101
|
Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011; 12:99-110. [PMID: 21245828 DOI: 10.1038/nrg2936] [Citation(s) in RCA: 1731] [Impact Index Per Article: 123.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite their widespread roles as regulators of gene expression, important questions remain about target regulation by microRNAs. Animal microRNAs were originally thought to repress target translation, with little or no influence on mRNA abundance, whereas the reverse was thought to be true in plants. Now, however, it is clear that microRNAs can induce mRNA degradation in animals and, conversely, translational repression in plants. Recent studies have made important advances in elucidating the relative contributions of these two different modes of target regulation by microRNAs. They have also shed light on the specific mechanisms of target silencing, which, although it differs fundamentally between plants and animals, shares some common features between the two kingdoms.
Collapse
|
102
|
Yao B, Li S, Lian SL, Fritzler MJ, Chan EKL. Mapping of Ago2-GW182 functional interactions. Methods Mol Biol 2011; 725:45-62. [PMID: 21528446 DOI: 10.1007/978-1-61779-046-1_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
MicroRNA (miRNA)-mediated posttranscriptional regulation of gene expression has become a major focus in understanding fine-tuning controls in many biological processes. Argonaute 2 protein (Ago2), a core component of RNA-induced silencing complex, directly binds miRNA and functions in both RNAi and miRNA pathways. GW182 is a marker protein of GW bodies (GWB, also known as mammalian P-bodies) and is known to bind the Ago2 protein. This Ago2-GW182 interaction is crucial for Ago2-miRNA-mediated translational silencing as well as the recruitment of Ago2 into GWB. Translational silencing of tethered Ago2 to a 3'UTR reporter requires GW182 for function, whereas tethered GW182 exerts a stronger repression than tethered Ago2 and does not apparently require Ago2. This chapter describes in detail the methods used in mapping Ago2-GW182 interactions.
Collapse
Affiliation(s)
- Bing Yao
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
103
|
Gibbings D. Continuous density gradients to study Argonaute and GW182 complexes associated with the endocytic pathway. Methods Mol Biol 2011; 725:63-76. [PMID: 21528447 DOI: 10.1007/978-1-61779-046-1_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Most complexes involved in RNA silencing were thought to be concentrated in cytoplasmic sites called P-bodies in the absence of stress. Accumulating evidence suggests that distinct cellular organelles or sites may be involved in the maturation of RNA-induced silencing complexes (RISC), decapping and deadenylation of miRNA-repressed mRNA, transport of translationally repressed mRNA, and disassembly of RISC complexes. Significant fractions of proteins essential for RNA silencing associate with membranes in general (GW182, AGO, and DICER), or more specifically with endoplasmic reticulum and Golgi (AGO), or endosomes and multivesicular bodies (AGO, GW182). In contrast, mRNA decapping and decay occur mainly in the cytoplasm. Continuous density gradients capable of partitioning these cellular compartments are valuable tools in efforts to decipher the complexes, trafficking and regulation of RISC throughout its biogenesis, action and turnover.
Collapse
Affiliation(s)
- Derrick Gibbings
- Department of Biology, Swiss Federal Institute of Technology (ETH-Z), Zurich, Switzerland.
| |
Collapse
|
104
|
Yao B, Li S, Jung HM, Lian SL, Abadal GX, Han F, Fritzler MJ, Chan EKL. Divergent GW182 functional domains in the regulation of translational silencing. Nucleic Acids Res 2010; 39:2534-47. [PMID: 21131274 PMCID: PMC3074120 DOI: 10.1093/nar/gkq1099] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNA (miRNA)-mediated gene regulation has become a major focus in many biological processes. GW182 and its long isoform TNGW1 are marker proteins of GW/P bodies and bind to Argonaute proteins of the RNA induced silencing complex. The goal of this study is to further define and distinguish the repression domain(s) in human GW182/TNGW1. Two non-overlapping regions, Δ12 (amino acids 896–1219) containing the Ago hook and Δ5 (amino acids 1670–1962) containing the RRM, both induced comparable silencing in a tethering assay. Mapping data showed that the RRM and its flanking sequences in Δ5, but not the Ago hook in Δ12, were important for silencing. Repression mediated by Δ5 or Δ12 was not differentially affected when known endogenous repressors RCK/p54, GW182/TNGW1, TNRC6B were depleted. Transfected Δ5, but not Δ12, enhanced Ago2-mediated repression in a tethering assay. Transfected Δ12, but not Δ5, released endogenous miRNA reporter silencing without affecting siRNA function. Alanine substitution showed that GW/WG motifs in Δ12 (Δ12a, amino acids 896–1045) were important for silencing activity. Although Δ12 appeared to bind PABPC1 more efficiently than Δ5, neither Δ5 nor Δ12 significantly enhanced reporter mRNA degradation. These different functional characteristics of Δ5 and Δ12 suggest that their roles are distinct, and possibly dynamic, in human GW182-mediated silencing.
Collapse
Affiliation(s)
- Bing Yao
- Department of Oral Biology, University of Florida, Gainesville, FL 32610-0424, USA
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Moser JJ, Fritzler MJ. The microRNA and messengerRNA profile of the RNA-induced silencing complex in human primary astrocyte and astrocytoma cells. PLoS One 2010; 5:e13445. [PMID: 20976148 PMCID: PMC2956662 DOI: 10.1371/journal.pone.0013445] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 09/14/2010] [Indexed: 12/18/2022] Open
Abstract
Background GW/P bodies are cytoplasmic ribonucleoprotein-rich foci involved in microRNA (miRNA)-mediated messenger RNA (mRNA) silencing and degradation. The mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 that bind miRNA in the RNA-induced silencing complex (RISC). To date there are no published reports of the profile of miRNA and mRNA targeted to the RISC or a comparison of the RISC-specific miRNA/mRNA profile differences in malignant and non-malignant cells. Methodology/Principal Findings RISC mRNA and miRNA components were profiled by microarray analysis of malignant human U-87 astrocytoma cells and its non-malignant counterpart, primary human astrocytes. Total cell RNA as well as RNA from immunoprecipitated RISC was analyzed. The novel findings were fourfold: (1) miRNAs were highly enriched in astrocyte RISC compared to U-87 astrocytoma RISC, (2) astrocytoma and primary astrocyte cells each contained unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3) miR-195, 10b, 29b, 19b, 34a and 455-3p levels were increased and the miR-181b level was decreased in U-87 astrocytoma RISC as compared to astrocyte RISC, and (4) the RISC contained decreased levels of mRNAs in primary astrocyte and U-87 astrocytoma cells. Conclusions/Significance The observation that miR-34a and miR-195 levels were increased in the RISC of U-87 astrocytoma cells suggests an oncogenic role for these miRNAs. Differential regulation of mRNAs by specific miRNAs is evidenced by the observation that three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated while one miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in malignancy and other conditions. This study points to the importance of the RISC and ultimately GW/P body composition and function in miRNA and mRNA deregulation in astrocytoma cells and possibly in other malignancies.
Collapse
Affiliation(s)
- Joanna J. Moser
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marvin J. Fritzler
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
106
|
Abstract
Small RNA molecules regulating gene expression received a status of omnipresent master regulators of eukaryotic lives with almost supernatural powers. Mammals hold at least three mechanisms employing small RNA molecules for regulating gene expression. One of these mechanisms, the microRNA (miRNA) pathway, involves currently over a thousand of genome-encoded different miRNAs that are claimed to extend their control over more than a half of a genome. Here, I discuss how and why mouse oocytes and early embryos ignore the regulatory power of miRNAs, adding another surprising feature to the field of small RNAs.
Collapse
Affiliation(s)
- Petr Svoboda
- Institute of Molecular Genetics AS CR, Prague, Czech Republic.
| |
Collapse
|
107
|
Gibbings D, Voinnet O. Control of RNA silencing and localization by endolysosomes. Trends Cell Biol 2010; 20:491-501. [PMID: 20630759 DOI: 10.1016/j.tcb.2010.06.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/31/2010] [Accepted: 06/02/2010] [Indexed: 01/24/2023]
Abstract
Recent advances in the cell biology of RNA silencing have unraveled an intriguing association of post-transcriptionally regulated RNA with endolysosomal membranes in several circumstances of mRNA localization, microRNA activity and viral RNA transport and packaging. Endolysosomal membranes are a nexus of communication and transport between cells and their exterior environment for signaling receptors, pathogens and nutrients. Here, we discuss recent data that support a view that endolysosomal positioning of RNA might facilitate intercellular transmission of RNA and host defence against viruses and retrotransposons. Positioning of RNA regulatory mechanisms on endolysosomal membranes might permit rapid and localized control of microRNA (miRNA) gene regulatory programs and mRNA translation in response to environmental signals, such as activated plasma membrane receptors transported on endosomes. Finally, we suggest that the pathology of several conditions, including Huntington's disease, might be a consequence of the disruption of the control of RNA via endolysosomal membranes.
Collapse
Affiliation(s)
- Derrick Gibbings
- UPR2357, Centre National de la Recherche Scientifique, Institut de Biologie Moleculaire des Plantes, 12 rue du General Zimmer, 67084 Strasbourg France.
| | | |
Collapse
|
108
|
Chekulaeva M, Parker R, Filipowicz W. The GW/WG repeats of Drosophila GW182 function as effector motifs for miRNA-mediated repression. Nucleic Acids Res 2010; 38:6673-83. [PMID: 20530530 PMCID: PMC2965232 DOI: 10.1093/nar/gkq501] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The control of messenger RNA (mRNA) function by micro RNAs (miRNAs) in animal cells requires the GW182 protein. GW182 is recruited to the miRNA repression complex via interaction with Argonaute protein, and functions downstream to repress protein synthesis. Interaction with Argonaute is mediated by GW/WG repeats, which are conserved in many Argonaute-binding proteins involved in RNA interference and miRNA silencing, from fission yeast to mammals. GW182 contains at least three effector domains that function to repress target mRNA. Here, we analyze the functions of the N-terminal GW182 domain in repression and Argonaute1 binding, using tethering and immunoprecipitation assays in Drosophila cultured cells. We demonstrate that its function in repression requires intact GW/WG repeats, but does not involve interaction with the Argonaute1 protein, and is independent of the mRNA polyadenylation status. These results demonstrate a novel role for the GW/WG repeats as effector motifs in miRNA-mediated repression.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland.
| | | | | |
Collapse
|
109
|
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA Translation and Stability by microRNAs. Annu Rev Biochem 2010; 79:351-79. [PMID: 20533884 DOI: 10.1146/annurev-biochem-060308-103103] [Citation(s) in RCA: 2380] [Impact Index Per Article: 158.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marc Robert Fabian
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Quebec, H3G 1Y6, Canada;
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Quebec, H3G 1Y6, Canada;
| | - Witold Filipowicz
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland;
| |
Collapse
|
110
|
Johnston M, Geoffroy MC, Sobala A, Hay R, Hutvagner G. HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells. Mol Biol Cell 2010; 21:1462-9. [PMID: 20237157 PMCID: PMC2861606 DOI: 10.1091/mbc.e09-10-0885] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The cancer drug geldanamycin, an HSP90 inhibitor, decreases the stability of key components of the miRNA regulatory pathway, the efficacy of siRNAs, and the formation of P-bodies without affecting endogenous miRNA function. Key components of the miRNA-mediated gene regulation pathway are localized in cytoplasmic processing bodies (P-bodies). Mounting evidence suggests that the presence of microscopic P-bodies are not always required for miRNA-mediated gene regulation. Here we have shown that geldanamycin, a well-characterized HSP90 inhibitor, abolishes P-bodies and significantly reduces Argonaute and GW182 protein levels but does not affect the miRNA level and the efficiency of miRNA-mediated gene repression; however, it significantly impairs siRNA loading and the efficacy of exogenous siRNA. Our data suggests that HSP90 protein chaperones Argonautes before binding RNA and may facilitate efficient loading of small RNA.
Collapse
Affiliation(s)
- Michael Johnston
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | |
Collapse
|
111
|
Fabian MR, Sundermeier TR, Sonenberg N. Understanding How miRNAs Post-Transcriptionally Regulate Gene Expression. MIRNA REGULATION OF THE TRANSLATIONAL MACHINERY 2010; 50:1-20. [DOI: 10.1007/978-3-642-03103-8_1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
112
|
Tugume AK, Mukasa SB, Kalkkinen N, Valkonen JPT. Recombination and selection pressure in the ipomovirus sweet potato mild mottle virus (Potyviridae) in wild species and cultivated sweetpotato in the centre of evolution in East Africa. J Gen Virol 2009; 91:1092-108. [DOI: 10.1099/vir.0.016089-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
113
|
Ago-TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps. Nat Struct Mol Biol 2009; 16:1160-6. [PMID: 19838187 PMCID: PMC2921184 DOI: 10.1038/nsmb.1709] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 09/25/2009] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) silence the expression of their mRNA targets mainly by promoting mRNA decay. The mechanism, kinetics and participating enzymes for miRNA-mediated decay in mammalian cells remain largely unclear. Combining the approaches of transcriptional pulsing, RNA tethering, overexpression of dominant-negative mutants, and siRNA-mediated gene knockdown, we show that let-7 miRNA-induced silencing complexes (miRISCs), which contain the proteins Argonaute (Ago) and TNRC6 (also known as GW182), trigger very rapid mRNA decay by inducing accelerated biphasic deadenylation mediated by Pan2-Pan3 and Ccr4-Caf1 deadenylase complexes followed by Dcp1-Dcp2 complex-directed decapping in mammalian cells. When tethered to mRNAs, all four human Ago proteins and TNRC6C are each able to recapitulate the two deadenylation steps. Two conserved human Ago2 phenylalanines (Phe470 and Phe505) are critical for recruiting TNRC6 to promote deadenylation. These findings indicate that promotion of biphasic deadenylation to trigger mRNA decay is an intrinsic property of miRISCs.
Collapse
|
114
|
Eulalio A, Tritschler F, Izaurralde E. The GW182 protein family in animal cells: new insights into domains required for miRNA-mediated gene silencing. RNA (NEW YORK, N.Y.) 2009; 15:1433-42. [PMID: 19535464 PMCID: PMC2714752 DOI: 10.1261/rna.1703809] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
GW182 family proteins interact directly with Argonaute proteins and are required for miRNA-mediated gene silencing in animal cells. The domains of the GW182 proteins have recently been studied to determine their role in silencing. These studies revealed that the middle and C-terminal regions function as an autonomous domain with a repressive function that is independent of both the interaction with Argonaute proteins and of P-body localization. Such findings reinforce the idea that GW182 proteins are key components of miRNA repressor complexes in metazoa.
Collapse
Affiliation(s)
- Ana Eulalio
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | |
Collapse
|