101
|
Manley HR, Keightley MC, Lieschke GJ. The Neutrophil Nucleus: An Important Influence on Neutrophil Migration and Function. Front Immunol 2018; 9:2867. [PMID: 30564248 PMCID: PMC6288403 DOI: 10.3389/fimmu.2018.02867] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/21/2018] [Indexed: 11/13/2022] Open
Abstract
Neutrophil nuclear morphology has historically been used in haematology for neutrophil identification and characterisation, but its exact role in neutrophil function has remained enigmatic. During maturation, segmentation of the neutrophil nucleus into its mature, multi-lobulated shape is accompanied by distinct changes in nuclear envelope composition, resulting in a unique nucleus that is believed to be imbued with extraordinary nuclear flexibility. As a rate-limiting factor for cell migration, nuclear morphology and biomechanics are particularly important in the context of neutrophil migration during immune responses. Being an extremely plastic and fast migrating cell type, it is to be expected that neutrophils have an especially deformable nucleus. However, many questions still surround the dynamic capacities of the neutrophil nucleus, and which nuclear and cytoskeletal elements determine these dynamics. The biomechanics of the neutrophil nucleus should also be considered for their influences on the production of neutrophil extracellular traps (NETs), given this process sees the release of chromatin "nets" from nucleoplasm to extracellular space. Although past studies have investigated neutrophil nuclear composition and shape, in a new era of more sophisticated biomechanical and genetic techniques, 3D migration studies, and higher resolution microscopy we now have the ability to further investigate and understand neutrophil nuclear plasticity at an unprecedented level. This review addresses what is currently understood about neutrophil nuclear structure and its role in migration and the release of NETs, whilst highlighting open questions surrounding neutrophil nuclear dynamics.
Collapse
Affiliation(s)
- Harriet R Manley
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | | | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
102
|
Jacobson EC, Perry JK, Long DS, Olins AL, Olins DE, Wright BE, Vickers MH, O’Sullivan JM. Migration through a small pore disrupts inactive chromatin organization in neutrophil-like cells. BMC Biol 2018; 16:142. [PMID: 30477489 PMCID: PMC6257957 DOI: 10.1186/s12915-018-0608-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/02/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Mammalian cells are flexible and can rapidly change shape when they contract, adhere, or migrate. The nucleus must be stiff enough to withstand cytoskeletal forces, but flexible enough to remodel as the cell changes shape. This is particularly important for cells migrating through confined spaces, where the nuclear shape must change in order to fit through a constriction. This occurs many times in the life cycle of a neutrophil, which must protect its chromatin from damage and disruption associated with migration. Here we characterized the effects of constricted migration in neutrophil-like cells. RESULTS Total RNA sequencing identified that migration of neutrophil-like cells through 5- or 14-μm pores was associated with changes in the transcript levels of inflammation and chemotaxis-related genes when compared to unmigrated cells. Differentially expressed transcripts specific to migration with constriction were enriched for groups of genes associated with cytoskeletal remodeling. Hi-C was used to capture the genome organization in control and migrated cells. Limited switching was observed between the active (A) and inactive (B) compartments after migration. However, global depletion of short-range contacts was observed following migration with constriction compared to migration without constriction. Regions with disrupted contacts, TADs, and compartments were enriched for inactive chromatin. CONCLUSION Short-range genome organization is preferentially altered in inactive chromatin, possibly protecting transcriptionally active contacts from the disruptive effects of migration with constriction. This is consistent with current hypotheses implicating heterochromatin as the mechanoresponsive form of chromatin. Further investigation concerning the contribution of heterochromatin to stiffness, flexibility, and protection of nuclear function will be important for understanding cell migration in relation to human health and disease.
Collapse
Affiliation(s)
| | - Jo K. Perry
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - David S. Long
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Biomedical Engineering, Wichita State University, Wichita, USA
| | - Ada L. Olins
- College of Pharmacy, Department of Pharmaceutical Sciences, University of New England, Portland, ME USA
| | - Donald E. Olins
- College of Pharmacy, Department of Pharmaceutical Sciences, University of New England, Portland, ME USA
| | - Bryon E. Wright
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Mark H. Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
103
|
Jiang Y, Ji JY. Understanding lamin proteins and their roles in aging and cardiovascular diseases. Life Sci 2018; 212:20-29. [DOI: 10.1016/j.lfs.2018.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 02/04/2023]
|
104
|
Suresh S, Markossian S, Osmani AH, Osmani SA. Nup2 performs diverse interphase functions in Aspergillus nidulans. Mol Biol Cell 2018; 29:3144-3154. [PMID: 30355026 PMCID: PMC6340215 DOI: 10.1091/mbc.e18-04-0223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The nuclear pore complex (NPC) protein Nup2 plays interphase nuclear transport roles and in Aspergillus nidulans also functions to bridge NPCs at mitotic chromatin for their faithful coinheritance to daughter G1 nuclei. In this study, we further investigate the interphase functions of Nup2 in A. nidulans. Although Nup2 is not required for nuclear import of all nuclear proteins after mitosis, it is required for normal G1 nuclear accumulation of the NPC nuclear basket–associated components Mad2 and Mlp1 as well as the THO complex protein Tho2. Targeting of Mlp1 to nuclei partially rescues the interphase delay seen in nup2 mutants indicating that some of the interphase defects in Nup2-deleted cells are due to Mlp1 mislocalization. Among the inner nuclear membrane proteins, Nup2 affects the localization of Ima1, orthologues of which are involved in nuclear movement. Interestingly, nup2 mutant G1 nuclei also exhibit an abnormally long period of extensive to-and-fro movement immediately after mitosis in a manner dependent on the microtubule cytoskeleton. This indicates that Nup2 is required to limit the transient postmitotic nuclear migration typical of many filamentous fungi. The findings reveal that Nup2 is a multifunctional protein that performs diverse functions during both interphase and mitosis in A. nidulans.
Collapse
Affiliation(s)
- Subbulakshmi Suresh
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Sarine Markossian
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143
| | - Aysha H Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Stephen A Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
105
|
Khalo IV, Konokhova AI, Orlova DY, Trusov KV, Yurkin MA, Bartova E, Kozubek S, Maltsev VP, Chernyshev AV. Nuclear apoptotic volume decrease in individual cells: Confocal microscopy imaging and kinetic modeling. J Theor Biol 2018; 454:60-69. [PMID: 29859212 DOI: 10.1016/j.jtbi.2018.05.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 05/13/2018] [Accepted: 05/28/2018] [Indexed: 11/29/2022]
Abstract
The dynamics of nuclear morphology changes during apoptosis remains poorly investigated and understood. Using 3D time-lapse confocal microscopy we performed a study of early-stage apoptotic nuclear morphological changes induced by etoposide in single living HepG2 cells. These observations provide a definitive evidence that nuclear apoptotic volume decrease (AVD) is occurring simultaneously with peripheral chromatin condensation (so called "apoptotic ring"). In order to describe quantitatively the dynamics of nuclear morphological changes in the early stage of apoptosis we suggest a general molecular kinetic model, which fits well the obtained experimental data in our study. Results of this work may clarify molecular mechanisms of nuclear morphology changes during apoptosis.
Collapse
Affiliation(s)
- Irina V Khalo
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya 3, Novosibirsk 630090, Russia
| | - Anastasiya I Konokhova
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya 3, Novosibirsk 630090, Russia
| | - Darya Y Orlova
- Department of Genetics, Stanford University, Campus Drive 279, Stanford, CA 94305, USA
| | - Konstantin V Trusov
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya 3, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Maxim A Yurkin
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya 3, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Eva Bartova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, Brno CZ-612 65, Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, Brno CZ-612 65, Czech Republic
| | - Valeri P Maltsev
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya 3, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia; Novosibirsk State Medical University, Krasny Prospect 52, Novosibirsk 630091, Russia
| | - Andrei V Chernyshev
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya 3, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.
| |
Collapse
|
106
|
Lele TP, Dickinson RB, Gundersen GG. Mechanical principles of nuclear shaping and positioning. J Cell Biol 2018; 217:3330-3342. [PMID: 30194270 PMCID: PMC6168261 DOI: 10.1083/jcb.201804052] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/27/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022] Open
Abstract
Positioning and shaping the nucleus represents a mechanical challenge for the migrating cell because of its large size and resistance to deformation. Cells shape and position the nucleus by transmitting forces from the cytoskeleton onto the nuclear surface. This force transfer can occur through specialized linkages between the nuclear envelope and the cytoskeleton. In response, the nucleus can deform and/or it can move. Nuclear movement will occur when there is a net differential in mechanical force across the nucleus, while nuclear deformation will occur when mechanical forces overcome the mechanical resistance of the various structures that comprise the nucleus. In this perspective, we review current literature on the sources and magnitude of cellular forces exerted on the nucleus, the nuclear envelope proteins involved in transferring cellular forces, and the contribution of different nuclear structural components to the mechanical response of the nucleus to these forces.
Collapse
Affiliation(s)
- Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, FL
- Anatomy and Cell Biology, University of Florida, Gainesville, FL
| | | | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| |
Collapse
|
107
|
Direct Force Probe for Nuclear Mechanics. Methods Mol Biol 2018. [PMID: 30141040 DOI: 10.1007/978-1-4939-8691-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
We describe a recently reported method for directly applying a known, nanonewton-scale force to the nucleus in a living, intact cell. First, a suction seal is applied on the nuclear surface using a micropipette. Then, the micropipette is translated away from the nucleus. The nucleus deforms and translates with the moving micropipette and then eventually detaches from the micropipette and recovers (roughly) its original shape and position. At the point of detachment, the resisting force (from the deformed nucleus and connected cytoskeleton) balances the suction force. Because the suction force is precisely known and reproducibly applied, this method therefore allows comparisons of nuclear response across disruptions to the cytoskeleton, nucleus, or cell. This method is useful for quantifying nuclear elastic properties in its native, integrated environment.
Collapse
|
108
|
|
109
|
Collective cell polarization and alignment on curved surfaces. J Mech Behav Biomed Mater 2018; 88:330-339. [PMID: 30196189 DOI: 10.1016/j.jmbbm.2018.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/31/2018] [Accepted: 08/17/2018] [Indexed: 01/06/2023]
Abstract
Curvature as an important topological parameter of 3D extra-cellular matrix has drawn growing attention in recent years. But the underlying mechanism that curvature influences cell behaviors has remained unknown. In this study, we seeded cells on semi-cylindrical and hemispheric surfaces and tested cell alignment and polarization. We found that the surface curvature has profound effect on cell behaviors. With the decrease of diameter of the cylinder/sphere (i.e. increase of curvature), the cells would more preferentially align and polarize with large aspect ratio in the axial/peripheral direction. And the behaviors of the alignment and polarization were position-dependent. For example, at the end of the cylinder, the cells preferred to align circumferentially; while in the interior region, the cells preferred to align in the axial direction. We showed that the cell polarization and alignment were closely correlated with the in-plane stresses in cell layer. That is, the cell polarization and alignment were controlled by the maximum shear stress, which drove cells to align and polarize along the maximum principal stress. The curvature could influence the magnitude of the maximum shear stress and thus regulate cell behaviors. This study provided important insights into the mechanisms of surface curvature influencing cell behaviors in tissue morphogenesis. In addition, our theory of the stress dependent cellular polarity provides a generalized interpretation of the curvature and edge effects which might be extended to understand other steric effects in cell behaviors.
Collapse
|
110
|
Actin-Based Cell Protrusion in a 3D Matrix. Trends Cell Biol 2018; 28:823-834. [PMID: 29970282 PMCID: PMC6158345 DOI: 10.1016/j.tcb.2018.06.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022]
Abstract
Cell migration controls developmental processes (gastrulation and tissue patterning), tissue homeostasis (wound repair and inflammatory responses), and the pathobiology of diseases (cancer metastasis and inflammation). Understanding how cells move in physiologically relevant environments is of major importance, and the molecular machinery behind cell movement has been well studied on 2D substrates, beginning over half a century ago. Studies over the past decade have begun to reveal the mechanisms that control cell motility within 3D microenvironments – some similar to, and some highly divergent from those found in 2D. In this review we focus on migration and invasion of cells powered by actin, including formation of actin-rich protrusions at the leading edge, and the mechanisms that control nuclear movement in cells moving in a 3D matrix. Cell migration has been well studied in 2D, but how this relates to movement in physiological 3D tissues and matrix is not clear, particularly in vertebrate interstitial matrix. In 3D matrix cells actin polymerisation directly contributes to the formation of lamellipodia to facilitate migration and invasion (mesenchymal movement), analogous to 2D migration; actomyosin contractility promotes bleb formation to indirectly promote protrusion (amoeboid movement). Mesenchymal migration can be characterised by polymerisation of actin to form filopodial protrusions, in the absence of lamellipodia. Translocation of the nucleus is emerging as a critical step due to the constrictive environment of 3D matrices, and the mechanisms that transmit force to the nucleus and allow movement are beginning to be uncovered.
Collapse
|
111
|
Pradhan R, Ranade D, Sengupta K. Emerin modulates spatial organization of chromosome territories in cells on softer matrices. Nucleic Acids Res 2018; 46:5561-5586. [PMID: 29684168 PMCID: PMC6009696 DOI: 10.1093/nar/gky288] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 02/06/2023] Open
Abstract
Cells perceive and relay external mechanical forces into the nucleus through the nuclear envelope. Here we examined the effect of lowering substrate stiffness as a paradigm to address the impact of altered mechanical forces on nuclear structure-function relationships. RNA sequencing of cells on softer matrices revealed significant transcriptional imbalances, predominantly in chromatin associated processes and transcriptional deregulation of human Chromosome 1. Furthermore, 3-Dimensional fluorescence in situ hybridization (3D-FISH) analyses showed a significant mislocalization of Chromosome 1 and 19 Territories (CT) into the nuclear interior, consistent with their transcriptional deregulation. However, CT18 with relatively lower transcriptional dysregulation, also mislocalized into the nuclear interior. Furthermore, nuclear Lamins that regulate chromosome positioning, were mislocalized into the nuclear interior in response to lowered matrix stiffness. Notably, Lamin B2 overexpression retained CT18 near the nuclear periphery in cells on softer matrices. While, cells on softer matrices also activated emerin phosphorylation at a novel Tyr99 residue, the inhibition of which in a phospho-deficient mutant (emerinY99F), selectively retained chromosome 18 and 19 but not chromosome 1 territories at their conserved nuclear locations. Taken together, emerin functions as a key mechanosensor, that modulates the spatial organization of chromosome territories in the interphase nucleus.
Collapse
Affiliation(s)
- Roopali Pradhan
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Devika Ranade
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Kundan Sengupta
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
112
|
Balashov V, Efimov A, Agapova O, Pogorelov A, Agapov I, Agladze K. High resolution 3D microscopy study of cardiomyocytes on polymer scaffold nanofibers reveals formation of unusual sheathed structure. Acta Biomater 2018; 68:214-222. [PMID: 29288823 DOI: 10.1016/j.actbio.2017.12.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/04/2017] [Accepted: 12/22/2017] [Indexed: 01/12/2023]
Abstract
Building functional and robust scaffolds for engineered biological tissue requires a nanoscale mechanistic understanding of how cells use the scaffold for their growth and development. A vast majority of the scaffolds used for cardiac tissue engineering are based on polymer materials, the matrices of nanofibers. Attempts to load the polymer fibers of the scaffold with additional sophisticated features, such as electrical conductivity and controlled release of the growth factors or other biologically active molecules, as well as trying to match the mechanical features of the scaffold to those of the extracellular matrix, cannot be efficient without a detailed knowledge of how the cells are attached and strategically positioned with respect to the scaffold nanofibers at micro and nanolevel. Studying single cell - single fiber interactions with the aid of confocal laser scanning microscopy (CLSM), scanning probe nanotomography (SPNT), and transmission electron microscopy (TEM), we found that cardiac cells actively interact with substrate nanofibers, but in different ways. While cardiomyocytes often create a remarkable "sheath" structure, enveloping fiber and, thus, substantially increasing contact zone, fibroblasts interact with nanofibers in the locations of focal adhesion clusters mainly without wrapping the fiber. STATEMENTS OF SIGNIFICANCE We found that cardiomyocytes grown on electrospun polymer nanofibers often create a striking "sheath" structure, enveloping fiber with the formation of a very narrow (∼22 nm) membrane gap leading from the fiber to the extracellular space. This wrapping makes the entire fiber surface available for cell attachment. This finding gives a new prospective view on how scaffold nanofibers may interact with growing cells. It may play a significant role in effective design of novel nanofiber scaffolds for tissue engineering concerning mechanical and electrical properties of scaffolds as well as controlled drug release from "smart" biomaterials.
Collapse
|
113
|
Northcott JM, Dean IS, Mouw JK, Weaver VM. Feeling Stress: The Mechanics of Cancer Progression and Aggression. Front Cell Dev Biol 2018. [PMID: 29541636 PMCID: PMC5835517 DOI: 10.3389/fcell.2018.00017] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment is a dynamic landscape in which the physical and mechanical properties evolve dramatically throughout cancer progression. These changes are driven by enhanced tumor cell contractility and expansion of the growing tumor mass, as well as through alterations to the material properties of the surrounding extracellular matrix (ECM). Consequently, tumor cells are exposed to a number of different mechanical inputs including cell–cell and cell-ECM tension, compression stress, interstitial fluid pressure and shear stress. Oncogenes engage signaling pathways that are activated in response to mechanical stress, thereby reworking the cell's intrinsic response to exogenous mechanical stimuli, enhancing intracellular tension via elevated actomyosin contraction, and influencing ECM stiffness and tissue morphology. In addition to altering their intracellular tension and remodeling the microenvironment, cells actively respond to these mechanical perturbations phenotypically through modification of gene expression. Herein, we present a description of the physical changes that promote tumor progression and aggression, discuss their interrelationship and highlight emerging therapeutic strategies to alleviate the mechanical stresses driving cancer to malignancy.
Collapse
Affiliation(s)
- Josette M Northcott
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, United States
| | - Ivory S Dean
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, United States
| | - Janna K Mouw
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, United States
| | - Valerie M Weaver
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, United States.,Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States.,UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
114
|
Emerging views of the nucleus as a cellular mechanosensor. Nat Cell Biol 2018; 20:373-381. [PMID: 29467443 DOI: 10.1038/s41556-018-0038-y] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022]
Abstract
The ability of cells to respond to mechanical forces is critical for numerous biological processes. Emerging evidence indicates that external mechanical forces trigger changes in nuclear envelope structure and composition, chromatin organization and gene expression. However, it remains unclear if these processes originate in the nucleus or are downstream of cytoplasmic signals. Here we discuss recent findings that support a direct role of the nucleus in cellular mechanosensing and highlight novel tools to study nuclear mechanotransduction.
Collapse
|
115
|
Maine EA, Westcott JM, Prechtl AM, Dang TT, Whitehurst AW, Pearson GW. The cancer-testis antigens SPANX-A/C/D and CTAG2 promote breast cancer invasion. Oncotarget 2018; 7:14708-26. [PMID: 26895102 PMCID: PMC4924746 DOI: 10.18632/oncotarget.7408] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022] Open
Abstract
Genes that are normally biased towards expression in the testis are often induced in tumor cells. These gametogenic genes, known as cancer-testis antigens (CTAs), have been extenstively investigated as targets for immunotherapy. However, despite their frequent detection, the degree to which CTAs support neoplastic invasion is poorly understood. Here, we find that the CTA genes SPANX-A/C/D and CTAG2 are coordinately induced in breast cancer cells and regulate distinct features of invasive behavior. Our functional analysis revealed that CTAG2 interacts with Pericentrin at the centrosome and is necessary for directional migration. Conversely, SPANX-A/C/D interacts with Lamin A/C at the inner nuclear membrane and is required for the formation of actin-rich cellular protrusions that reorganize the extracellular matrix. Importantly, SPANX-A/C/D was required for breast cancer cells to spontaneously metastasize to the lung, demonstrating that CTA reactivation can be critical for invasion dependent phenotypes in vivo. Moreover, elevated SPANX-A/C/D expression in breast cancer patient tumors correlated with poor outcome. Together, our results suggest that distinct CTAs promote tumor progression by regulating complementary cellular functions that are integrated together to induce invasive behavior.
Collapse
Affiliation(s)
- Erin A Maine
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jill M Westcott
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Amanda M Prechtl
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tuyen T Dang
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Angelique W Whitehurst
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,The Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gray W Pearson
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,The Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
116
|
Chen L, Jiang F, Qiao Y, Li H, Wei Z, Huang T, Lan J, Xia Y, Li J. Nucleoskeletal stiffness regulates stem cell migration and differentiation through lamin A/C. J Cell Physiol 2018; 233:5112-5118. [PMID: 29215717 DOI: 10.1002/jcp.26336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/27/2017] [Indexed: 02/05/2023]
Abstract
Stem cell-based tissue engineering provides a prospective strategy to bone tissue repair. Bone tissue repair begins at the recruitment and directional movement of stem cells, and ultimately achieved on the directional differentiation of stem cells. The migration and differentiation of stem cells are regulated by nucleoskeletal stiffness. Mechanical properties of lamin A/C contribute to the nucleoskeletal stiffness and consequently to the regulation of cell migration and differentiation. Nuclear lamin A/C determines cell migration through the regulation of nucleoskeletal stiffness and rigidity and involve in nuclear-cytoskeletal coupling. Moreover, lamin A/C is the essential core module regulating stem cell differentiation. The cells with higher migration ability tend to have enhanced differentiation potential, while the optimum amount of lamin A/C in migration and differentiation of MSCs is in conflict. This contrary phenomenon may be the result of mechanical microenvironment modulation.
Collapse
Affiliation(s)
- Liujing Chen
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, Sichuan, China
| | - Fulin Jiang
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, Sichuan, China
| | - Yini Qiao
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, Sichuan, China
| | - Hong Li
- Hangzhou Dental Hospital, School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhangming Wei
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, Sichuan, China
| | - Tu Huang
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, Sichuan, China
| | - Jingxiang Lan
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, Sichuan, China
| | - Yue Xia
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, Sichuan, China
| | - Juan Li
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, Sichuan, China
| |
Collapse
|
117
|
Khan ZS, Santos JM, Hussain F. Aggressive prostate cancer cell nuclei have reduced stiffness. BIOMICROFLUIDICS 2018; 12:014102. [PMID: 29333204 PMCID: PMC5750055 DOI: 10.1063/1.5019728] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 12/15/2017] [Indexed: 05/25/2023]
Abstract
It has been hypothesized that highly metastatic cancer cells have softer nuclei and hence would travel faster through confining environments. Our goal was to prove this untested hypothesis for prostate cells. Our nuclear creep experiments using a microfluidic channel with a narrow constriction show that stiffness of aggressive immortalized prostate cancer nuclei is significantly lower than that of immortalized normal cell nuclei and hence can be a convenient malignancy marker. Nuclear stiffness is found to be the highest for cells expressing high levels of lamin A/C but lowest for cells expressing low lamin A/C levels. Decreased chromatin condensation found in softer nuclei suggests that the former can also be a marker for aggressive cancers.
Collapse
Affiliation(s)
- Zeina S Khan
- Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Julianna M Santos
- Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Fazle Hussain
- Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
118
|
Abstract
Biological cells sample their surrounding microenvironments using nanoscale force sensors on the cell surfaces. These surface-based force and stress sensors generate physical and chemical responses inside the cell. The inherently well-connected cytoskeleton and its physical contacts with the force elements on the nuclear membrane lead these physicochemical responses to cascade all the way inside the cell nucleus, physically altering the nuclear state. These physical alterations of the cell nucleus, through yet-unknown complex steps elicit physical and functional response from the chromatin in the form of altered gene expression profiles. This mechanism of force/stress sensing by the cell and then its nuclear response has been shown to play a vital role in maintaining robust cellular homeostasis, controlling gene expression profiles during developmental phases as well as cell differentiation. Over the last few years, there has been appreciable progress toward identification of the molecular players responsible for force sensing. However, the actual sensing mechanism of cell surface bound force sensors and more importantly cascading of the signals, both physical (via cytosolic force sensing elements such as microtubule and actin framework) and chemical (cascade of biochemical signaling from cell surface to nuclear surface and further to the chromatin), inside the cell is poorly understood. In this chapter, we present a review of the currently known molecular players in cellular as well as nuclear force sensing repertoire and their possible mechanistic aspects. We also introduce various biophysical concepts that are used to describe the force/stress sensing and response of a cell. We hope this will help asking clearer questions and designing pointed experiments for better understanding of the force-dependent design principles of the cell surface, nuclear surface, and gene expression.
Collapse
Affiliation(s)
- Bidisha Sinha
- Indian Institute of Science Education and Research Kolkata, Mohanpur, WB, India
| | - Arikta Biswas
- Indian Institute of Science Education and Research Kolkata, Mohanpur, WB, India
| | | |
Collapse
|
119
|
Kim DH, Hah J, Wirtz D. Mechanics of the Cell Nucleus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:41-55. [DOI: 10.1007/978-3-319-95294-9_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
120
|
Han KY, Kim KT, Joung JG, Son DS, Kim YJ, Jo A, Jeon HJ, Moon HS, Yoo CE, Chung W, Eum HH, Kim S, Kim HK, Lee JE, Ahn MJ, Lee HO, Park D, Park WY. SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells. Genome Res 2017; 28:75-87. [PMID: 29208629 PMCID: PMC5749184 DOI: 10.1101/gr.223263.117] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022]
Abstract
Simultaneous sequencing of the genome and transcriptome at the single-cell level is a powerful tool for characterizing genomic and transcriptomic variation and revealing correlative relationships. However, it remains technically challenging to analyze both the genome and transcriptome in the same cell. Here, we report a novel method for simultaneous isolation of genomic DNA and total RNA (SIDR) from single cells, achieving high recovery rates with minimal cross-contamination, as is crucial for accurate description and integration of the single-cell genome and transcriptome. For reliable and efficient separation of genomic DNA and total RNA from single cells, the method uses hypotonic lysis to preserve nuclear lamina integrity and subsequently captures the cell lysate using antibody-conjugated magnetic microbeads. Evaluating the performance of this method using real-time PCR demonstrated that it efficiently recovered genomic DNA and total RNA. Thorough data quality assessments showed that DNA and RNA simultaneously fractionated by the SIDR method were suitable for genome and transcriptome sequencing analysis at the single-cell level. The integration of single-cell genome and transcriptome sequencing by SIDR (SIDR-seq) showed that genetic alterations, such as copy-number and single-nucleotide variations, were more accurately captured by single-cell SIDR-seq compared with conventional single-cell RNA-seq, although copy-number variations positively correlated with the corresponding gene expression levels. These results suggest that SIDR-seq is potentially a powerful tool to reveal genetic heterogeneity and phenotypic information inferred from gene expression patterns at the single-cell level.
Collapse
Affiliation(s)
- Kyung Yeon Han
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Kyu-Tae Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Dae-Soon Son
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Yeon Jeong Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Areum Jo
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Hyo-Jeong Jeon
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Hui-Sung Moon
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Chang Eun Yoo
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Woosung Chung
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, South Korea
| | - Hye Hyeon Eum
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, South Korea
| | - Sangmin Kim
- Department of Breast Cancer Center, Samsung Medical Center, Seoul 06351, South Korea
| | - Hong Kwan Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Seoul 06351, South Korea
| | - Jeong Eon Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, South Korea.,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Hae-Ock Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Donghyun Park
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, South Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| |
Collapse
|
121
|
Kolb T, Kraxner J, Skodzek K, Haug M, Crawford D, Maaß KK, Aifantis KE, Whyte G. Optomechanical measurement of the role of lamins in whole cell deformability. JOURNAL OF BIOPHOTONICS 2017; 10:1657-1664. [PMID: 28485113 DOI: 10.1002/jbio.201600198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 06/07/2023]
Abstract
There is mounting evidence that the nuclear envelope, and particularly the lamina, plays a critical role in the mechanical and regulation properties of the cell and changes to the lamina can have implications for the physical properties of the whole cell. In this study we demonstrate that the optical stretcher can measure changes in the time-dependent mechanical properties of living cells with different levels of A-type lamin expression. Results from the optical stretcher shows a decrease in the deformability of cells as the levels of lamin A increases, for cells which grow both adherently and in suspension. Further detail can be probed by combining the optical stretcher with fluorescence microscopy to investigate the nuclear mechanical properties which show a larger decrease in deformability than for the whole cell.
Collapse
Affiliation(s)
- Thorsten Kolb
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Germany
- Division of Molecular Genetics, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Julia Kraxner
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Germany
| | - Kai Skodzek
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Michael Haug
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Germany
| | - Dean Crawford
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Kendra K Maaß
- Division of Molecular Genetics, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Katerina E Aifantis
- Lab of Mechanics and Materials, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Civil Engineering-Engineering Mechanics, University of Arizona, Tuscon, Arizona, 85721
| | - Graeme Whyte
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Germany
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| |
Collapse
|
122
|
Banigan EJ, Stephens AD, Marko JF. Mechanics and Buckling of Biopolymeric Shells and Cell Nuclei. Biophys J 2017; 113:1654-1663. [PMID: 29045860 DOI: 10.1016/j.bpj.2017.08.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/08/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022] Open
Abstract
We study a Brownian dynamics simulation model of a biopolymeric shell deformed by axial forces exerted at opposing poles. The model exhibits two distinct, linear force-extension regimes, with the response to small tensions governed by linear elasticity and the response to large tensions governed by an effective spring constant that scales with radius as R-0.25. When extended beyond the initial linear elastic regime, the shell undergoes a hysteretic, temperature-dependent buckling transition. We experimentally observe this buckling transition by stretching and imaging the lamina of isolated cell nuclei. Furthermore, the interior contents of the shell can alter mechanical response and buckling, which we show by simulating a model for the nucleus that quantitatively agrees with our micromanipulation experiments stretching individual nuclei.
Collapse
Affiliation(s)
- Edward J Banigan
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois.
| | - Andrew D Stephens
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois
| | - John F Marko
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois; Department of Molecular Biosciences, Northwestern University, Evanston, Illinois
| |
Collapse
|
123
|
Szczesny SE, Mauck RL. The Nuclear Option: Evidence Implicating the Cell Nucleus in Mechanotransduction. J Biomech Eng 2017; 139:2592356. [PMID: 27918797 DOI: 10.1115/1.4035350] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 02/06/2023]
Abstract
Biophysical stimuli presented to cells via microenvironmental properties (e.g., alignment and stiffness) or external forces have a significant impact on cell function and behavior. Recently, the cell nucleus has been identified as a mechanosensitive organelle that contributes to the perception and response to mechanical stimuli. However, the specific mechanotransduction mechanisms that mediate these effects have not been clearly established. Here, we offer a comprehensive review of the evidence supporting (and refuting) three hypothetical nuclear mechanotransduction mechanisms: physical reorganization of chromatin, signaling at the nuclear envelope, and altered cytoskeletal structure/tension due to nuclear remodeling. Our goal is to provide a reference detailing the progress that has been made and the areas that still require investigation regarding the role of nuclear mechanotransduction in cell biology. Additionally, we will briefly discuss the role that mathematical models of cell mechanics can play in testing these hypotheses and in elucidating how biophysical stimulation of the nucleus drives changes in cell behavior. While force-induced alterations in signaling pathways involving lamina-associated polypeptides (LAPs) (e.g., emerin and histone deacetylase 3 (HDAC3)) and transcription factors (TFs) located at the nuclear envelope currently appear to be the most clearly supported mechanism of nuclear mechanotransduction, additional work is required to examine this process in detail and to more fully test alternative mechanisms. The combination of sophisticated experimental techniques and advanced mathematical models is necessary to enhance our understanding of the role of the nucleus in the mechanotransduction processes driving numerous critical cell functions.
Collapse
Affiliation(s)
- Spencer E Szczesny
- Department of Orthopaedic Surgery, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104
| | - Robert L Mauck
- Department of Orthopaedic Surgery, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104;Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 e-mail:
| |
Collapse
|
124
|
Abstract
The nuclear envelope (NE) presents a physical boundary between the cytoplasm and the nucleoplasm, sandwiched in between two highly active systems inside the cell: cytoskeleton and chromatin. NE defines the shape and size of the cell nucleus, which increases during the cell cycle, accommodating for chromosome decondensation followed by genome duplication. In this work, we study nuclear shape fluctuations at short time scales of seconds in human cells. Using spinning disk confocal microscopy, we observe fast fluctuations of the NE, visualized by fluorescently labeled lamin A, and of the chromatin globule surface (CGS) underneath the NE, visualized by fluorescently labeled histone H2B. Our findings reveal that fluctuation amplitudes of both CGS and NE monotonously decrease during the cell cycle, serving as a reliable cell cycle stage indicator. Remarkably, we find that, while CGS and NE typically fluctuate in phase, they do exhibit localized regions of out-of-phase motion, which lead to separation of NE and CGS. To explore the mechanism behind these shape fluctuations, we use biochemical perturbations. We find the shape fluctuations of CGS and NE to be both thermally and actively driven, the latter caused by forces from chromatin and cytoskeleton. Such undulations might affect gene regulation as well as contribute to the anomalously high rates of nuclear transport by, e.g., stirring of molecules next to NE, or increasing flux of molecules through the nuclear pores.
Collapse
|
125
|
Pontes B, Monzo P, Gauthier NC. Membrane tension: A challenging but universal physical parameter in cell biology. Semin Cell Dev Biol 2017; 71:30-41. [PMID: 28851599 DOI: 10.1016/j.semcdb.2017.08.030] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/08/2017] [Accepted: 08/13/2017] [Indexed: 01/03/2023]
Abstract
The plasma membrane separates the interior of cells from the outside environment. The membrane tension, defined as the force per unit length acting on a cross-section of membrane, regulates many vital biological processes. In this review, we summarize the first historical findings and the latest advances, showing membrane tension as an important physical parameter in cell biology. We also discuss how this parameter must be better integrated and we propose experimental approaches for key unanswered questions.
Collapse
Affiliation(s)
- Bruno Pontes
- LPO-COPEA, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Pascale Monzo
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Nils C Gauthier
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
126
|
Lherbette M, Dos Santos Á, Hari-Gupta Y, Fili N, Toseland CP, Schaap IAT. Atomic Force Microscopy micro-rheology reveals large structural inhomogeneities in single cell-nuclei. Sci Rep 2017; 7:8116. [PMID: 28808261 PMCID: PMC5556037 DOI: 10.1038/s41598-017-08517-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/12/2017] [Indexed: 12/31/2022] Open
Abstract
During growth, differentiation and migration of cells, the nucleus changes size and shape, while encountering forces generated by the cell itself and its environment. Although there is increasing evidence that such mechanical signals are employed to control gene expression, it remains unclear how mechanical forces are transduced through the nucleus. To this end, we have measured the compliance of nuclei by applying oscillatory strains between 1 and 700 Hz to individual nuclei of multiple mammalian cell-lines that were compressed between two plates. The quantitative response varied with more than one order of magnitude and scaled with the size of the nucleus. Surprisingly, the qualitative behaviour was conserved among different cell-lines: all nuclei showed a softer and more viscous response towards the periphery, suggesting a reduced degree of crosslinking of the chromatin. This may be an important feature to regulate transcription via mechano-transduction in this most active and dynamic region of the nucleus.
Collapse
Affiliation(s)
- Michael Lherbette
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Ália Dos Santos
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Yukti Hari-Gupta
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Natalia Fili
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | | | - Iwan A T Schaap
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK. .,SmarAct GmbH, D26135, Oldenburg, Germany.
| |
Collapse
|
127
|
Fal K, Asnacios A, Chabouté ME, Hamant O. Nuclear envelope: a new frontier in plant mechanosensing? Biophys Rev 2017; 9:389-403. [PMID: 28801801 PMCID: PMC5578935 DOI: 10.1007/s12551-017-0302-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023] Open
Abstract
In animals, it is now well established that forces applied at the cell surface are propagated through the cytoskeleton to the nucleus, leading to deformations of the nuclear structure and, potentially, to modification of gene expression. Consistently, altered nuclear mechanics has been related to many genetic disorders, such as muscular dystrophy, cardiomyopathy and progeria. In plants, the integration of mechanical signals in cell and developmental biology has also made great progress. Yet, while the link between cell wall stresses and cytoskeleton is consolidated, such cortical mechanical cues have not been integrated with the nucleoskeleton. Here, we propose to take inspiration from studies on animal nuclei to identify relevant methods amenable to probing nucleus mechanics and deformation in plant cells, with a focus on microrheology. To identify potential molecular targets, we also compare the players at the nuclear envelope, namely lamina and LINC complex, in both plant and animal nuclei. Understanding how mechanical signals are transduced to the nucleus across kingdoms will likely have essential implications in development (e.g. how mechanical cues add robustness to gene expression patterns), in the nucleoskeleton-cytoskeleton nexus (e.g. how stress is propagated in turgid/walled cells), as well as in transcriptional control, chromatin biology and epigenetics.
Collapse
Affiliation(s)
- Kateryna Fal
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342, Lyon, France
| | - Atef Asnacios
- Laboratoire Matières et Systèmes Complexes, Université Paris-Diderot and CNRS, UMR 7057, Sorbonne Paris Cité, Paris, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342, Lyon, France.
| |
Collapse
|
128
|
Abstract
Moving the nucleus to a specific position within the cell is an important event during many cell and developmental processes. Several different molecular mechanisms exist to position nuclei in various cell types. In this Commentary, we review the recent progress made in elucidating mechanisms of nuclear migration in a variety of important developmental models. Genetic approaches to identify mutations that disrupt nuclear migration in yeast, filamentous fungi, Caenorhabditis elegans, Drosophila melanogaster and plants led to the identification of microtubule motors, as well as Sad1p, UNC-84 (SUN) domain and Klarsicht, ANC-1, Syne homology (KASH) domain proteins (LINC complex) that function to connect nuclei to the cytoskeleton. We focus on how these proteins and various mechanisms move nuclei during vertebrate development, including processes related to wound healing of fibroblasts, fertilization, developing myotubes and the developing central nervous system. We also describe how nuclear migration is involved in cells that migrate through constricted spaces. On the basis of these findings, it is becoming increasingly clear that defects in nuclear positioning are associated with human diseases, syndromes and disorders.
Collapse
Affiliation(s)
- Courtney R Bone
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
129
|
Tocco VJ, Li Y, Christopher KG, Matthews JH, Aggarwal V, Paschall L, Luesch H, Licht JD, Dickinson RB, Lele TP. The nucleus is irreversibly shaped by motion of cell boundaries in cancer and non-cancer cells. J Cell Physiol 2017; 233:1446-1454. [PMID: 28542912 DOI: 10.1002/jcp.26031] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 01/01/2023]
Abstract
Actomyosin stress fibers impinge on the nucleus and can exert compressive forces on it. These compressive forces have been proposed to elongate nuclei in fibroblasts, and lead to abnormally shaped nuclei in cancer cells. In these models, the elongated or flattened nuclear shape is proposed to store elastic energy. However, we found that deformed shapes of nuclei are unchanged even after removal of the cell with micro-dissection, both for smooth, elongated nuclei in fibroblasts and abnormally shaped nuclei in breast cancer cells. The lack of shape relaxation implies that the nuclear shape in spread cells does not store any elastic energy, and the cellular stresses that deform the nucleus are dissipative, not static. During cell spreading, the deviation of the nucleus from a convex shape increased in MDA-MB-231 cancer cells, but decreased in MCF-10A cells. Tracking changes of nuclear and cellular shape on micropatterned substrata revealed that fibroblast nuclei deform only during deformations in cell shape and only in the direction of nearby moving cell boundaries. We propose that motion of cell boundaries exert a stress on the nucleus, which allows the nucleus to mimic cell shape. The lack of elastic energy in the nuclear shape suggests that nuclear shape changes in cells occur at constant surface area and volume.
Collapse
Affiliation(s)
- Vincent J Tocco
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Yuan Li
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Keith G Christopher
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - James H Matthews
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida
| | - Varun Aggarwal
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Lauren Paschall
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida
| | - Jonathan D Licht
- Division of Hematology and Oncology, Department of Medicine, University of Florida Health Cancer Center, Gainesville, Florida
| | - Richard B Dickinson
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, Florida.,Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
130
|
Barata D, Dias P, Wieringa P, van Blitterswijk C, Habibovic P. Cell-instructive high-resolution micropatterned polylactic acid surfaces. Biofabrication 2017; 9:035004. [PMID: 28671108 DOI: 10.1088/1758-5090/aa7d24] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Micro and nanoscale topographical structuring of biomaterial surfaces has been a valuable tool for influencing cell behavior, including cell attachment, proliferation and differentiation. However, most fabrication techniques for surface patterning of implantable biomaterials suffer from a limited resolution, not allowing controlled generation of sub-cellular three-dimensional features. Here, a direct laser lithography technique based on two-photon absorption was used to construct several patterns varying in size between 500 nm and 15 μm. Through replication via an intermediate mold, the patterns were transferred into polylactic acid (PLA), a widely used biomedical polymer, while retaining the original geometry. An osteoblast-like cell line, MG-63 was used for characterizing the morphological response to the topographical patterns. The results indicated that semi-continuous (dashed) lines, with a height of 1 μm were able to induce cell elongation in the direction of the lines. However, when dashes with a height of 0.5 μm were combined with perpendicularly crossing continuous lines (rails) with a height of 8 μm, the contact guidance effect of the dashes was lost and elongation of the cells was observed in the direction of the larger features. A second pattern, consisting of different arrays of pillars showed that, depending on the pillar height, the cells were either able to spread over the pattern or were confined between the pattern features. These differences in the ability of cells to spread further resulted in the formation of tension forces through stress fibers and displacement of vimentin. The method for high-resolution micropatterning of PLA as presented here can also be applied to other biomedical polymers, making it useful both for fundamental studies and for designing new biomaterials with improved functionality.
Collapse
Affiliation(s)
- David Barata
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Overijssel, Netherlands. Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Limburg, Netherlands
| | | | | | | | | |
Collapse
|
131
|
Abstract
Nuclear lamins are components of the peripheral lamina that define the mechanical properties of nuclei and tether heterochromatin to the periphery. A-type lamins localize also to the nuclear interior, but the regulation and specific functions of this nucleoplasmic lamin pool are poorly understood. In this Commentary, we summarize known pathways that are potentially involved in the localization and dynamic behavior of intranuclear lamins, including their post-translational modifications and interactions with nucleoplasmic proteins, such as lamina-associated polypeptide 2α (LAP2α; encoded by TMPO). In addition, new data suggest that lamins in the nuclear interior have an important role in chromatin regulation and gene expression through dynamic binding to both hetero- and euchromatic genomic regions and promoter subdomains, thereby affecting epigenetic pathways and chromatin accessibility. Nucleoplasmic lamins also have a role in spatial chromatin organization and may be involved in mechanosignaling. In view of this newly emerging concept, we propose that the previously reported cellular phenotypes in lamin-linked diseases are, at least in part, rooted in an impaired regulation and/or function of the nucleoplasmic lamin A/C pool.
Collapse
Affiliation(s)
- Nana Naetar
- Center of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 9, Vienna A-1030, Austria
| | - Simona Ferraioli
- Center of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 9, Vienna A-1030, Austria
| | - Roland Foisner
- Center of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna Biocenter (VBC), Dr.-Bohr-Gasse 9, Vienna A-1030, Austria
| |
Collapse
|
132
|
Athirasala A, Hirsch N, Buxboim A. Nuclear mechanotransduction: sensing the force from within. Curr Opin Cell Biol 2017. [PMID: 28641092 DOI: 10.1016/j.ceb.2017.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cell nucleus is a hallmark of eukaryotic evolution, where gene expression is regulated and the genome is replicated and repaired. Yet, in addition to complex molecular processes, the nucleus has also evolved to serve physical tasks that utilize its optical and mechanical properties. Nuclear mechanotransduction of externally applied forces and extracellular stiffness is facilitated by the physical connectivity of the extracellular environment, the cytoskeleton and the nucleoskeletal matrix of lamins and chromatin. Nuclear mechanosensor elements convert applied tension into biochemical cues that activate downstream signal transduction pathways. Mechanoregulatory networks stabilize a contractile cell state with feedback to matrix, cell adhesions and cytoskeletal elements. Recent advances have thus provided mechanistic insights into how forces are sensed from within, that is, in the nucleus where cell-fate decision-making is performed.
Collapse
Affiliation(s)
- Avathamsa Athirasala
- Alexander Grass Center for Bioengineering, School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nivi Hirsch
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Amnon Buxboim
- Alexander Grass Center for Bioengineering, School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
133
|
Cao X, Moeendarbary E, Isermann P, Davidson PM, Wang X, Chen MB, Burkart AK, Lammerding J, Kamm RD, Shenoy VB. A Chemomechanical Model for Nuclear Morphology and Stresses during Cell Transendothelial Migration. Biophys J 2017; 111:1541-1552. [PMID: 27705776 DOI: 10.1016/j.bpj.2016.08.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/08/2016] [Accepted: 08/15/2016] [Indexed: 10/20/2022] Open
Abstract
It is now evident that the cell nucleus undergoes dramatic shape changes during important cellular processes such as cell transmigration through extracellular matrix and endothelium. Recent experimental data suggest that during cell transmigration the deformability of the nucleus could be a limiting factor, and the morphological and structural alterations that the nucleus encounters can perturb genomic organization that in turn influences cellular behavior. Despite its importance, a biophysical model that connects the experimentally observed nuclear morphological changes to the underlying biophysical factors during transmigration through small constrictions is still lacking. Here, we developed a universal chemomechanical model that describes nuclear strains and shapes and predicts thresholds for the rupture of the nuclear envelope and for nuclear plastic deformation during transmigration through small constrictions. The model includes actin contraction and cytosolic back pressure that squeeze the nucleus through constrictions and overcome the mechanical resistance from deformation of the nucleus and the constrictions. The nucleus is treated as an elastic shell encompassing a poroelastic material representing the nuclear envelope and inner nucleoplasm, respectively. Tuning the chemomechanical parameters of different components such as cell contractility and nuclear and matrix stiffnesses, our model predicts the lower bounds of constriction size for successful transmigration. Furthermore, treating the chromatin as a plastic material, our model faithfully reproduced the experimentally observed irreversible nuclear deformations after transmigration in lamin-A/C-deficient cells, whereas the wild-type cells show much less plastic deformation. Along with making testable predictions, which are in accord with our experiments and existing literature, our work provides a realistic framework to assess the biophysical modulators of nuclear deformation during cell transmigration.
Collapse
Affiliation(s)
- Xuan Cao
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emad Moeendarbary
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Philipp Isermann
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York
| | - Patricia M Davidson
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York
| | - Xiao Wang
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michelle B Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Anya K Burkart
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York; Nancy C. and Peter E. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
134
|
Zhu Q, Zheng F, Liu AP, Qian J, Fu C, Lin Y. Shape Transformation of the Nuclear Envelope during Closed Mitosis. Biophys J 2017; 111:2309-2316. [PMID: 27851952 DOI: 10.1016/j.bpj.2016.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 09/28/2016] [Accepted: 10/07/2016] [Indexed: 11/18/2022] Open
Abstract
The nuclear envelope (NE) in lower eukaryotes such as Schizosaccharomyces pombe undergoes large morphology changes during closed mitosis. However, which physical parameters are important in governing the shape evolution of the NE, and how defects in the dividing chromosomes/microtubules are reflected in those parameters, are fundamental questions that remain unresolved. In this study, we show that improper separation of chromosomes in genetically deficient cells leads to membrane tethering or asymmetric division in contrast to the formation of two equal-sized daughter nuclei in wild-type cells. We hypothesize that the poleward force is transmitted to the nuclear membrane through its physical contact with the separated sister chromatids at the two spindle poles. A theoretical model is developed to predict the morphology evolution of the NE where key factors such as the work done by the poleward force and bending and surface energies stored in the membrane have been taken into account. Interestingly, the predicted phase diagram, summarizing the dependence of nuclear shape on the size of the load transmission regions, and the pole-to-pole distance versus surface area relationship all quantitatively agree well with our experimental observations, suggesting that this model captures the essential physics involved in closed mitosis.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Fan Zheng
- Chinese Academy of Sciences Center for Excellence in Molecular Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jin Qian
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chuanhai Fu
- Chinese Academy of Sciences Center for Excellence in Molecular Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
135
|
Tariq Z, Zhang H, Chia-Liu A, Shen Y, Gete Y, Xiong ZM, Tocheny C, Campanello L, Wu D, Losert W, Cao K. Lamin A and microtubules collaborate to maintain nuclear morphology. Nucleus 2017; 8:433-446. [PMID: 28557611 DOI: 10.1080/19491034.2017.1320460] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lamin A (LA) is a critical structural component of the nuclear lamina. Mutations within the LA gene (LMNA) lead to several human disorders, most striking of which is Hutchinson-Gilford Progeria Syndrome (HGPS), a premature aging disorder. HGPS cells are best characterized by an abnormal nuclear morphology known as nuclear blebbing, which arises due to the accumulation of progerin, a dominant mutant form of LA. The microtubule (MT) network is known to mediate changes in nuclear morphology in the context of specific events such as mitosis, cell polarization, nucleus positioning and cellular migration. What is less understood is the role of the microtubule network in determining nuclear morphology during interphase. In this study, we elucidate the role of the cytoskeleton in regulation and misregulation of nuclear morphology through perturbations of both the lamina and the microtubule network. We found that LA knockout cells exhibit a crescent shape morphology associated with the microtubule-organizing center. Furthermore, this crescent shape ameliorates upon treatment with MT drugs, Nocodazole or Taxol. Expression of progerin, in LA knockout cells also rescues the crescent shape, although the response to Nocodazole or Taxol treatment is altered in comparison to cells expressing LA. Together these results describe a collaborative effort between LA and the MT network to maintain nuclear morphology.
Collapse
Affiliation(s)
- Zeshan Tariq
- a Department of Cell Biology and Molecular Genetics , University of Maryland , College Park , MD , USA
| | - Haoyue Zhang
- a Department of Cell Biology and Molecular Genetics , University of Maryland , College Park , MD , USA
| | - Alexander Chia-Liu
- b Department of Physics , University of Maryland , College Park , MD , USA
| | - Yang Shen
- b Department of Physics , University of Maryland , College Park , MD , USA
| | - Yantenew Gete
- a Department of Cell Biology and Molecular Genetics , University of Maryland , College Park , MD , USA
| | - Zheng-Mei Xiong
- a Department of Cell Biology and Molecular Genetics , University of Maryland , College Park , MD , USA
| | - Claire Tocheny
- c Department of Biology , The College of William and Mary , Williamsburg , VA , USA
| | - Leonard Campanello
- b Department of Physics , University of Maryland , College Park , MD , USA
| | - Di Wu
- a Department of Cell Biology and Molecular Genetics , University of Maryland , College Park , MD , USA
| | - Wolfgang Losert
- b Department of Physics , University of Maryland , College Park , MD , USA
| | - Kan Cao
- a Department of Cell Biology and Molecular Genetics , University of Maryland , College Park , MD , USA
| |
Collapse
|
136
|
Abstract
The nuclear lamina is involved in fundamental nuclear functions and provides mechanical stability to the nucleus. Lamin filaments form a meshwork closely apposed to the inner nuclear membrane and a small fraction of lamins exist in the nuclear interior. Mutations in lamin genes cause severe hereditary diseases, the laminopathies. During vertebrate evolution the lamin protein family has expanded. While most vertebrate genomes contain 4 lamin genes, encoding the lamins A, B1, B2, and LIII, the majority of non-vertebrate genomes harbor only a single lamin gene. We have collected lamin gene and cDNA sequence information for representatives of the major vertebrate lineages. With the help of RNA-seq data we have determined relative lamin expression levels for representative tissues for species of 9 different gnathostome lineages. Here we report that the level of lamin A expression is low in cartilaginous fishes and ancient fishes and increases toward the mammals. Lamin B1 expression shows an inverse tendency to that of lamin A. Possible implications for the change in the lamin A to B ratio is discussed in the light of its role in nuclear mechanics.
Collapse
Affiliation(s)
- Reimer Stick
- a FB2 Biology/Chemistry, University of Bremen , Bremen , Germany
| | - Annette Peter
- a FB2 Biology/Chemistry, University of Bremen , Bremen , Germany
| |
Collapse
|
137
|
Giverso C, Arduino A, Preziosi L. How Nucleus Mechanics and ECM Microstructure Influence the Invasion of Single Cells and Multicellular Aggregates. Bull Math Biol 2017; 80:1017-1045. [PMID: 28409417 DOI: 10.1007/s11538-017-0262-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/17/2017] [Indexed: 01/14/2023]
Abstract
In order to move in a three-dimensional extracellular matrix, the nucleus of a cell must squeeze through the narrow spacing among the fibers and, by adhering to them, the cell needs to exert sufficiently strong traction forces. If the nucleus is too stiff, the spacing too narrow, or traction forces too weak, the cell is not able to penetrate the network. In this article, we formulate a mathematical model based on an energetic approach, for cells entering cylindrical channels composed of extracellular matrix fibers. Treating the nucleus as an elastic body covered by an elastic membrane, the energetic balance leads to the definition of a necessary criterion for cells to pass through the regular network of fibers, depending on the traction forces exerted by the cells (or possibly passive stresses), the stretchability of the nuclear membrane, the stiffness of the nucleus, and the ratio of the pore size within the extracellular matrix with respect to the nucleus diameter. The results obtained highlight the importance of the interplay between mechanical properties of the cell and microscopic geometric characteristics of the extracellular matrix and give an estimate for a critical value of the pore size that represents the physical limit of migration and can be used in tumor growth models to predict their invasive potential in thick regions of ECM.
Collapse
Affiliation(s)
- Chiara Giverso
- Istituto Nazionale di Alta Matematica "F. Severi", Città Universitaria, P.le Aldo Moro 5, 00185, Rome, Italy.
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.
| | - Alessandro Arduino
- Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
- Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135, Turin, Italy
| | - Luigi Preziosi
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| |
Collapse
|
138
|
Abstract
Cell migration through tight spaces can induce substantial deformations of the nucleus and cause nuclear envelope (NE) rupture, resulting in uncontrolled exchange of nuclear and cytosolic proteins. These events can cause DNA damage and, in severe cases, nuclear fragmentation, challenging the integrity of the genomic material. Cells overcome NE ruptures during interphase by repairing the NE using components of the endosomal sorting complexes required for transport (ESCRT) machinery. Paralleling the molecular mechanism used during NE reformation in late mitosis, ESCRT-III subunits and the associated AAA-ATPase VPS4B are recruited to NE rupture sites and help restore NE integrity. While these findings are common to many cell types, they are particularly relevant in the context of cancer metastasis, where nuclear deformation and rupture could drive genomic instability in invading cells and further promote cancer progression. At the same time, inhibiting NE repair may offer new therapeutic approaches to specifically target invasive cancer cells.
Collapse
Affiliation(s)
- Philipp Isermann
- a Nancy E. and Peter C. Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology , Cornell University , Ithaca , NY , USA
| | - Jan Lammerding
- a Nancy E. and Peter C. Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology , Cornell University , Ithaca , NY , USA
| |
Collapse
|
139
|
Enyedi B, Niethammer P. Nuclear membrane stretch and its role in mechanotransduction. Nucleus 2017; 8:156-161. [PMID: 28112995 PMCID: PMC5403133 DOI: 10.1080/19491034.2016.1263411] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/13/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022] Open
Abstract
Most research in nuclear mechanotransduction has focused on the nuclear lamina and lamin binding proteins. These structures provide mechanical stability to the nucleus, establish a link between the cytoskeleton and chromatin, and can transmit mechanical signals. At the same time, mechanical perturbations to the nucleus also affect its phospholipid membranes. In this commentary, we discuss how changes in nuclear membrane tension can mediate mechanotransduction.
Collapse
Affiliation(s)
- Balázs Enyedi
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
140
|
Lee W, Lim S, Kim Y. The role of myosin II in glioma invasion: A mathematical model. PLoS One 2017; 12:e0171312. [PMID: 28166231 PMCID: PMC5293275 DOI: 10.1371/journal.pone.0171312] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/18/2017] [Indexed: 01/09/2023] Open
Abstract
Gliomas are malignant tumors that are commonly observed in primary brain cancer. Glioma cells migrate through a dense network of normal cells in microenvironment and spread long distances within brain. In this paper we present a two-dimensional multiscale model in which a glioma cell is surrounded by normal cells and its migration is controlled by cell-mechanical components in the microenvironment via the regulation of myosin II in response to chemoattractants. Our simulation results show that the myosin II plays a key role in the deformation of the cell nucleus as the glioma cell passes through the narrow intercellular space smaller than its nuclear diameter. We also demonstrate that the coordination of biochemical and mechanical components within the cell enables a glioma cell to take the mode of amoeboid migration. This study sheds lights on the understanding of glioma infiltration through the narrow intercellular spaces and may provide a potential approach for the development of anti-invasion strategies via the injection of chemoattractants for localization.
Collapse
Affiliation(s)
- Wanho Lee
- National Institute for Mathematical Sciences, Daejeon, 34047, Republic of Korea
| | - Sookkyung Lim
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH, 45221, United States of America
| | - Yangjin Kim
- Mathematical Biosciences Institute, Ohio State University, Columbus, OH, 43210, United States of America
- Department of Mathematics, Konkuk University, Seoul, 05029, Republic of Korea
- * E-mail:
| |
Collapse
|
141
|
Mechanotransduction via the nuclear envelope: a distant reflection of the cell surface. Curr Opin Cell Biol 2017; 44:59-67. [DOI: 10.1016/j.ceb.2016.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 01/08/2023]
|
142
|
Stephens AD, Banigan EJ, Adam SA, Goldman RD, Marko JF. Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus. Mol Biol Cell 2017; 28:1984-1996. [PMID: 28057760 PMCID: PMC5541848 DOI: 10.1091/mbc.e16-09-0653] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/04/2016] [Accepted: 12/29/2016] [Indexed: 02/02/2023] Open
Abstract
The cell nucleus must continually resist and respond to intercellular and intracellular mechanical forces to transduce mechanical signals and maintain proper genome organization and expression. Altered nuclear mechanics is associated with many human diseases, including heart disease, progeria, and cancer. Chromatin and nuclear envelope A-type lamin proteins are known to be key nuclear mechanical components perturbed in these diseases, but their distinct mechanical contributions are not known. Here we directly establish the separate roles of chromatin and lamin A/C and show that they determine two distinct mechanical regimes via micromanipulation of single isolated nuclei. Chromatin governs response to small extensions (<3 μm), and euchromatin/heterochromatin levels modulate the stiffness. In contrast, lamin A/C levels control nuclear strain stiffening at large extensions. These results can be understood through simulations of a polymeric shell and cross-linked polymer interior. Our results provide a framework for understanding the differential effects of chromatin and lamin A/C in cell nuclear mechanics and their alterations in disease.
Collapse
Affiliation(s)
- Andrew D Stephens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Edward J Banigan
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
| | - Stephen A Adam
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208.,Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
| |
Collapse
|
143
|
Nandy SB, Lakshmanaswamy R. Cancer Stem Cells and Metastasis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:137-176. [DOI: 10.1016/bs.pmbts.2017.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
144
|
Kamm RD, Lammerding J, Mofrad MRK. Cellular Nanomechanics. SPRINGER HANDBOOK OF NANOTECHNOLOGY 2017. [DOI: 10.1007/978-3-662-54357-3_31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
145
|
Miroshnikova YA, Nava MM, Wickström SA. Emerging roles of mechanical forces in chromatin regulation. J Cell Sci 2017. [DOI: 10.1242/jcs.202192] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ABSTRACT
Cells are constantly subjected to a spectrum of mechanical cues, such as shear stress, compression, differential tissue rigidity and strain, to which they adapt by engaging mechanisms of mechanotransduction. While the central role of cell adhesion receptors in this process is established, it has only recently been appreciated that mechanical cues reach far beyond the plasma membrane and the cytoskeleton, and are directly transmitted to the nucleus. Furthermore, changes in the mechanical properties of the perinuclear cytoskeleton, nuclear lamina and chromatin are critical for cellular responses and adaptation to external mechanical cues. In that respect, dynamic changes in the nuclear lamina and the surrounding cytoskeleton modify mechanical properties of the nucleus, thereby protecting genetic material from damage. The importance of this mechanism is highlighted by debilitating genetic diseases, termed laminopathies, that result from impaired mechanoresistance of the nuclear lamina. What has been less evident, and represents one of the exciting emerging concepts, is that chromatin itself is an active rheological element of the nucleus, which undergoes dynamic changes upon application of force, thereby facilitating cellular adaption to differential force environments. This Review aims to highlight these emerging concepts by discussing the latest literature in this area and by proposing an integrative model of cytoskeletal and chromatin-mediated responses to mechanical stress.
Collapse
Affiliation(s)
| | - Michele M. Nava
- Paul Gerson Unna Group ‘Skin Homeostasis and Ageing’, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Sara A. Wickström
- Paul Gerson Unna Group ‘Skin Homeostasis and Ageing’, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne 50931, Germany
| |
Collapse
|
146
|
Kumar A, Shivashankar GV. Dynamic interaction between actin and nesprin2 maintain the cell nucleus in a prestressed state. Methods Appl Fluoresc 2016; 4:044008. [DOI: 10.1088/2050-6120/4/4/044008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
147
|
The Cell Nucleus Serves as a Mechanotransducer of Tissue Damage-Induced Inflammation. Cell 2016; 165:1160-1170. [PMID: 27203112 DOI: 10.1016/j.cell.2016.04.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/18/2016] [Accepted: 04/01/2016] [Indexed: 01/14/2023]
Abstract
Tissue damage activates cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (AA), which is oxidized to proinflammatory eicosanoids by 5-lipoxygenase (5-LOX) on the nuclear envelope. How tissue damage is sensed to activate cPLA2 is unknown. We investigated this by live imaging in wounded zebrafish larvae, where damage of the fin tissue causes osmotic cell swelling at the wound margin and the generation of a chemotactic eicosanoid signal. Osmotic swelling of cells and their nuclei activates cPla2 by translocating it from the nucleoplasm to the nuclear envelope. Elevated cytosolic Ca(2+) was necessary but not sufficient for cPla2 translocation, and nuclear swelling was required in parallel. cPla2 translocation upon nuclear swelling was reconstituted in isolated nuclei and appears to be a simple physical process mediated by tension in the nuclear envelope. Our data suggest that the nucleus plays a mechanosensory role in inflammation by transducing cell swelling and lysis into proinflammatory eicosanoid signaling.
Collapse
|
148
|
Implications and Assessment of the Elastic Behavior of Lamins in Laminopathies. Cells 2016; 5:cells5040037. [PMID: 27754432 PMCID: PMC5187521 DOI: 10.3390/cells5040037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 01/17/2023] Open
Abstract
Lamins are mechanosensitive and elastic components of the nuclear lamina that respond to external mechanical cues by altering gene regulation in a feedback mechanism. Numerous mutations in A-type lamins cause a plethora of diverse diseases collectively termed as laminopathies, the majority of which are characterized by irregularly shaped, fragile, and plastic nuclei. These nuclei are challenged to normal mechanotransduction and lead to disease phenotypes. Here, we review our current understanding of the nucleocytoskeleton coupling in mechanotransduction mediated by lamins. We also present an up-to-date understanding of the methods used to determine laminar elasticity both at the bulk and single molecule level.
Collapse
|
149
|
The assembly of C. elegans lamins into macroscopic fibers. J Mech Behav Biomed Mater 2016; 63:35-43. [DOI: 10.1016/j.jmbbm.2016.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/23/2016] [Accepted: 05/28/2016] [Indexed: 11/18/2022]
|
150
|
Schonbrun E, Di Caprio G. A virtually imaged defocused array (VIDA) for high-speed 3D microscopy. JOURNAL OF BIOPHOTONICS 2016; 9:1044-1049. [PMID: 26694084 DOI: 10.1002/jbio.201500265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
We report a method to capture a multifocus image stack based on recording multiple reflections generated by imaging through a custom etalon. The focus stack is collected in a single camera exposure and consequently the information needed for 3D reconstruction is recorded in the camera integration time, which is only 100 µs. We have used the VIDA microscope to temporally resolve the multi-lobed 3D morphology of neutrophil nuclei as they rotate and deform through a microfluidic constriction. In addition, we have constructed a 3D imaging flow cytometer and quantified the nuclear morphology of nearly a thousand white blood cells flowing at a velocity of 3 mm per second. The VIDA microscope is compact and simple to construct, intrinsically achromatic, and the field-of-view and stack number can be easily reconfigured without redesigning diffraction gratings and prisms.
Collapse
Affiliation(s)
- Ethan Schonbrun
- Rowland Institute at Harvard, 100 Edwin H. Land Blvd., Cambridge, MA 02142, USA.
| | - Giuseppe Di Caprio
- Rowland Institute at Harvard, 100 Edwin H. Land Blvd., Cambridge, MA 02142, USA
| |
Collapse
|