Furey A, Braña-Magdalena A, Lehane M, Moroney C, James KJ, Satake M, Yasumoto T. Determination of azaspiracids in shellfish using liquid chromatography/tandem electrospray mass spectrometry.
RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2002;
16:238-242. [PMID:
11803546 DOI:
10.1002/rcm.560]
[Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Azaspiracid (AZA1), a recently discovered marine toxin, is responsible for the new human toxic syndrome, azaspiracid poisoning (AZP), which is caused by the consumption of contaminated shellfish. A new, sensitive liquid chromatography/mass spectrometry (LC/MS) method has been developed for the determination of AZA1 and its analogues, 8-methylazaspiracid (AZA2) and 22-demethylazaspiracid (AZA3). Separation of these toxins was achieved using reversed-phase LC and coupled, via an electrospray ionisation (ESI) source, to an ion-trap mass spectrometer. Spectra showed the protonated molecules, [M + H]+, and their major product ions, due to the sequential loss of two water molecules, [M + H - H2O]+, [M + H - 2H2O]+, in addition to fragment ions that are characteristic of these cyclic polyethers. A highly specific and sensitive LC/MS(3) analytical method was developed and, using shellfish extracts containing AZA1, the detection limit (S/N = 3) was 4 pg on-column, corresponding to 0.8 ng/mL. Using the protocol presented here, this is equivalent to 0.37 ng/g shellfish tissue and good linear calibrations were obtained for AZA1 in shellfish extracts (average r2 = 0.9988). Good reproducibility was achieved with % RSD values (N = 5) ranging from 1.5% (0.75 microg/mL) to 4.2% (0.05 microg/mL). An efficient procedure for the extraction of toxins from shellfish aided the development of a rapid protocol for the determination of the three predominant azaspiracids.
Collapse