progression of the differentiation wave. This study also provides new insights into the role of Notch signaling. Expression of the Notch ligand Delta is induced by EGFR, and Notch signaling prolongs the proneural state. Notch signaling activity is downregulated by its own feedback mechanism that permits cells at proneural states to subsequently develop into neuroblasts. Thus, coordinated sequential action of the EGFR and Notch signaling pathways causes the proneural wave to progress and induce neuroblast formation in a precisely ordered manner.
Collapse
Affiliation(s)
- Tetsuo Yasugi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
106
|
Sugie A, Umetsu D, Yasugi T, Fischbach KF, Tabata T. Recognition of pre- and postsynaptic neurons via nephrin/NEPH1 homologs is a basis for the formation of the Drosophila retinotopic map. Development 2010; 137:3303-13. [PMID: 20724453 DOI: 10.1242/dev.047332] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Topographic maps, which maintain the spatial order of neurons in the order of their axonal connections, are found in many parts of the nervous system. Here, we focus on the communication between retinal axons and their postsynaptic partners, lamina neurons, in the first ganglion of the Drosophila visual system, as a model for the formation of topographic maps. Post-mitotic lamina precursor cells differentiate upon receiving Hedgehog signals delivered through newly arriving retinal axons and, before maturing to extend neurites, extend short processes toward retinal axons to create the lamina column. The lamina column provides the cellular basis for establishing stereotypic synapses between retinal axons and lamina neurons. In this study, we identified two cell-adhesion molecules: Hibris, which is expressed in post-mitotic lamina precursor cells; and Roughest, which is expressed on retinal axons. Both proteins belong to the nephrin/NEPH1 family. We provide evidence that recognition between post-mitotic lamina precursor cells and retinal axons is mediated by interactions between Hibris and Roughest. These findings revealed mechanisms by which axons of presynaptic neurons deliver signals to induce the development of postsynaptic partners at the target area. Postsynaptic partners then recognize the presynaptic axons to make ensembles, thus establishing a topographic map along the anterior/posterior axis.
Collapse
Affiliation(s)
- Atsushi Sugie
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
107
|
Kleinschmit A, Koyama T, Dejima K, Hayashi Y, Kamimura K, Nakato H. Drosophila heparan sulfate 6-O endosulfatase regulates Wingless morphogen gradient formation. Dev Biol 2010; 345:204-14. [PMID: 20637191 DOI: 10.1016/j.ydbio.2010.07.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 07/06/2010] [Accepted: 07/07/2010] [Indexed: 01/01/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) play critical roles in the distribution and signaling of growth factors, but the molecular mechanisms regulating HSPG function are poorly understood. Here, we characterized Sulf1, which is a Drosophila member of the HS 6-O endosulfatase class of HS modifying enzymes. Our genetic and biochemical analyses show that Sulf1 acts as a novel regulator of the Wg morphogen gradient by modulating the sulfation status of HS on the cell surface in the developing wing. Sulf1 affects gradient formation by influencing the stability and distribution of Wg. We also demonstrate that expression of Sulf1 is induced by Wg signaling itself. Thus, Sulf1 participates in a feedback loop, potentially stabilizing the shape of the Wg gradient. Our study shows that the modification of HS fine structure provides a novel mechanism for the regulation of morphogen gradients.
Collapse
Affiliation(s)
- Adam Kleinschmit
- Department of Genetics, Cell Biology and Development, The University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
108
|
Abstract
HS (heparan sulfate) is synthesized by HS co-polymerases encoded by the EXT1 and EXT2 genes (exostosin 1 and 2), which are known as causative genes for hereditary multiple exostoses, a dominantly inherited genetic disorder characterized by multiple cartilaginous tumours. It has been thought that the hetero-oligomeric EXT1-EXT2 complex is the biologically relevant form of the polymerase and that targeted deletion of either EXT1 or EXT2 leads to a complete lack of HS synthesis. In the present paper we show, unexpectedly, that two distinct cell lines defective in EXT1 expression indeed produce small but significant amounts of HS chains. The HS chains produced without the aid of EXT1 were shorter than HS chains formed in concert with EXT1 and EXT2. In addition, biosynthesis of HS in EXT1-defective cells was notably blocked by knockdown of either EXT2 or EXTL2 (EXT-like), but not of EXTL3. Then, to examine the roles of EXTL2 in the biosynthesis of HS in EXT1-deficient cells, we focused on the GlcNAc (N-aetylglucosamine) transferase activity of EXTL2, which is involved in the initiation of HS chains by transferring the first GlcNAc to the linkage region. Although EXT2 alone synthesized no heparan polymers on the synthetic linkage region analogue GlcUAbeta1-3Galbeta1-O-C2H4NH-benzyloxycarbonyl, marked polymerization by EXT2 alone was demonstrated on GlcNAcalpha1-4GlcUAbeta1-3Galbeta1-O-C2H4N-benzyloxycarbonyl (where GlcUA is glucuronic acid and Gal is galactose), which was generated by transferring a GlcNAc residue using recombinant EXTL2 on to GlcUAbeta1-3Galbeta1-O-C2H4NH-benzyloxycarbonyl. These findings indicate that the transfer of the first GlcNAc residue to the linkage region by EXTL2 is critically required for the biosynthesis of HS in cells deficient in EXT1.
Collapse
|
109
|
|
110
|
Egger-Adam D, Katanaev VL. The trimeric G protein Go inflicts a double impact on axin in the Wnt/frizzled signaling pathway. Dev Dyn 2010; 239:168-83. [PMID: 19705439 DOI: 10.1002/dvdy.22060] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Wnt/Frizzled signaling pathway plays crucial roles in animal development and is deregulated in many cases of carcinogenesis. We and others have previously demonstrated that Frizzled proteins initiating the intracellular signaling are typical G protein-coupled receptors and rely on the trimeric G protein Go for Wnt transduction in Drosophila. However, the mode of action of Go and its interplay with other transducers of the pathway such as Dishevelled and Axin remained unclear. Here we show that the alpha-subunit of Go directly acts on Axin, the multidomain protein playing a negative role in the Wnt signaling. G alpha o physically binds Axin and re-localizes it to the plasma membrane. Furthermore, G alpha o suppresses Axin's inhibitory action on the Wnt pathway in Drosophila wing development. The interaction of G alpha o with Axin critically depends on the RGS domain of the latter. Additionally, we show that the betagamma-component of Go can directly bind and recruit Dishevelled from cytoplasm to the plasma membrane, where activated Dishevelled can act on the DIX domain of Axin. Thus, the two components of the trimeric Go protein mediate a double-direct and indirect-impact on different regions of Axin, which likely serves to ensure a robust inhibition of this protein and transduction of the Wnt signal.
Collapse
Affiliation(s)
- Diane Egger-Adam
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|
111
|
Fuerer C, Habib SJ, Nusse R. A study on the interactions between heparan sulfate proteoglycans and Wnt proteins. Dev Dyn 2010; 239:184-90. [PMID: 19705435 PMCID: PMC2846786 DOI: 10.1002/dvdy.22067] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The Wnt signaling pathway plays key roles in development and adult homeostasis. Wnt proteins are secreted, lipid-modified glycoproteins. They can form morphogen gradients that are regulated at the level of protein secretion, diffusion, and internalization. These gradients can only exist if the hydrophobic Wnt proteins are prevented from aggregating in the extracellular environment. Heparan sulfate proteoglycans (HSPGs) are necessary for proper activity of Wnt proteins and influence their distribution along the morphogenetic gradient. In this study, we show that HSPGs are able to maintain the solubility of Wnt proteins, thus stabilizing their signaling activity. Our results suggest that the role of HSPGs is not only to concentrate Wnt molecules at the cell surface but also to prevent them from aggregating in the extracellular environment.
Collapse
Affiliation(s)
- Christophe Fuerer
- Howard Hughes Medical Institute, Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
112
|
Reijmers RM, Vondenhoff MFR, Roozendaal R, Kuil A, Li JP, Spaargaren M, Pals ST, Mebius RE. Impaired lymphoid organ development in mice lacking the heparan sulfate modifying enzyme glucuronyl C5-epimerase. THE JOURNAL OF IMMUNOLOGY 2010; 184:3656-64. [PMID: 20208005 DOI: 10.4049/jimmunol.0902200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of lymphoid organs depends on cross talk between hematopoietic cells and mesenchymal stromal cells and on vascularization of the lymphoid primordia. These processes are orchestrated by cytokines, chemokines, and angiogenic factors that require tight spatiotemporal regulation. Heparan sulfate (HS) proteoglycans are molecules designed to specifically bind and regulate the bioactivity of soluble protein ligands. Their binding capacity and specificity are controlled by modification of the HS side chain by HS-modifying enzymes. Although HS proteoglycans have been implicated in the morphogenesis of several organ systems, their role in controlling lymphoid organ development has thus far remained unexplored. In this study, we report that modification of HS by the HS-modifying enzyme glucuronyl C5-epimerase (Glce), which controls HS chain flexibility, is required for proper lymphoid organ development. Glce(-/-) mice show a strongly reduced size of the fetal spleen as well as a spectrum of defects in thymus and lymph node development, ranging from dislocation to complete absence of the organ anlage. Once established, however, the Glce(-/-) primordia recruited lymphocytes and developed normal architectural features. Furthermore, Glce(-/-) lymph node anlagen transplanted into wild-type recipient mice allowed undisturbed lymphocyte maturation. Our results indicate that modification of HS by Glce is required for controlling the activity of molecules that are instructive for early lymphoid tissue morphogenesis but may be dispensable at later developmental stages and for lymphocyte maturation and differentiation.
Collapse
Affiliation(s)
- Rogier M Reijmers
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Ochiai T, Shibukawa Y, Nagayama M, Mundy C, Yasuda T, Okabe T, Shimono K, Kanyama M, Hasegawa H, Maeda Y, Lanske B, Pacifici M, Koyama E. Indian hedgehog roles in post-natal TMJ development and organization. J Dent Res 2010; 89:349-54. [PMID: 20200412 DOI: 10.1177/0022034510363078] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Indian hedgehog (Ihh) is essential for embryonic mandibular condylar growth and disc primordium formation. To determine whether it regulates those processes during post-natal life, we ablated Ihh in cartilage of neonatal mice and assessed the consequences on temporomandibular joint (TMJ) growth and organization over age. Ihh deficiency caused condylar disorganization and growth retardation and reduced polymorphic cell layer proliferation. Expression of Sox9, Runx2, and Osterix was low, as was that of collagen II, collagen I, and aggrecan, thus altering the fibrocartilaginous nature of the condyle. Though a disc formed, it exhibited morphological defects, partial fusion with the glenoid bone surface, reduced synovial cavity space, and, unexpectedly, higher lubricin expression. Analysis of the data shows, for the first time, that continuous Ihh action is required for completion of post-natal TMJ growth and organization. Lubricin overexpression in mutants may represent a compensatory response to sustain TMJ movement and function.
Collapse
Affiliation(s)
- T Ochiai
- Department of Orthopaedic Surgery, Thomas Jefferson University College of Medicine, 1015 Walnut Street, Curtis Building Room 501, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Nishihara S. Glycosyltransferases and Transporters that Contribute to Proteoglycan Synthesis in Drosophila. Methods Enzymol 2010; 480:323-51. [DOI: 10.1016/s0076-6879(10)80015-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
115
|
Kraushaar DC, Yamaguchi Y, Wang L. Heparan sulfate is required for embryonic stem cells to exit from self-renewal. J Biol Chem 2009; 285:5907-16. [PMID: 20022960 DOI: 10.1074/jbc.m109.066837] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pluripotent embryonic stem cells (ESCs) must select between alternative fates of self-renewal and lineage commitment at each division during continuous proliferation. Heparan sulfate (HS) is a highly sulfated polysaccharide and is present abundantly on the ESC surface. In this study, we investigated the role of HS in ESC self-renewal by examining Ext1(-/-) ESCs that are deficient in HS. We found that Ext1(-/-) ESCs retained their self-renewal potential but failed to transit from self-renewal to differentiation upon removal of leukemia inhibitory factor. Furthermore, we found that the aberrant cell fate commitment is caused by defects in fibroblast growth factor signaling, which directly retained high expression of the pluripotency gene Nanog in Ext1(-/-) ESCs. Therefore, our studies identified and defined HS as a novel factor that controls ESC fate commitment and also delineates that HS facilitates fibroblast growth factor signaling, which, in turn, inhibits Nanog expression and commits ESCs to lineage differentiation.
Collapse
Affiliation(s)
- Daniel C Kraushaar
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
116
|
Mulinari S, Häcker U. Hedgehog, but not Odd skipped, induces segmental grooves in the Drosophila epidermis. Development 2009; 136:3875-80. [DOI: 10.1242/dev.040089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The formation of segmental grooves during mid embryogenesis in the Drosophila epidermis depends on the specification of a single row of groove cells posteriorly adjacent to cells that express the Hedgehog signal. However, the mechanism of groove formation and the role of the parasegmental organizer, which consists of adjacent rows of hedgehog- and wingless-expressing cells, are not well understood. We report that although groove cells originate from a population of Odd skipped-expressing cells, this pair-rule transcription factor is not required for their specification. We further find that Hedgehog is sufficient to specify groove fate in cells of different origin as late as stage 10, suggesting that Hedgehog induces groove cell fate rather than maintaining a pre-established state. Wingless activity is continuously required in the posterior part of parasegments to antagonize segmental groove formation. Our data support an instructive role for the Wingless/Hedgehog organizer in cellular patterning.
Collapse
Affiliation(s)
- Shai Mulinari
- Department of Experimental Medical Science and Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, BMC B13, 22184 Lund, Sweden
| | - Udo Häcker
- Department of Experimental Medical Science and Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, BMC B13, 22184 Lund, Sweden
| |
Collapse
|
117
|
Ishikawa HO, Ayukawa T, Nakayama M, Higashi S, Kamiyama S, Nishihara S, Aoki K, Ishida N, Sanai Y, Matsuno K. Two pathways for importing GDP-fucose into the endoplasmic reticulum lumen function redundantly in the O-fucosylation of Notch in Drosophila. J Biol Chem 2009; 285:4122-4129. [PMID: 19948734 DOI: 10.1074/jbc.m109.016964] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Notch is a transmembrane receptor that shares homology with proteins containing epidermal growth factor-like repeats and mediates the cell-cell interactions necessary for many cell fate decisions. In Drosophila, O-fucosyltransferase 1 catalyzes the O-fucosylation of these epidermal growth factor-like repeats. This O-fucose elongates, resulting in an O-linked tetrasaccharide that regulates the signaling activities of Notch. Fucosyltransferases utilize GDP-fucose, which is synthesized in the cytosol, but fucosylation occurs in the lumen of the endoplasmic reticulum (ER) and Golgi. Therefore, GDP-fucose uptake into the ER and Golgi is essential for fucosylation. However, although GDP-fucose biosynthesis is well understood, the mechanisms and intracellular routes of GDP-fucose transportation remain unclear. Our previous study on the Drosophila Golgi GDP-fucose transporter (Gfr), which specifically localizes to the Golgi, suggested that another GDP-fucose transporter(s) exists in Drosophila. Here, we identified Efr (ER GDP-fucose transporter), a GDP-fucose transporter that localizes specifically to the ER. Efr is a multifunctional nucleotide sugar transporter involved in the biosynthesis of heparan sulfate-glycosaminoglycan chains and the O-fucosylation of Notch. Comparison of the fucosylation defects in the N-glycans in Gfr and Efr mutants revealed that Gfr and Efr made distinct contributions to this modification; Gfr but not Efr was crucial for the fucosylation of N-glycans. We also found that Gfr and Efr function redundantly in the O-fucosylation of Notch, although they had different localizations and nucleotide sugar transportation specificities. These results indicate that two pathways for the nucleotide sugar supply, involving two nucleotide sugar transporters with distinct characteristics and distributions, contribute to the O-fucosylation of Notch.
Collapse
Affiliation(s)
- Hiroyuki O Ishikawa
- From the Genome and Drug Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Tomonori Ayukawa
- the Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Minoru Nakayama
- From the Genome and Drug Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Shunsuke Higashi
- the Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | - Shin Kamiyama
- the Department of Bioinformatics, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, and
| | - Shoko Nishihara
- the Department of Bioinformatics, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, and
| | - Kazuhisa Aoki
- the Department of Biochemical Cell Research, Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | - Nobuhiro Ishida
- the Department of Biochemical Cell Research, Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | - Yutaka Sanai
- the Department of Biochemical Cell Research, Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | - Kenji Matsuno
- From the Genome and Drug Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510; the Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510.
| |
Collapse
|
118
|
Umulis D, O'Connor MB, Blair SS. The extracellular regulation of bone morphogenetic protein signaling. Development 2009; 136:3715-28. [PMID: 19855014 DOI: 10.1242/dev.031534] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In many cases, the level, positioning and timing of signaling through the bone morphogenetic protein (BMP) pathway are regulated by molecules that bind BMP ligands in the extracellular space. Whereas many BMP-binding proteins inhibit signaling by sequestering BMPs from their receptors, other BMP-binding proteins cause remarkably context-specific gains or losses in signaling. Here, we review recent findings and hypotheses on the complex mechanisms that lead to these effects, with data from developing systems, biochemical analyses and mathematical modeling.
Collapse
Affiliation(s)
- David Umulis
- Department of Agricultural and Biological Engineering, Purdue University, IN 47907, USA
| | | | | |
Collapse
|
119
|
Yan D, Wu Y, Feng Y, Lin SC, Lin X. The core protein of glypican Dally-like determines its biphasic activity in wingless morphogen signaling. Dev Cell 2009; 17:470-81. [PMID: 19853561 DOI: 10.1016/j.devcel.2009.09.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 07/14/2009] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
Abstract
Dally-like (Dlp) is a glypican-type heparan sulfate proteoglycan (HSPG), containing a protein core and attached glycosaminoglycan (GAG) chains. In Drosophila wing discs, Dlp represses short-range Wingless (Wg) signaling, but activates long-range Wg signaling. Here, we show that Dlp core protein has similar biphasic activity as wild-type Dlp. Dlp core protein can interact with Wg; the GAG chains enhance this interaction. Importantly, we find that Dlp exhibits a biphasic response, regardless of whether its glycosylphosphatidylinositol linkage to the membrane can be cleaved. Rather, the transition from signaling activator to repressor is determined by the relative expression levels of Dlp and the Wg receptor, Frizzled (Fz) 2. Based on these data, we propose that the principal function of Dlp is to retain Wg on the cell surface. As such, it can either compete with the receptor or provide ligands to the receptor, depending on the ratios of Wg, Fz2, and Dlp.
Collapse
Affiliation(s)
- Dong Yan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
120
|
Rozeman LB, de Bruijn IHB, Bacchini P, Staals EL, Bertoni F, Bovée JVMG, Hogendoorn PC. Dedifferentiated peripheral chondrosarcomas: regulation of EXT-downstream molecules and differentiation-related genes. Mod Pathol 2009; 22:1489-98. [PMID: 19734846 DOI: 10.1038/modpathol.2009.120] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dedifferentiated peripheral chondrosarcoma is a rare subtype of chondrosarcoma arising superimposed on the cartilage cap of a preexisting osteochondroma. It consists of two clearly defined components, a low-grade malignant, well-differentiated cartilage component and a high-grade non-cartilaginous sarcoma. Signaling pathways having a role in normal cartilage development were analyzed in these tumors, and compared with available data of other cartilaginous tumors. Sixteen well-characterized dedifferentiated peripheral chondrosarcomas were immunohistochemically analyzed for parathyroid hormone-like hormone (PTHLH)-BCL-2, fibroblastic growth factor (FGF), and transforming growth factor-beta signaling molecules, as well as matrix molecules and p53, comparing the chondrogenic component of dedifferentiated peripheral chondrosarcomas with the anaplastic component and with previously published data obtained from conventional grade I and II secondary peripheral chondrosarcomas. Results were correlated with clinical outcome. In the anaplastic component, various lines of differentiation could be found (collagen I (6/16), CD31 (1/16), smooth muscle actin (12/16), muscle-specific actin (12/16) and desmin (2/9)). Compared with the anaplastic component, the chondrogenic component of dedifferentiated peripheral chondrosarcomas shows more often expression of cyclin D1 (P=0.05), p53 (P=0.008), plasminogen activator inhibitor 1 (PAI-1) (P=0.005), and CD44 (P=0.030). Compared with secondary peripheral chondrosarcomas, more samples were positive in the chondrogenic component of dedifferentiated peripheral chondrosarcomas for FGF signaling (FGF receptor 3 P=0.000; bFGF P=0.003) and CD44 (P=0.000). Lower expression of BCL-2 (P=0.025) and absence of CD44v3 (P=0.000), a splice variant of CD44, was observed in the chondrogenic component of dedifferentiated peripheral chondrosarcomas compared with secondary peripheral chondrosarcomas. With regard to clinical data, PAI-1 expression in the chondrogenic component of dedifferentiated peripheral chondrosarcomas correlated with better survival (P=0.019). In conclusion, in the chondrogenic component of dedifferentiated peripheral chondrosarcomas, FGF signaling pathway is active, whereas PTHLH signaling seems to be low/downregulated. Interestingly, although the chondrogenic component of dedifferentiated peripheral chondrosarcoma is CD44+/CD44v3-, secondary peripheral chondrosarcomas is CD44-/CD44v3+, which suggest different splicing (preference). The prognostic value of PAI-1 in dedifferentiated peripheral chondrosarcomas might also be of interest for the more common dedifferentiated central chondrosarcomas.
Collapse
Affiliation(s)
- Leida B Rozeman
- Department of Pathology, Leiden University Medical Center, Leiden 2300RC, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
How morphogen gradients are formed in target tissues is a key question for understanding the mechanisms of morphological patterning. Here, we review different mechanisms of morphogen gradient formation from theoretical and experimental points of view. First, a simple, comprehensive overview of the underlying biophysical principles of several mechanisms of gradient formation is provided. We then discuss the advantages and limitations of different experimental approaches to gradient formation analysis.
Collapse
|
122
|
Oates AC, Gorfinkiel N, González-Gaitán M, Heisenberg CP. Quantitative approaches in developmental biology. Nat Rev Genet 2009; 10:517-30. [DOI: 10.1038/nrg2548] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
123
|
Ochiai T, Nagayama M, Nakamura T, Morrison T, Pilchak D, Kondo N, Hasegawa H, Song B, Serra R, Pacifici M, Koyama E. Roles of the primary cilium component Polaris in synchondrosis development. J Dent Res 2009; 88:545-50. [PMID: 19587160 DOI: 10.1177/0022034509337775] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Primary cilia regulate several developmental processes and mediate hedgehog signaling. To study their roles in cranial base development, we created conditional mouse mutants deficient in Polaris, a critical primary cilium component, in cartilage. Mutant post-natal cranial bases were deformed, and their synchondrosis growth plates were disorganized. Expression of Indian hedgehog, Patched-1, collagen X, and MMP-13 was reduced and accompanied by decreases in endochondral bone. Interestingly, there was excessive intramembranous ossification along the perichondrium, accompanied by excessive Patched-1 expression, suggesting that Ihh distribution was wider and responsible for such excessive response. Indeed, expression of heparan sulfate proteoglycans (HS-PGs), normally involved in restricting hedgehog distribution, was barely detectable in mutant synchondroses. Analyses of the data provides further evidence for the essential roles of primary cilia and hedgehog signaling in cranial base development and chondrocyte maturation, and point to a close interdependence between cilia and HS-PGs to delimit targets of hedgehog action in synchondroses.
Collapse
Affiliation(s)
- T Ochiai
- Department of Orthopaedic Surgery, Thomas Jefferson University College of Medicine, 1015 Walnut Street, Curtis Building, Room 501, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Cell type-specific requirements for heparan sulfate biosynthesis at the Drosophila neuromuscular junction: effects on synapse function, membrane trafficking, and mitochondrial localization. J Neurosci 2009; 29:8539-50. [PMID: 19571145 DOI: 10.1523/jneurosci.5587-08.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are concentrated at neuromuscular synapses in many species, including Drosophila. We have established the physiological and patterning functions of HSPGs at the Drosophila neuromuscular junction by using mutations that block heparan sulfate synthesis or sulfation to compromise HSPG function. The mutant animals showed defects in synaptic physiology and morphology suggesting that HSPGs function both presynaptically and postsynaptically; these defects could be rescued by appropriate transgene expression. Of particular interest were selective disruptions of mitochondrial localization, abnormal distributions of Golgi and endoplasmic reticulum markers in the muscle, and a markedly increased level of stimulus-dependent endocytosis in the motoneuron. Our data support the emerging view that HSPG functions are not limited to the cell surface and matrix environments, but also affect a diverse set of cellular processes including membrane trafficking and organelle distributions.
Collapse
|
125
|
Benítez E, Bray SJ, Rodriguez I, Guerrero I. Lines is required for normal operation of Wingless, Hedgehog and Notch pathways during wing development. Development 2009; 136:1211-21. [PMID: 19270177 DOI: 10.1242/dev.021428] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The regulatory Lines/Drumstick/Bowl gene network is implicated in the integration of patterning information at several stages during development. Here, we show that during Drosophila wing development, Lines prevents Bowl accumulation in the wing primordium, confining its expression to the peripodial epithelium. In cells that lack lines or over-expressing Drumstick, Bowl stabilization is responsible for alterations such as dramatic overgrowths and cell identity changes in the proximodistal patterning owing to aberrant responses to signaling pathways. The complex phenotypes are explained by Bowl repressing the Wingless pathway, the earliest effect seen. In addition, Bowl sequesters the general co-repressor Groucho from repressor complexes functioning in the Notch pathway and in Hedgehog expression, leading to ectopic activity of their targets. Supporting this model, elimination of the Groucho interaction domain in Bowl prevents the activation of the Notch and Hedgehog pathways, although not the repression of the Wingless pathway. Similarly, the effects of ectopic Bowl are partially rescued by co-expression of either Hairless or Master of thickveins, co-repressors that act with Groucho in the Notch and Hedgehog pathways, respectively. We conclude that by preventing Bowl accumulation in the wing, primordial Lines permits the correct balance of nuclear co-repressors that control the activity of the Wingless, Notch and Hedgehog pathways.
Collapse
Affiliation(s)
- Elvira Benítez
- Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | | | |
Collapse
|
126
|
Narvid J, Gorno-Tempini ML, Slavotinek A, Dearmond SJ, Cha YH, Miller BL, Rankin K. Of brain and bone: the unusual case of Dr. A. Neurocase 2009; 15:190-205. [PMID: 20183548 PMCID: PMC2997763 DOI: 10.1080/13554790802632967] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Frontotemporal dementia (FTD) is a clinical syndrome characterized by progressive decline in social conduct and a focal pattern of frontal and temporal lobe damage. Its biological basis is still poorly understood but the focality of the brain degeneration provides a powerful model to study the cognitive and anatomical basis of social cognition. Here, we present Dr. A, a patient with a rare hereditary bone disease (hereditary multiple exostoses) and FTD (pathologically characterized as Pick's disease), who presented with a profound behavioral disturbance characterized by acquired sociopathy. We conducted a detailed genetic, pathological, neuroimaging and cognitive study, including a battery of tests designed to investigate Dr. A's abilities to understand emotional cues and to infer mental states and intentions to others (theory of mind). Dr. A's genetic profile suggests the possibility that a mutation causing hereditary multiple exostoses, Ext2, may play a role in the pattern of neurodegeneration in frontotemporal dementia since knockout mice deficient in the Ext gene family member, Ext1, show severe CNS defects including loss of olfactory bulbs and abnormally small cerebral cortex. Dr. A showed significant impairment in emotion comprehension, second order theory of mind, attribution of intentions, and empathy despite preserved general cognitive abilities. Voxel-based morphometry on structural MRI images showed significant atrophy in the medial and right orbital frontal and anterior temporal regions with sparing of dorsolateral frontal cortex. This case demonstrates that social and emotional dysfunction in FTD can be dissociated from preserved performance on classic executive functioning tasks. The specific pattern of anatomical damage shown by VBM emphasizes the importance of the network including the superior medial frontal gyrus as well as temporal polar areas, in regulation of social cognition and theory of mind. This case provides new evidence regarding the neural basis of social cognition and suggests a possible genetic link between bone disease and FTD.
Collapse
Affiliation(s)
- J Narvid
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
Molecular analysis of heparan sulfate biosynthetic enzyme machinery and characterization of heparan sulfate structure in Nematostella vectensis. Biochem J 2009; 419:585-93. [DOI: 10.1042/bj20082081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HS (heparan sulfate) proteoglycans are key regulators of vital processes in the body. HS chains with distinct sequences bind to various protein ligands, such as growth factors and morphogens, and thereby function as important regulators of protein gradient formation and signal transduction. HS is synthesized through the concerted action of many different ER (endoplasmic reticulum) and Golgi-resident enzymes. In higher organisms, many of these enzymes occur in multiple isoforms that differ in substrate specificity and spatial and temporal expression. In order to investigate how the structural complexity of HS has evolved, in the present study we focused on the starlet sea anemone (Nematostella vectensis), which belongs to the Anthozoa, which are considered to have retained many ancestral features. Members of all of the enzyme families involved in the generation and modification of HS were identified in Nematostella. Our results show that the enzymes are highly conserved throughout evolution, but the number of isoforms varies. Furthermore, the HS polymerases [Ext (exostosin) enzymes Ext1, Ext2 and Ext-like3] represent distinct subgroups, indicating that these three genes have already been present in the last common ancestor of Cnidaria and Bilateria. In situ hybridization showed up-regulation of certain enzymes in specific areas of the embryo at different developmental stages. The specific mRNA expression pattern of particular HS enzymes implies that they may play a specific role in HS modifications during larval development. Finally, biochemical analysis of Nematostella HS demonstrates that the sea anemone synthesizes a polysaccharide with a unique structure.
Collapse
|
128
|
Schrage YM, Hameetman L, Szuhai K, Cleton-Jansen AM, Taminiau AHM, Hogendoorn PCW, Bovée JVMG. Aberrant heparan sulfate proteoglycan localization, despite normal exostosin, in central chondrosarcoma. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:979-88. [PMID: 19179614 DOI: 10.2353/ajpath.2009.080623] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The tumor suppressor genes EXT1 and EXT2 are involved in the formation of multiple osteochondromas, which can progress to become secondary peripheral chondrosarcomas. The most common chondrosarcoma subtype is primary central chondrosarcoma, which occurs in the medullar cavity of bone. The EXT1/EXT2 protein complex is involved in heparan sulfate proteoglycan (HSPG) biosynthesis, which is important for signal transduction of Indian hedgehog (IHH), WNT, and transforming growth factor (TGF)-beta. The role of EXT and its downstream targets in central chondrosarcomas is currently unknown. EXT1 and EXT2 were therefore evaluated in central chondrosarcomas at both the DNA and mRNA levels. Immunohistochemistry was used to assess HSPG (CD44v3 and SDC2), WNT (beta-catenin), and TGF-beta (PAI-1 and phosphorylated Smad2) signaling, whereas IHH signaling was studied both by quantitative polymerase chain reaction and in vitro. mRNA levels of both EXT1 and EXT2 were normal in central chondrosarcomas; genomic alterations were absent in these regions and in 30 other HSPG-related genes. Although HSPGs were aberrantly located (CD44v3 in the Golgi and SDC2 in cytoplasm and nucleus), this was not caused by mutation. WNT signaling negatively correlated with increasing histological grade, whereas TGF-beta positively correlated with increasing histological grade. IHH signaling was active, and inhibition decreased cell viability in one of six cell lines. Our data suggest that, despite normal EXT in central chondrosarcomas, HSPGs and HSPG-dependent signaling are affected in both central and peripheral chondrosarcomas.
Collapse
Affiliation(s)
- Yvonne M Schrage
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
129
|
Dierker T, Dreier R, Petersen A, Bordych C, Grobe K. Heparan sulfate-modulated, metalloprotease-mediated sonic hedgehog release from producing cells. J Biol Chem 2009; 284:8013-22. [PMID: 19176481 DOI: 10.1074/jbc.m806838200] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ectodomains of numerous proteins are released from cells by matrix metalloproteases to yield soluble intercellular regulators. A disintegrin and metalloprotease (ADAM) family members have often been found to be the responsible "sheddases," ADAM17/tumor necrosis factor-alpha-converting enzyme being its best characterized member. In this work, we show that ShhNp (lipidated and membrane-tethered Sonic hedgehog) is released from Bosc23 cells by metalloprotease-mediated ectodomain shedding, resulting in a soluble and biologically active morphogen. ShhNp shedding is increased by ADAM17 coexpression and cholesterol depletion of cells with methyl-beta-cyclodextrin and is reduced by metalloprotease inhibitors as well as ADAM17 RNA interference. We also show that the amount of shed ShhNp is modulated by extracellular heparan sulfate (HS) and that ShhNp shedding depends on specific HS sulfations. Based on those data, we suggest new roles for metalloproteases, including but not restricted to ADAM17, and for HS-proteoglycans in Hedgehog signaling.
Collapse
Affiliation(s)
- Tabea Dierker
- Institute for Physiological Chemistry and Pathobiochemistry, Westfälische Wilhelms-Univertät Münster, Münster, Germany
| | | | | | | | | |
Collapse
|
130
|
Host glycosaminoglycan confers susceptibility to bacterial infection in Drosophila melanogaster. Infect Immun 2008; 77:860-6. [PMID: 19047407 DOI: 10.1128/iai.00995-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many pathogens engage host cell surface glycosaminoglycans, but redundancy in pathogen adhesins and host glycosaminoglycan-anchoring proteins (heparan sulfate proteoglycans) has limited the understanding of the importance of glycosaminoglycan binding during infection. The alpha C protein of group B streptococcus, a virulence determinant for this neonatal human pathogen, binds to host glycosaminoglycan and mediates the entry of bacteria into human cells. We studied alpha C protein-glycosaminoglycan binding in Drosophila melanogaster, whose glycosaminoglycan repertoire resembles that of humans but whose genome includes only three characterized membrane heparan sulfate proteoglycan genes. The knockdown of glycosaminoglycan polymerases or of heparan sulfate proteoglycans reduced the cellular binding of alpha C protein. The interruption of alpha C protein-glycosaminoglycan binding was associated with longer host survival and a lower bacterial burden. These data indicate that the glycosaminoglycan-alpha C protein interaction involves multiple heparan sulfate proteoglycans and impairs bacterial killing. Host glycosaminoglycans, anchored by multiple proteoglycans, thereby determine susceptibility to infection. Because there is homology between Drosophila and human glycosaminoglycan/proteoglycan structures and many pathogens express glycosaminoglycan-binding structures, our data suggest that interfering with glycosaminoglycan binding may protect against infections in humans.
Collapse
|
131
|
Rodgers KD, San Antonio JD, Jacenko O. Heparan sulfate proteoglycans: a GAGgle of skeletal-hematopoietic regulators. Dev Dyn 2008; 237:2622-42. [PMID: 18629873 DOI: 10.1002/dvdy.21593] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This review summarizes our current understanding of the presence and function of heparan sulfate proteoglycans (HSPGs) in skeletal development and hematopoiesis. Although proteoglycans (PGs) comprise a large and diverse group of cell surface and matrix molecules, we chose to focus on HSPGs owing to their many proposed functions in skeletogenesis and hematopoiesis. Specifically, we discuss how HSPGs play predominant roles in establishing and regulating niches during skeleto-hematopoietic development by participating in distinct developmental processes such as patterning, compartmentalization, growth, differentiation, and maintenance of tissues. Special emphasis is placed on our novel hypothesis that mechanistically links endochondral skeletogenesis to the establishment of the hematopoietic stem cell (HSC) niche in the marrow. HSPGs may contribute to these developmental processes through their unique abilities to establish and mediate morphogen, growth factor, and cytokine gradients; facilitate signaling; provide structural stability to tissues; and act as molecular filters and barriers.
Collapse
Affiliation(s)
- Kathryn D Rodgers
- Department of Animal Biology, Division of Biochemistry, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104-6046, USA.
| | | | | |
Collapse
|
132
|
ten Hagen KG, Zhang L, Tian E, Zhang Y. Glycobiology on the fly: developmental and mechanistic insights from Drosophila. Glycobiology 2008; 19:102-11. [PMID: 18824561 DOI: 10.1093/glycob/cwn096] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Drosophila melanogaster offers many unique advantages for deciphering the complexities of glycan biosynthesis and function. The completion of the Drosophila genome sequencing project as well as the comprehensive catalogue of existing mutations and phenotypes have lead to a prolific database where many of the genes involved in glycan synthesis, assembly, modification, and recognition have been identified and characterized. Recent biochemical and molecular studies have elucidated the structure of the glycans present in Drosophila. Powerful genetic approaches have uncovered a number of critical biological roles for glycans during development that impact on our understanding of their function during mammalian development. Here, we summarize key recent findings and provide evidence for the usefulness of this model organism in unraveling the complexities of glycobiology across many species.
Collapse
Affiliation(s)
- Kelly G ten Hagen
- Developmental Glycobiology Unit, NIDCR, National Institutes of Health, Building 30, 30 Convent Drive, MSC 4370, Bethesda, MD 20892-4370, USA.
| | | | | | | |
Collapse
|
133
|
Liu IH, Zhang C, Kim MJ, Cole GJ. Retina development in zebrafish requires the heparan sulfate proteoglycan agrin. Dev Neurobiol 2008; 68:877-98. [PMID: 18327763 DOI: 10.1002/dneu.20625] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent studies from our laboratory have begun to elucidate the role of agrin in zebrafish development. One agrin morphant phenotype that results from agrin knockdown is microphthalmia (reduced eye size). To begin to understand the mechanisms underlying the role of agrin in eye development, we have analyzed retina development in agrin morphants. Retinal differentiation is impaired in agrin morphants, with retinal lamination being disrupted following agrin morpholino treatment. Pax 6.1 and Mbx1 gene expression, markers of eye development, are markedly reduced in agrin morphants. Formation of the optic fiber layer of the zebrafish retina is also impaired, exhibited as both reduced size of the optic fiber layer, and disruption of retinal ganglion cell axon growth to the optic tectum. The retinotectal topographic projection to the optic tectum is perturbed in agrin morphants in association with a marked loss of heparan sulfate expression in the retinotectal pathway, with this phenotype resembling retinotectal phenotypes observed in mutant zebrafish lacking enzymes for heparan sulfate synthesis. Treatment of agrin morphants with a fibroblast growth factor (Fgf) receptor inhibitor, rescue of the retinal lamination phenotype by transplantation of Fgf8-coated beads, and disruption of both the expression of Fgf-dependent genes and activation of ERK in agrin morphants provides evidence that agrin modulation of Fgf function contributes to retina development. Collectively, these agrin morphant phenotypes provide support for a crucial role of agrin in retina development and formation of an ordered retinotectal topographic map in the optic tectum of zebrafish.
Collapse
Affiliation(s)
- I-Hsuan Liu
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Durham, North Carolina 27707, USA
| | | | | | | |
Collapse
|
134
|
Serpe M, Umulis D, Ralston A, Chen J, Olson DJ, Avanesov A, Othmer H, O'Connor MB, Blair SS. The BMP-binding protein Crossveinless 2 is a short-range, concentration-dependent, biphasic modulator of BMP signaling in Drosophila. Dev Cell 2008; 14:940-53. [PMID: 18539121 DOI: 10.1016/j.devcel.2008.03.023] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 12/04/2007] [Accepted: 03/31/2008] [Indexed: 11/17/2022]
Abstract
In Drosophila, the secreted BMP-binding protein Short gastrulation (Sog) inhibits signaling by sequestering BMPs from receptors, but enhances signaling by transporting BMPs through tissues. We show that Crossveinless 2 (Cv-2) is also a secreted BMP-binding protein that enhances or inhibits BMP signaling. Unlike Sog, however, Cv-2 does not promote signaling by transporting BMPs. Rather, Cv-2 binds cell surfaces and heparan sulfate proteoglygans and acts over a short range. Cv-2 binds the type I BMP receptor Thickveins (Tkv), and we demonstrate how the exchange of BMPs between Cv-2 and receptor can produce the observed biphasic response to Cv-2 concentration, where low levels promote and high levels inhibit signaling. Importantly, we show also how the concentration or type of BMP present can determine whether Cv-2 promotes or inhibits signaling. We also find that Cv-2 expression is controlled by BMP signaling, and these combined properties enable Cv-2 to exquisitely tune BMP signaling.
Collapse
Affiliation(s)
- Mihaela Serpe
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Abstract
The identification of endogenous sterol derivatives that modulate the Hedgehog (Hh) signalling pathway has begun to suggest testable hypotheses for the cellular biological functions of Patched, and for the lipoprotein association of Hh. Progress in the field of intracellular sterol trafficking has emphasized how tightly the distribution of intracellular sterol is controlled, and suggests that the synthesis of sterol derivatives can be influenced by specific sterol-delivery pathways. The combination of this field with Hh studies will rapidly give us a more sophisticated understanding of both the Hh signal-transduction pathway and the cell biology of sterol metabolism.
Collapse
Affiliation(s)
- Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
136
|
|
137
|
Gallet A, Staccini-Lavenant L, Thérond PP. Cellular trafficking of the glypican Dally-like is required for full-strength Hedgehog signaling and wingless transcytosis. Dev Cell 2008; 14:712-25. [PMID: 18477454 DOI: 10.1016/j.devcel.2008.03.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 12/04/2007] [Accepted: 03/03/2008] [Indexed: 11/29/2022]
Abstract
Hedgehog (Hh) and Wingless (Wg) morphogens specify cell fate in a concentration-dependent manner in the Drosophila wing imaginal disc. Proteoglycans, components of the extracellular matrix, are involved in Hh and Wg stability, spreading, and reception. In this study, we demonstrate that the glycosyl-phosphatidyl-inositol (GPI) anchor of the glypican Dally-like (Dlp) is required for its apical internalization and its subsequent targeting to the basolateral compartment of the epithelium. Dlp endocytosis from the apical surface of Hh-receiving cells catalyzes the internalization of Hh bound to its receptor Patched (Ptc). The cointernalization of Dlp with the Hh/Ptc complex is dynamin dependent and necessary for full-strength Hh signaling. We also demonstrate that Wg is secreted apically in the disc epithelium and that apicobasal trafficking of Dlp allows Wg transcytosis to favor Wg spreading along the basolateral compartment. Thus, Dlp endocytosis is a common regulatory mechanism of both Hh and Wg morphogen action.
Collapse
Affiliation(s)
- Armel Gallet
- Institut Biologie du Développement et Cancer-IBDC, Université de Nice Sophia-Antipolis, UMR 6543 CNRS, Centre de Biochimie, Parc Valrose, 06108 Nice cedex 2, France.
| | | | | |
Collapse
|
138
|
Fan Y, Bergmann A. Distinct mechanisms of apoptosis-induced compensatory proliferation in proliferating and differentiating tissues in the Drosophila eye. Dev Cell 2008; 14:399-410. [PMID: 18331718 DOI: 10.1016/j.devcel.2008.01.003] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 10/15/2007] [Accepted: 01/07/2008] [Indexed: 01/08/2023]
Abstract
In multicellular organisms, apoptotic cells induce compensatory proliferation of neighboring cells to maintain tissue homeostasis. In the Drosophila wing imaginal disc, dying cells trigger compensatory proliferation through secretion of the mitogens Decapentaplegic (Dpp) and Wingless (Wg). This process is under control of the initiator caspase Dronc, but not effector caspases. Here we show that a second mechanism of apoptosis-induced compensatory proliferation exists. This mechanism is dependent on effector caspases which trigger the activation of Hedgehog (Hh) signaling for compensatory proliferation. Furthermore, whereas Dpp and Wg signaling is preferentially employed in apoptotic proliferating tissues, Hh signaling is activated in differentiating eye tissues. Interestingly, effector caspases in photoreceptor neurons stimulate Hh signaling which triggers cell-cycle reentry of cells that had previously exited the cell cycle. In summary, dependent on the developmental potential of the affected tissue, different caspases trigger distinct forms of compensatory proliferation in an apparent nonapoptotic function.
Collapse
Affiliation(s)
- Yun Fan
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1000, Houston, TX 77030, USA
| | | |
Collapse
|
139
|
McClure KD, Sustar A, Schubiger G. Three genes control the timing, the site and the size of blastema formation in Drosophila. Dev Biol 2008; 319:68-77. [PMID: 18485344 DOI: 10.1016/j.ydbio.2008.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 04/02/2008] [Accepted: 04/03/2008] [Indexed: 10/22/2022]
Abstract
Regeneration is a vital process to maintain and repair tissues. Despite the importance of regeneration, the genes responsible for regenerative growth remain largely unknown. In Drosophila, imaginal disc regeneration can be induced either by fragmentation and in vivo culture or in situ by ubiquitous expression of wingless (wg/wnt1). Imaginal discs, like appendages in lower vertebrates, initiate regeneration by wound healing and proliferation at the wound site, forming a regeneration blastema. Most blastema cells maintain their disc-specific identity during regeneration; a few cells however, exhibit stem-cell like properties and switch to a different fate, in a phenomenon known as transdetermination. We identified three genes, regeneration (rgn), augmenter of liver regeneration (alr) and Matrix metalloproteinase-1 (Mmp1) expressed specifically in blastema cells during disc regeneration. Mutations in these genes affect both fragmentation- and wg-induced regeneration by either delaying, reducing or positioning the regeneration blastema. In addition to the modifications of blastema homeostasis, mutations in the three genes alter the rate of regeneration-induced transdetermination. We propose that these genes function in regenerative proliferation, growth and regulate cellular plasticity.
Collapse
Affiliation(s)
- Kimberly D McClure
- University of California, San Francisco, Department of Anatomy, 1550 4th Street, Rock Hall, Mail Code 2822, San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
140
|
Affiliation(s)
- Satomi Nadanaka
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | | |
Collapse
|
141
|
Yasugi T, Umetsu D, Murakami S, Sato M, Tabata T. Drosophila optic lobe neuroblasts triggered by a wave of proneural gene expression that is negatively regulated by JAK/STAT. Development 2008; 135:1471-80. [PMID: 18339672 DOI: 10.1242/dev.019117] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neural stem cells called neuroblasts (NBs) generate a variety of neuronal and glial cells in the central nervous system of the Drosophila embryo. These NBs, few in number, are selected from a field of neuroepithelial (NE) cells. In the optic lobe of the third instar larva, all NE cells of the outer optic anlage (OOA) develop into either NBs that generate the medulla neurons or lamina neuron precursors of the adult visual system. The number of lamina and medulla neurons must be precisely regulated because photoreceptor neurons project their axons directly to corresponding lamina or medulla neurons. Here, we show that expression of the proneural protein Lethal of scute [L(1)sc] signals the transition of NE cells to NBs in the OOA. L(1)sc expression is transient, progressing in a synchronized and ordered ;proneural wave' that sweeps toward more lateral NEs. l(1)sc expression is sufficient to induce NBs and is necessary for timely onset of NB differentiation. Thus, proneural wave precedes and induces transition of NE cells to NBs. Unpaired (Upd), the ligand for the JAK/STAT signaling pathway, is expressed in the most lateral NE cells. JAK/STAT signaling negatively regulates proneural wave progression and controls the number of NBs in the optic lobe. Our findings suggest that NBs might be balanced with the number of lamina neurons by JAK/STAT regulation of proneural wave progression, thereby providing the developmental basis for the formation of a precise topographic map in the visual center.
Collapse
Affiliation(s)
- Tetsuo Yasugi
- Laboratory of Pattern Formation, Institute of Molecular and Cellular Biosciences, the University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
142
|
Kicheva A, González-Gaitán M. The Decapentaplegic morphogen gradient: a precise definition. Curr Opin Cell Biol 2008; 20:137-43. [PMID: 18329870 DOI: 10.1016/j.ceb.2008.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 01/30/2008] [Indexed: 01/11/2023]
Abstract
Two key processes are in the basis of morphogenesis: the spatial allocation of cell types in fields of naïve cells and the regulation of growth. Both are controlled by morphogens, which activate target genes in the growing tissue in a concentration-dependent manner. Thus the morphogen model is an intrinsically quantitative concept. However, quantitative studies were performed only in recent years on two morphogens: Bicoid and Decapentaplegic. This review covers quantitative aspects of the formation and precision of the Decapentaplegic morphogen gradient. The morphogen gradient concept is transitioning from a soft definition to a precise idea of what the gradient could really do.
Collapse
Affiliation(s)
- Anna Kicheva
- Department of Biochemistry, University of Geneva, Sciences II, Quai E. Ansermet 30, 1211 Geneva, Switzerland
| | | |
Collapse
|
143
|
Recent progress in the study of Hedgehog signaling. J Genet Genomics 2008; 35:129-37. [DOI: 10.1016/s1673-8527(08)60019-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 11/20/2007] [Accepted: 11/21/2007] [Indexed: 12/30/2022]
|
144
|
Abstract
Multiple osteochondromas (MO) is characterised by development of two or more cartilage capped bony outgrowths (osteochondromas) of the long bones. The prevalence is estimated at 1:50,000, and it seems to be higher in males (male-to-female ratio 1.5:1). Osteochondromas develop and increase in size in the first decade of life, ceasing to grow when the growth plates close at puberty. They are pedunculated or sessile (broad base) and can vary widely in size. The number of osteochondromas may vary significantly within and between families, the mean number of locations is 15-18. The majority are asymptomatic and located in bones that develop from cartilage, especially the long bones of the extremities, predominantly around the knee. The facial bones are not affected. Osteochondromas may cause pain, functional problems and deformities, especially of the forearm, that may be reason for surgical removal. The most important complication is malignant transformation of osteochondroma towards secondary peripheral chondrosarcoma, which is estimated to occur in 0.5-5%. MO is an autosomal dominant disorder and is genetically heterogeneous. In almost 90% of MO patients germline mutations in the tumour suppressor genes EXT1 or EXT2 are found. The EXT genes encode glycosyltransferases, catalyzing heparan sulphate polymerization. The diagnosis is based on radiological and clinical documentation, supplemented with, if available, histological evaluation of osteochondromas. If the exact mutation is known antenatal diagnosis is technically possible. MO should be distinguished from metachondromatosis, dysplasia epiphysealis hemimelica and Ollier disease. Osteochondromas are benign lesions and do not affect life expectancy. Management includes removal of osteochondromas when they give complaints. Removed osteochondromas should be examined for malignant transformation towards secondary peripheral chondrosarcoma. Patients should be well instructed and regular follow-up for early detection of malignancy seems justified. For secondary peripheral chondrosarcoma, en-bloc resection of the lesion and its pseudocapsule with tumour-free margins, preferably in a bone tumour referral centre, should be performed.
Collapse
Affiliation(s)
- Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
145
|
Bornemann DJ, Park S, Phin S, Warrior R. A translational block to HSPG synthesis permits BMP signaling in the early Drosophila embryo. Development 2008; 135:1039-47. [PMID: 18256192 DOI: 10.1242/dev.017061] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are extracellular macromolecules found on virtually every cell type in eumetazoans. HSPGs are composed of a core protein covalently linked to glycosaminoglycan (GAG) sugar chains that bind and modulate the signaling efficiency of many ligands, including Hedgehog (Hh), Wingless (Wg) and Bone morphogenetic proteins (BMPs). Here, we show that, in Drosophila, loss of HSPGs differentially affects embryonic Hh, Wg and BMP signaling. We find that a stage-specific block to GAG synthesis prevents HSPG expression during establishment of the BMP activity gradient that is crucial for dorsal embryonic patterning. Subsequently, GAG synthesis is initiated coincident with the onset of Hh and Wg signaling which require HSPGs. This temporal regulation is achieved by the translational control of HSPG synthetic enzymes through internal ribosome entry sites (IRESs). IRES-like features are conserved in GAG enzyme transcripts from diverse organisms, suggesting that this represents a novel evolutionarily conserved mechanism for regulating GAG synthesis and modulating growth factor activity.
Collapse
Affiliation(s)
- Douglas J Bornemann
- Developmental and Cell Biology and Developmental Biology Center, University of California Irvine, Irvine, CA, USA
| | | | | | | |
Collapse
|
146
|
The role of GlcNAc in formation and function of extracellular matrices. Comp Biochem Physiol B Biochem Mol Biol 2008; 149:215-26. [DOI: 10.1016/j.cbpb.2007.10.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/17/2007] [Accepted: 10/17/2007] [Indexed: 01/27/2023]
|
147
|
Katanaev VL, Solis GP, Hausmann G, Buestorf S, Katanayeva N, Schrock Y, Stuermer CAO, Basler K. Reggie-1/flotillin-2 promotes secretion of the long-range signalling forms of Wingless and Hedgehog in Drosophila. EMBO J 2008; 27:509-21. [PMID: 18219274 PMCID: PMC2219691 DOI: 10.1038/sj.emboj.7601981] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 12/19/2007] [Indexed: 11/30/2022] Open
Abstract
The lipid-modified morphogens Wnt and Hedgehog diffuse poorly in isolation yet can spread over long distances in vivo, predicting existence of two distinct forms of these mophogens. The first is poorly mobile and activates short-range target genes. The second is specifically packed for efficient spreading to induce long-range targets. Subcellular mechanisms involved in the discriminative secretion of these two forms remain elusive. Wnt and Hedgehog can associate with membrane microdomains, but the function of this association was unknown. Here we show that a major protein component of membrane microdomains, reggie-1/flotillin-2, plays important roles in secretion and spreading of Wnt and Hedgehog in Drosophila. Reggie-1 loss-of-function results in reduced spreading of the morphogens, while its overexpression stimulates secretion of Wnt and Hedgehog and expands their diffusion. The resulting changes in the morphogen gradients differently affect the short- and long-range targets. In its action reggie-1 appears specific for Wnt and Hedgehog. These data suggest that reggie-1 is an important component of the Wnt and Hedgehog secretion pathway dedicated to formation of the mobile pool of these morphogens.
Collapse
Affiliation(s)
- Vladimir L Katanaev
- Department of Biology, TransRegio-SFB11, University of Konstanz, Konstanz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Abstract
The Hedgehog (Hh) family of secreted signaling proteins has a broad variety of functions during metazoan development and implications in human disease. Despite Hh being modified by two lipophilic adducts, Hh migrates far from its site of synthesis and programs cellular outcomes depending on its local concentrations. Recently, lipoproteins were suggested to act as carriers to mediate Hh transport in Drosophila. Here, we examine the role of lipophorins (Lp), the Drosophila lipoproteins, in Hh signaling in the wing imaginal disk, a tissue that does not express Lp but obtains it through the hemolymph. We use the up-regulation of the Lp receptor 2 (LpR2), the main Lp receptor expressed in the imaginal disk cells, to increase Lp endocytosis and locally reduce the amount of available free extracellular Lp in the wing disk epithelium. Under this condition, secreted Hh is not stabilized in the extracellular matrix. We obtain similar results after a generalized knock-down of hemolymph Lp levels. These data suggest that Hh must be packaged with Lp in the producing cells for proper spreading. Interestingly, we also show that Patched (Ptc), the Hh receptor, is a lipoprotein receptor; Ptc actively internalizes Lp into the endocytic compartment in a Hh-independent manner and physically interacts with Lp. Ptc, as a lipoprotein receptor, can affect intracellular lipid homeostasis in imaginal disk cells. However, by using different Ptc mutants, we show that Lp internalization does not play a major role in Hh signal transduction but does in Hh gradient formation.
Collapse
|
149
|
Ueyama M, Takemae H, Ohmae Y, Yoshida H, Toyoda H, Ueda R, Nishihara S. Functional analysis of proteoglycan galactosyltransferase II RNA interference mutant flies. J Biol Chem 2007; 283:6076-84. [PMID: 18165227 DOI: 10.1074/jbc.m709189200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Heparan sulfate proteoglycan plays an important role in developmental processes by modulating the distribution and stability of the morphogens Wingless, Hedgehog, and Decapentaplegic. Heparan and chondroitin sulfates share a common linkage tetrasaccharide structure, GlcAbeta1,3Galbeta1,3Galbeta1,4Xylbeta-O-Ser. In the present study, we identified Drosophila proteoglycan galactosyltransferase II (dbeta3GalTII), determined its substrate specificity, and performed its functional analysis by using RNA interference (RNAi) mutant flies. The enzyme transferred a galactose to Galbeta1,4Xyl-pMph, confirming that it is the Drosophila ortholog of human proteoglycan galactosyltransferase II. Real-time PCR analyses revealed that dbeta3GalTII is expressed in various tissues and throughout development. The dbeta3GalTII RNAi mutant flies showed decreased amounts of heparan sulfate proteoglycans. A genetic interaction of dbeta3GalTII with Drosophila beta1,4-galactoslyltransferase 7 (dbeta4GalT7) or with six genes that encode enzymes contributing to the synthesis of glycosaminoglycans indicated that dbeta3GalTII is involved in heparan sulfate synthesis for wing and eye development. Moreover, dbeta3GalTII knock-down caused a decrease in extracellular Wingless in the wing imaginal disc of the third instar larvae. These results demonstrated that dbeta3GalTII contributes to heparan sulfate proteoglycan synthesis in vitro and in vivo and also modulates Wingless distribution.
Collapse
Affiliation(s)
- Morio Ueyama
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo
| | | | | | | | | | | | | |
Collapse
|
150
|
Sasaki N, Okishio K, Ui-Tei K, Saigo K, Kinoshita-Toyoda A, Toyoda H, Nishimura T, Suda Y, Hayasaka M, Hanaoka K, Hitoshi S, Ikenaka K, Nishihara S. Heparan sulfate regulates self-renewal and pluripotency of embryonic stem cells. J Biol Chem 2007; 283:3594-3606. [PMID: 18024963 DOI: 10.1074/jbc.m705621200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Embryonic stem (ES) cell self-renewal and pluripotency are maintained by several signaling cascades and by expression of intrinsic factors, such as Oct3/4 and Nanog. The signaling cascades are activated by extrinsic factors, such as leukemia inhibitory factor, bone morphogenic protein, and Wnt. However, the mechanism that regulates extrinsic signaling in ES cells is unknown. Heparan sulfate (HS) chains are ubiquitously present as the cell surface proteoglycans and are known to play crucial roles in regulating several signaling pathways. Here we investigated whether HS chains on ES cells are involved in regulating signaling pathways that are important for the maintenance of ES cells. RNA interference-mediated knockdown of HS chain elongation inhibited mouse ES cell self-renewal and induced spontaneous differentiation of the cells into extraembryonic endoderm. Furthermore, autocrine/paracrine Wnt/beta-catenin signaling through HS chains was found to be required for the regulation of Nanog expression. We propose that HS chains are important for the extrinsic signaling required for mouse ES cell self-renewal and pluripotency.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577; Core Research for Evolutional Science and Technology of Japan Science and Technology Agency, Kawaguchi Center Building, 4-1-8, Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Kazuhiko Okishio
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577
| | - Kumiko Ui-Tei
- Department of Biophysics and Biochemistry, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Kaoru Saigo
- Department of Biophysics and Biochemistry, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Akiko Kinoshita-Toyoda
- Core Research for Evolutional Science and Technology of Japan Science and Technology Agency, Kawaguchi Center Building, 4-1-8, Hon-cho, Kawaguchi, Saitama 332-0012, Japan; Department of Bioanalytical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522
| | - Hidenao Toyoda
- Core Research for Evolutional Science and Technology of Japan Science and Technology Agency, Kawaguchi Center Building, 4-1-8, Hon-cho, Kawaguchi, Saitama 332-0012, Japan; Department of Bioanalytical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522
| | - Tomoaki Nishimura
- Department of Nanostructure and Advanced Materials, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Kohrimoto, Kagoshima 890-0065; Sudx-Biotec Corporation, KIBC 461, 5-5-2, Minatojima-minami, Chuo-ku, Kobe 650-0047
| | - Yasuo Suda
- Core Research for Evolutional Science and Technology of Japan Science and Technology Agency, Kawaguchi Center Building, 4-1-8, Hon-cho, Kawaguchi, Saitama 332-0012, Japan; Department of Nanostructure and Advanced Materials, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Kohrimoto, Kagoshima 890-0065; Sudx-Biotec Corporation, KIBC 461, 5-5-2, Minatojima-minami, Chuo-ku, Kobe 650-0047
| | - Michiko Hayasaka
- Laboratory of Molecular Embryology, Department of Bioscience, Kitasato University School of Science, 1-15-1 Kitasato, Sagamihara, Kanagawa 228
| | - Kazunari Hanaoka
- Laboratory of Molecular Embryology, Department of Bioscience, Kitasato University School of Science, 1-15-1 Kitasato, Sagamihara, Kanagawa 228
| | - Seiji Hitoshi
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577; Core Research for Evolutional Science and Technology of Japan Science and Technology Agency, Kawaguchi Center Building, 4-1-8, Hon-cho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|