101
|
Köksal M, Chou WKW, Cane DE, Christianson DW. Unexpected reactivity of 2-fluorolinalyl diphosphate in the active site of crystalline 2-methylisoborneol synthase. Biochemistry 2013; 52:5247-55. [PMID: 23844678 DOI: 10.1021/bi400797c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The crystal structure of 2-methylisoborneol synthase (MIBS) from Streptomyces coelicolor A3(2) has been determined in its unliganded state and in complex with two Mg(2+) ions and 2-fluoroneryl diphosphate at 1.85 and 2.00 Å resolution, respectively. Under normal circumstances, MIBS catalyzes the cyclization of the naturally occurring, noncanonical 11-carbon isoprenoid substrate, 2-methylgeranyl diphosphate, which first undergoes an ionization-isomerization-ionization sequence through the tertiary diphosphate intermediate 2-methyllinalyl diphosphate to enable subsequent cyclization chemistry. MIBS does not exhibit catalytic activity with 2-fluorogeranyl diphosphate, and we recently reported the crystal structure of MIBS complexed with this unreactive substrate analogue [ Köksal, M., Chou, W. K. W., Cane, D. E., Christianson, D. W. (2012) Biochemistry 51 , 3011-3020 ]. However, cocrystallization of MIBS with the fluorinated analogue of the tertiary allylic diphosphate intermediate, 2-fluorolinalyl diphosphate, reveals unexpected reactivity for the intermediate analogue and yields the crystal structure of the complex with the primary allylic diphosphate, 2-fluoroneryl diphosphate. Comparison with the structure of the unliganded enzyme reveals that the crystalline enzyme active site remains partially open, presumably due to the binding of only two Mg(2+) ions. Assays in solution indicate that MIBS catalyzes the generation of (1R)-(+)-camphor from the substrate 2-fluorolinalyl diphosphate, suggesting that both 2-fluorolinalyl diphosphate and 2-methyllinalyl diphosphate follow the identical cyclization mechanism leading to 2-substituted isoborneol products; however, the initially generated 2-fluoroisoborneol cyclization product is unstable and undergoes elimination of hydrogen fluoride to yield (1R)-(+)-camphor.
Collapse
Affiliation(s)
- Mustafa Köksal
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | | | | | | |
Collapse
|
102
|
|
103
|
Metal ions control product specificity of isoprenyl diphosphate synthases in the insect terpenoid pathway. Proc Natl Acad Sci U S A 2013; 110:4194-9. [PMID: 23440195 DOI: 10.1073/pnas.1221489110] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Isoprenyl diphosphate synthases (IDSs) produce the ubiquitous branched-chain diphosphates of different lengths that are precursors of all major classes of terpenes. Typically, individual short-chain IDSs (scIDSs) make the C10, C15, and C20 isoprenyl diphosphates separately. Here, we report that the product length synthesized by a single scIDS shifts depending on the divalent metal cofactor present. This previously undescribed mechanism of carbon chain-length determination was discovered for a scIDS from juvenile horseradish leaf beetles, Phaedon cochleariae. The recombinant enzyme P. cochleariae isoprenyl diphosphate synthase 1 (PcIDS1) yields 96% C10-geranyl diphosphate (GDP) and only 4% C15-farnesyl diphosphate (FDP) in the presence of Co(2+) or Mn(2+) as a cofactor, whereas it yields only 18% C10 GDP but 82% C15 FDP in the presence of Mg(2+). In reaction with Co(2+), PcIDS1 has a Km of 11.6 μM for dimethylallyl diphosphate as a cosubstrate and 24.3 μM for GDP. However, with Mg(2+), PcIDS1 has a Km of 1.18 μM for GDP, suggesting that this substrate is favored by the enzyme under such conditions. RNAi targeting PcIDS1 revealed the participation of this enzyme in the de novo synthesis of defensive monoterpenoids in the beetle larvae. As an FDP synthase, PcIDS1 could be associated with the formation of sesquiterpenes, such as juvenile hormones. Detection of Co(2+), Mn(2+), or Mg(2+) in the beetle larvae suggests flux control into C10 vs. C15 isoprenoids could be accomplished by these ions in vivo. The dependence of product chain length of scIDSs on metal cofactor identity introduces an additional regulation for these branch point enzymes of terpene metabolism.
Collapse
|
104
|
|
105
|
Zhang Y, Lin FY, Li K, Zhu W, Liu YL, Cao R, Pang R, Lee E, Axelson J, Hensler M, Wang K, Molohon KJ, Wang Y, Mitchell DA, Nizet V, Oldfield E. HIV-1 Integrase Inhibitor-Inspired Antibacterials Targeting Isoprenoid Biosynthesis. ACS Med Chem Lett 2012; 3:402-406. [PMID: 22662288 DOI: 10.1021/ml300038t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We report the discovery of antibacterial leads, keto- and diketo-acids, targeting two prenyl transferases: undecaprenyl diphosphate synthase (UPPS) and dehydrosqualene synthase (CrtM). The leads were suggested by the observation that keto- and diketo-acids bind to the active site Mg(2+)/Asp domain in HIV-1 integrase, and similar domains are present in prenyl transferases. We report the x-ray crystallographic structures of one diketo-acid and one keto-acid bound to CrtM, which supports the Mg(2+) binding hypothesis, together with the x-ray structure of one diketo-acid bound to UPPS. In all cases, the inhibitors bind to a farnesyl diphosphate substrate-binding site. Compound 45 had cell growth inhibition MIC(90) values of ~250-500 ng/mL against S. aureus, 500 ng/mL against Bacillus anthracis, 4 μg/mL against Listeria monocytogenes and Enterococcus faecium, and 1 μg/mL against Streptococcus pyogenes M1, but very little activity against E. coli (DH5α, K12) or human cell lines.
Collapse
Affiliation(s)
- Yonghui Zhang
- PrenylX Research Institute, Zhangjiagang, 215600, People's Republic of
China
| | | | | | | | | | | | | | | | | | - Mary Hensler
- Department of Pediatrics and
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
92093, United States
| | | | | | | | | | - Victor Nizet
- Department of Pediatrics and
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
92093, United States
| | | |
Collapse
|
106
|
Köksal M, Chou WKW, Cane DE, Christianson DW. Structure of 2-methylisoborneol synthase from Streptomyces coelicolor and implications for the cyclization of a noncanonical C-methylated monoterpenoid substrate. Biochemistry 2012; 51:3011-20. [PMID: 22455514 DOI: 10.1021/bi201827a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The crystal structure of 2-methylisoborneol synthase (MIBS) from Streptomyces coelicolor A3(2) has been determined in complex with substrate analogues geranyl-S-thiolodiphosphate and 2-fluorogeranyl diphosphate at 1.80 and 1.95 Å resolution, respectively. This terpenoid cyclase catalyzes the cyclization of the naturally occurring, noncanonical C-methylated isoprenoid substrate, 2-methylgeranyl diphosphate, to form the bicyclic product 2-methylisoborneol, a volatile C(11) homoterpene alcohol with an earthy, musty odor. While MIBS adopts the tertiary structure of a class I terpenoid cyclase, its dimeric quaternary structure differs from that previously observed in dimeric terpenoid cyclases from plants and fungi. The quaternary structure of MIBS is nonetheless similar in some respects to that of dimeric farnesyl diphosphate synthase, which is not a cyclase. The structures of MIBS complexed with substrate analogues provide insights regarding differences in the catalytic mechanism of MIBS and the mechanisms of (+)-bornyl diphosphate synthase and endo-fenchol synthase, plant cyclases that convert geranyl diphosphate into products with closely related bicyclic bornyl skeletons, but distinct structures and stereochemistries.
Collapse
Affiliation(s)
- Mustafa Köksal
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA
| | | | | | | |
Collapse
|
107
|
Köksal M, Chou WKW, Cane DE, Christianson DW. Structure of geranyl diphosphate C-methyltransferase from Streptomyces coelicolor and implications for the mechanism of isoprenoid modification. Biochemistry 2012; 51:3003-10. [PMID: 22455498 DOI: 10.1021/bi300109c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Geranyl diphosphate C-methyltransferase (GPPMT) from Streptomyces coelicolor A3(2) is the first methyltransferase discovered that modifies an acyclic isoprenoid diphosphate, geranyl diphosphate (GPP), to yield a noncanonical acyclic allylic diphosphate product, 2-methylgeranyl diphosphate, which serves as the substrate for a subsequent cyclization reaction catalyzed by a terpenoid cyclase, methylisoborneol synthase. Here, we report the crystal structures of GPPMT in complex with GPP or the substrate analogue geranyl S-thiolodiphosphate (GSPP) along with S-adenosyl-L-homocysteine in the cofactor binding site, resulting from in situ demethylation of S-adenosyl-L-methionine, at 2.05 or 1.82 Å resolution, respectively. These structures suggest that both GPP and GSPP can undergo catalytic methylation in crystalline GPPMT, followed by dissociation of the isoprenoid product. S-Adenosyl-L-homocysteine remains bound in the active site, however, and does not exchange with a fresh molecule of cofactor S-adenosyl-L-methionine. These structures provide important clues about the molecular mechanism of the reaction, especially with regard to the face of the 2,3 double bond of GPP that is methylated as well as the stabilization of the resulting carbocation intermediate through cation-π interactions.
Collapse
Affiliation(s)
- Mustafa Köksal
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA
| | | | | | | |
Collapse
|
108
|
Faraldos JA, Gonzalez V, Allemann RK. The role of aristolochene synthase in diphosphate activation. Chem Commun (Camb) 2012; 48:3230-2. [PMID: 22349314 DOI: 10.1039/c2cc17588f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analysis of the role of amino acids involved in diphosphate binding in the Michaelis complex of aristolochene synthase from P. roqueforti (PR-AS) reveals mechanistic details about leaving group (PPi) activation and the nature of the active site acid.
Collapse
Affiliation(s)
- Juan A Faraldos
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | | | | |
Collapse
|
109
|
Oldfield E, Lin FY. Terpene biosynthesis: modularity rules. Angew Chem Int Ed Engl 2011; 51:1124-37. [PMID: 22105807 DOI: 10.1002/anie.201103110] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Indexed: 01/10/2023]
Abstract
Terpenes are the largest class of small-molecule natural products on earth, and the most abundant by mass. Here, we summarize recent developments in elucidating the structure and function of the proteins involved in their biosynthesis. There are six main building blocks or modules (α, β, γ, δ, ε, and ζ) that make up the structures of these enzymes: the αα and αδ head-to-tail trans-prenyl transferases that produce trans-isoprenoid diphosphates from C(5) precursors; the ε head-to-head prenyl transferases that convert these diphosphates into the tri- and tetraterpene precursors of sterols, hopanoids, and carotenoids; the βγ di- and triterpene synthases; the ζ head-to-tail cis-prenyl transferases that produce the cis-isoprenoid diphosphates involved in bacterial cell wall biosynthesis; and finally the α, αβ, and αβγ terpene synthases that produce plant terpenes, with many of these modular enzymes having originated from ancestral α and β domain proteins. We also review progress in determining the structure and function of the two 4Fe-4S reductases involved in formation of the C(5) diphosphates in many bacteria, where again, highly modular structures are found.
Collapse
Affiliation(s)
- Eric Oldfield
- Department of Chemistry and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| | | |
Collapse
|
110
|
|
111
|
Faraldos JA, González V, Senske M, Allemann RK. Templating effects in aristolochene synthase catalysis: elimination versus cyclisation. Org Biomol Chem 2011; 9:6920-3. [PMID: 21870004 DOI: 10.1039/c1ob06184d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analysis of the products generated by mutants of aristolochene synthase from P. roqueforti (PR-AS) revealed the prominent structural role played by the aliphatic residue Leu 108 in maintaining the productive conformation of farnesyl diphosphate to ensure C1-C10 (σ-bond) ring-closure and hence (+)-aristolochene production.
Collapse
Affiliation(s)
- Juan A Faraldos
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | | | | | | |
Collapse
|
112
|
Han GW, Ko J, Farr CL, Deller MC, Xu Q, Chiu HJ, Miller MD, Sefcikova J, Somarowthu S, Beuning PJ, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Wilson IA, Ondrechen MJ. Crystal structure of a metal-dependent phosphoesterase (YP_910028.1) from Bifidobacterium adolescentis: Computational prediction and experimental validation of phosphoesterase activity. Proteins 2011; 79:2146-60. [PMID: 21538547 DOI: 10.1002/prot.23035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/07/2011] [Accepted: 03/15/2011] [Indexed: 11/09/2022]
Abstract
The crystal structures of an unliganded and adenosine 5'-monophosphate (AMP) bound, metal-dependent phosphoesterase (YP_910028.1) from Bifidobacterium adolescentis are reported at 2.4 and 1.94 Å, respectively. Functional characterization of this enzyme was guided by computational analysis and then confirmed by experiment. The structure consists of a polymerase and histidinol phosphatase (PHP, Pfam: PF02811) domain with a second domain (residues 105-178) inserted in the middle of the PHP sequence. The insert domain functions in binding AMP, but the precise function and substrate specificity of this domain are unknown. Initial bioinformatics analyses yielded multiple potential functional leads, with most of them suggesting DNA polymerase or DNA replication activity. Phylogenetic analysis indicated a potential DNA polymerase function that was somewhat supported by global structural comparisons identifying the closest structural match to the alpha subunit of DNA polymerase III. However, several other functional predictions, including phosphoesterase, could not be excluded. Theoretical microscopic anomalous titration curve shapes, a computational method for the prediction of active sites from protein 3D structures, identified potential reactive residues in YP_910028.1. Further analysis of the predicted active site and local comparison with its closest structure matches strongly suggested phosphoesterase activity, which was confirmed experimentally. Primer extension assays on both normal and mismatched DNA show neither extension nor degradation and provide evidence that YP_910028.1 has neither DNA polymerase activity nor DNA-proofreading activity. These results suggest that many of the sequence neighbors previously annotated as having DNA polymerase activity may actually be misannotated.
Collapse
Affiliation(s)
- Gye Won Han
- Joint Center for Structural Genomics, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Köksal M, Zimmer I, Schnitzler JP, Christianson DW. Structure of isoprene synthase illuminates the chemical mechanism of teragram atmospheric carbon emission. J Mol Biol 2010; 402:363-73. [PMID: 20624401 DOI: 10.1016/j.jmb.2010.07.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/02/2010] [Accepted: 07/06/2010] [Indexed: 11/29/2022]
Abstract
The X-ray crystal structure of recombinant PcISPS (isoprene synthase from gray poplar hybrid Populus×canescens) has been determined at 2.7 Å resolution, and the structure of its complex with three Mg(2+) and the unreactive substrate analogue dimethylallyl-S-thiolodiphosphate has been determined at 2.8 Å resolution. Analysis of these structures suggests that the generation of isoprene from substrate dimethylallyl diphosphate occurs via a syn-periplanar elimination mechanism in which the diphosphate-leaving group serves as a general base. This chemical mechanism is responsible for the annual atmospheric emission of 100 Tg of isoprene by terrestrial plant life. Importantly, the PcISPS structure promises to guide future protein engineering studies, potentially leading to hydrocarbon fuels and products that do not rely on traditional petrochemical sources.
Collapse
Affiliation(s)
- Mustafa Köksal
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, USA
| | | | | | | |
Collapse
|