101
|
Su YH. Telling left from right: Left-right asymmetric controls in sea urchins. Genesis 2014; 52:269-78. [DOI: 10.1002/dvg.22739] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/20/2013] [Accepted: 12/31/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Yi-Hsien Su
- Institute of Cellular and Organismic Biology; Academia Sinica; Nankang Taipei Taiwan
| |
Collapse
|
102
|
McIntyre DC, Seay NW, Croce JC, McClay DR. Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm. Development 2013; 140:4881-9. [PMID: 24227654 DOI: 10.1242/dev.095844] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The border between the posterior ectoderm and the endoderm is a location where two germ layers meet and establish an enduring relationship that also later serves, in deuterostomes, as the anatomical site of the anus. In the sea urchin, a prototypic deuterostome, the ectoderm-endoderm boundary is established before gastrulation, and ectodermal cells at the boundary are thought to provide patterning inputs to the underlying mesenchyme. Here we show that a short-range Wnt5 signal from the endoderm actively patterns the adjacent boundary ectoderm. This signal activates a unique subcircuit of the ectoderm gene regulatory network, including the transcription factors IrxA, Nk1, Pax2/5/8 and Lim1, which are ultimately restricted to subregions of the border ectoderm (BE). Surprisingly, Nodal and BMP2/4, previously shown to be activators of ectodermal specification and the secondary embryonic axis, instead restrict the expression of these genes to subregions of the BE. A detailed examination showed that endodermal Wnt5 functions as a short-range signal that activates only a narrow band of ectodermal cells, even though all ectoderm is competent to receive the signal. Thus, cells in the BE integrate positive and negative signals from both the primary and secondary embryonic axes to correctly locate and specify the border ectoderm.
Collapse
|
103
|
Holland LZ, Carvalho JE, Escriva H, Laudet V, Schubert M, Shimeld SM, Yu JK. Evolution of bilaterian central nervous systems: a single origin? EvoDevo 2013; 4:27. [PMID: 24098981 PMCID: PMC3856589 DOI: 10.1186/2041-9139-4-27] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/14/2013] [Indexed: 12/21/2022] Open
Abstract
The question of whether the ancestral bilaterian had a central nervous system (CNS) or a diffuse ectodermal nervous system has been hotly debated. Considerable evidence supports the theory that a CNS evolved just once. However, an alternative view proposes that the chordate CNS evolved from the ectodermal nerve net of a hemichordate-like ancestral deuterostome, implying independent evolution of the CNS in chordates and protostomes. To specify morphological divisions along the anterior/posterior axis, this ancestor used gene networks homologous to those patterning three organizing centers in the vertebrate brain: the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer, and subsequent evolution of the vertebrate brain involved elaboration of these ancestral signaling centers; however, all or part of these signaling centers were lost from the CNS of invertebrate chordates. The present review analyzes the evidence for and against these theories. The bulk of the evidence indicates that a CNS evolved just once - in the ancestral bilaterian. Importantly, in both protostomes and deuterostomes, the CNS represents a portion of a generally neurogenic ectoderm that is internalized and receives and integrates inputs from sensory cells in the remainder of the ectoderm. The expression patterns of genes involved in medio/lateral (dorso/ventral) patterning of the CNS are similar in protostomes and chordates; however, these genes are not similarly expressed in the ectoderm outside the CNS. Thus, their expression is a better criterion for CNS homologs than the expression of anterior/posterior patterning genes, many of which (for example, Hox genes) are similarly expressed both in the CNS and in the remainder of the ectoderm in many bilaterians. The evidence leaves hemichordates in an ambiguous position - either CNS centralization was lost to some extent at the base of the hemichordates, or even earlier, at the base of the hemichordates + echinoderms, or one of the two hemichordate nerve cords is homologous to the CNS of protostomes and chordates. In any event, the presence of part of the genetic machinery for the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer in invertebrate chordates together with similar morphology indicates that these organizers were present, at least in part, at the base of the chordates and were probably elaborated upon in the vertebrate lineage.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0202, USA
| | - João E Carvalho
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (UMR 7009 – CNRS/UPMC), Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, B.P. 28, 06230 Villefranche-sur-Mer, France
| | - Hector Escriva
- CNRS, UMR 7232, BIOM, Université Pierre et Marie Curie Paris 06, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Vincent Laudet
- Institut de Génomique Fonctionnelle de Lyon (CNRS UMR5242, UCBL, ENS, INRA 1288), Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (UMR 7009 – CNRS/UPMC), Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, B.P. 28, 06230 Villefranche-sur-Mer, France
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
104
|
Kozmikova I, Candiani S, Fabian P, Gurska D, Kozmik Z. Essential role of Bmp signaling and its positive feedback loop in the early cell fate evolution of chordates. Dev Biol 2013; 382:538-54. [DOI: 10.1016/j.ydbio.2013.07.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 11/25/2022]
|
105
|
Li E, Materna SC, Davidson EH. New regulatory circuit controlling spatial and temporal gene expression in the sea urchin embryo oral ectoderm GRN. Dev Biol 2013; 382:268-79. [PMID: 23933172 DOI: 10.1016/j.ydbio.2013.07.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/27/2013] [Accepted: 07/29/2013] [Indexed: 11/19/2022]
Abstract
The sea urchin oral ectoderm gene regulatory network (GRN) model has increased in complexity as additional genes are added to it, revealing its multiple spatial regulatory state domains. The formation of the oral ectoderm begins with an oral-aboral redox gradient, which is interpreted by the cis-regulatory system of the nodal gene to cause its expression on the oral side of the embryo. Nodal signaling drives cohorts of regulatory genes within the oral ectoderm and its derived subdomains. Activation of these genes occurs sequentially, spanning the entire blastula stage. During this process the stomodeal subdomain emerges inside of the oral ectoderm, and bilateral subdomains defining the lateral portions of the future ciliary band emerge adjacent to the central oral ectoderm. Here we examine two regulatory genes encoding repressors, sip1 and ets4, which selectively prevent transcription of oral ectoderm genes until their expression is cleared from the oral ectoderm as an indirect consequence of Nodal signaling. We show that the timing of transcriptional de-repression of sip1 and ets4 targets which occurs upon their clearance explains the dynamics of oral ectoderm gene expression. In addition two other repressors, the direct Nodal target not, and the feed forward Nodal target goosecoid, repress expression of regulatory genes in the central animal oral ectoderm thereby confining their expression to the lateral domains of the animal ectoderm. These results have permitted construction of an enhanced animal ectoderm GRN model highlighting the repressive interactions providing precise temporal and spatial control of regulatory gene expression.
Collapse
Affiliation(s)
- Enhu Li
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
106
|
Nodal: master and commander of the dorsal–ventral and left–right axes in the sea urchin embryo. Curr Opin Genet Dev 2013; 23:445-53. [DOI: 10.1016/j.gde.2013.04.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 01/14/2023]
|
107
|
Gene regulatory network for neurogenesis in a sea star embryo connects broad neural specification and localized patterning. Proc Natl Acad Sci U S A 2013; 110:8591-6. [PMID: 23650356 DOI: 10.1073/pnas.1220903110] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A great challenge in development biology is to understand how interacting networks of regulatory genes can direct the often highly complex patterning of cells in a 3D embryo. Here, we detail the gene regulatory network that describes the distribution of ciliary band-associated neurons in the bipinnaria larva of the sea star. This larva, typically for the ancestral deuterostome dipleurula larval type that it represents, forms two loops of ciliary bands that extend across much of the anterior-posterior and dorsal-ventral ectoderm. We show that the sea star first likely uses maternally inherited factors and the Wnt and Delta pathways to distinguish neurogenic ectoderm from endomesoderm. The broad neurogenic potential of the ectoderm persists throughout much of gastrulation. Nodal, bone morphogenetic protein 2/4 (Bmp2/4), and Six3-dependent pathways then sculpt a complex ciliary band territory that is defined by the expression of the forkhead transcription factor, foxg. Foxg is needed to define two molecularly distinct ectodermal domains, and for the formation of differentiated neurons along the edge of these two territories. Thus, significantly, Bmp2/4 signaling in sea stars does not distinguish differentiated neurons from nonneuronal ectoderm as it does in many other animals, but instead contributes to the patterning of an ectodermal territory, which then, in turn, provides cues to permit the final steps of neuronal differentiation. The modularity between specification and patterning likely reflects the evolutionary history of this gene regulatory network, in which an ancient module for specification of a broad neurogenic potential ectoderm was subsequently overlaid with a module for patterning.
Collapse
|
108
|
Bishop CD, MacNeil KE, Patel D, Taylor VJ, Burke RD. Neural development in Eucidaris tribuloides and the evolutionary history of the echinoid larval nervous system. Dev Biol 2013; 377:236-44. [DOI: 10.1016/j.ydbio.2013.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/07/2013] [Accepted: 03/09/2013] [Indexed: 10/27/2022]
|
109
|
Burns G, Thorndyke MC, Peck LS, Clark MS. Transcriptome pyrosequencing of the Antarctic brittle star Ophionotus victoriae. Mar Genomics 2013; 9:9-15. [DOI: 10.1016/j.margen.2012.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/27/2012] [Accepted: 05/28/2012] [Indexed: 11/25/2022]
|
110
|
Bessodes N, Haillot E, Duboc V, Röttinger E, Lahaye F, Lepage T. Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo. PLoS Genet 2012; 8:e1003121. [PMID: 23271979 PMCID: PMC3521660 DOI: 10.1371/journal.pgen.1003121] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 10/12/2012] [Indexed: 02/01/2023] Open
Abstract
During echinoderm development, expression of nodal on the right side plays a crucial role in positioning of the rudiment on the left side, but the mechanisms that restrict nodal expression to the right side are not known. Here we show that establishment of left-right asymmetry in the sea urchin embryo relies on reciprocal signaling between the ectoderm and a left-right organizer located in the endomesoderm. FGF/ERK and BMP2/4 signaling are required to initiate nodal expression in this organizer, while Delta/Notch signaling is required to suppress formation of this organizer on the left side of the archenteron. Furthermore, we report that the H(+)/K(+)-ATPase is critically required in the Notch signaling pathway upstream of the S3 cleavage of Notch. Our results identify several novel players and key early steps responsible for initiation, restriction, and propagation of left-right asymmetry during embryogenesis of a non-chordate deuterostome and uncover a functional link between the H(+)/K(+)-ATPase and the Notch signaling pathway.
Collapse
Affiliation(s)
- Nathalie Bessodes
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - Emmanuel Haillot
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - Véronique Duboc
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - Eric Röttinger
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - François Lahaye
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - Thierry Lepage
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| |
Collapse
|
111
|
Ben-Tabou de-Leon S, Su YH, Lin KT, Li E, Davidson EH. Gene regulatory control in the sea urchin aboral ectoderm: spatial initiation, signaling inputs, and cell fate lockdown. Dev Biol 2012; 374:245-54. [PMID: 23211652 DOI: 10.1016/j.ydbio.2012.11.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/10/2012] [Accepted: 11/15/2012] [Indexed: 12/20/2022]
Abstract
The regulation of oral-aboral ectoderm specification in the sea urchin embryo has been extensively studied in recent years. The oral-aboral polarity is initially imposed downstream of a redox gradient induced by asymmetric maternal distribution of mitochondria. Two TGF-β signaling pathways, Nodal and BMP, are then respectively utilized in the generation of oral and aboral regulatory states. However, a causal understanding of the regulation of aboral ectoderm specification has been lacking. In this work control of aboral ectoderm regulatory state specification was revealed by combining detailed regulatory gene expression studies, perturbation and cis-regulatory analyses. Our analysis illuminates a dynamic system where different factors dominate at different developmental times. We found that the initial activation of aboral genes depends directly on the redox sensitive transcription factor, hypoxia inducible factor 1α (HIF-1α). Two BMP ligands, BMP2/4 and BMP5/8, then significantly enhance aboral regulatory gene transcription. Ultimately, encoded feedback wiring lockdown the aboral ectoderm regulatory state. Our study elucidates the different regulatory mechanisms that sequentially dominate the spatial localization of aboral regulatory states.
Collapse
Affiliation(s)
- Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel.
| | | | | | | | | |
Collapse
|
112
|
Luo YJ, Su YH. Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva. PLoS Biol 2012; 10:e1001402. [PMID: 23055827 PMCID: PMC3467216 DOI: 10.1371/journal.pbio.1001402] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 08/28/2012] [Indexed: 12/28/2022] Open
Abstract
Nodal and BMP signals are important for establishing left-right (LR) asymmetry in vertebrates. In sea urchins, Nodal signaling prevents the formation of the rudiment on the right side. However, the opposing pathway to Nodal signaling during LR axis establishment is not clear. Here, we revealed that BMP signaling is activated in the left coelomic pouch, specifically in the veg2 lineage, but not in the small micromeres. By perturbing BMP activities, we demonstrated that BMP signaling is required for activating the expression of the left-sided genes and the formation of the left-sided structures. On the other hand, Nodal signals on the right side inhibit BMP signaling and control LR asymmetric separation and apoptosis of the small micromeres. Our findings show that BMP signaling is the positive signal for left-sided development in sea urchins, suggesting that the opposing roles of Nodal and BMP signals in establishing LR asymmetry are conserved in deuterostomes.
Collapse
Affiliation(s)
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| |
Collapse
|
113
|
Vaughn R, Garnhart N, Garey JR, Thomas WK, Livingston BT. Sequencing and analysis of the gastrula transcriptome of the brittle star Ophiocoma wendtii. EvoDevo 2012; 3:19. [PMID: 22938175 PMCID: PMC3492025 DOI: 10.1186/2041-9139-3-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/13/2012] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED BACKGROUND The gastrula stage represents the point in development at which the three primary germ layers diverge. At this point the gene regulatory networks that specify the germ layers are established and the genes that define the differentiated states of the tissues have begun to be activated. These networks have been well-characterized in sea urchins, but not in other echinoderms. Embryos of the brittle star Ophiocoma wendtii share a number of developmental features with sea urchin embryos, including the ingression of mesenchyme cells that give rise to an embryonic skeleton. Notable differences are that no micromeres are formed during cleavage divisions and no pigment cells are formed during development to the pluteus larval stage. More subtle changes in timing of developmental events also occur. To explore the molecular basis for the similarities and differences between these two echinoderms, we have sequenced and characterized the gastrula transcriptome of O. wendtii. METHODS Development of Ophiocoma wendtii embryos was characterized and RNA was isolated from the gastrula stage. A transcriptome data base was generated from this RNA and was analyzed using a variety of methods to identify transcripts expressed and to compare those transcripts to those expressed at the gastrula stage in other organisms. RESULTS Using existing databases, we identified brittle star transcripts that correspond to 3,385 genes, including 1,863 genes shared with the sea urchin Strongylocentrotus purpuratus gastrula transcriptome. We characterized the functional classes of genes present in the transcriptome and compared them to those found in this sea urchin. We then examined those members of the germ-layer specific gene regulatory networks (GRNs) of S. purpuratus that are expressed in the O. wendtii gastrula. Our results indicate that there is a shared 'genetic toolkit' central to the echinoderm gastrula, a key stage in embryonic development, though there are also differences that reflect changes in developmental processes. CONCLUSIONS The brittle star expresses genes representing all functional classes at the gastrula stage. Brittle stars and sea urchins have comparable numbers of each class of genes and share many of the genes expressed at gastrulation. Examination of the brittle star genes in which sea urchin orthologs are utilized in germ layer specification reveals a relatively higher level of conservation of key regulatory components compared to the overall transcriptome. We also identify genes that were either lost or whose temporal expression has diverged from that of sea urchins.
Collapse
Affiliation(s)
- Roy Vaughn
- Department of Biological, Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90815, USA.
| | | | | | | | | |
Collapse
|
114
|
Clarke SL, VanderMeer JE, Wenger AM, Schaar BT, Ahituv N, Bejerano G. Human developmental enhancers conserved between deuterostomes and protostomes. PLoS Genet 2012; 8:e1002852. [PMID: 22876195 PMCID: PMC3410860 DOI: 10.1371/journal.pgen.1002852] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/07/2012] [Indexed: 01/10/2023] Open
Abstract
The identification of homologies, whether morphological, molecular, or genetic, is fundamental to our understanding of common biological principles. Homologies bridging the great divide between deuterostomes and protostomes have served as the basis for current models of animal evolution and development. It is now appreciated that these two clades share a common developmental toolkit consisting of conserved transcription factors and signaling pathways. These patterning genes sometimes show common expression patterns and genetic interactions, suggesting the existence of similar or even conserved regulatory apparatus. However, previous studies have found no regulatory sequence conserved between deuterostomes and protostomes. Here we describe the first such enhancers, which we call bilaterian conserved regulatory elements (Bicores). Bicores show conservation of sequence and gene synteny. Sequence conservation of Bicores reflects conserved patterns of transcription factor binding sites. We predict that Bicores act as response elements to signaling pathways, and we show that Bicores are developmental enhancers that drive expression of transcriptional repressors in the vertebrate central nervous system. Although the small number of identified Bicores suggests extensive rewiring of cis-regulation between the protostome and deuterostome clades, additional Bicores may be revealed as our understanding of cis-regulatory logic and sample of bilaterian genomes continue to grow. Flies and worms have long served as valuable model organisms for the study of human development and health. Despite the great morphological and evolutionary distance between them, humans, flies, and worms share many commonalities. Each develops from three major germ layers and is patterned along the two major spatial axes. At the molecular level, development in these widely diverged species is often controlled by the same signaling pathways activating members of the same transcription factor and target gene families, shared since the common ancestor of humans, flies, and worms. And yet, at the gene regulatory level, humans and flies or worms seem starkly different, with not a single regulatory region shared across the phyla. Here we discover the first two examples of developmental enhancers conserved between deuterostomes (ranging from human to sea urchins) and protostomes (a large clade that includes flies and worms). We show evidence that these ancient regulatory loci retain the capacity to respond to the same signaling pathways in these widely diverged organisms, and we show that they have been co-opted, along with the molecular pathways that control them, to pattern the vertebrate nervous systems. Our screen supports large scale regulatory rewiring, while offering the first intriguing outliers.
Collapse
Affiliation(s)
- Shoa L Clarke
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | | | | | | | | | | |
Collapse
|
115
|
Li E, Materna SC, Davidson EH. Direct and indirect control of oral ectoderm regulatory gene expression by Nodal signaling in the sea urchin embryo. Dev Biol 2012; 369:377-85. [PMID: 22771578 DOI: 10.1016/j.ydbio.2012.06.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/19/2012] [Accepted: 06/27/2012] [Indexed: 12/23/2022]
Abstract
The Nodal signaling pathway is known from earlier work to be an essential mediator of oral ectoderm specification in the sea urchin embryo, and indirectly, of aboral ectoderm specification as well. Following expression of the Nodal ligand in the future oral ectoderm during cleavage, a sequence of regulatory gene activations occur within this territory which depend directly or indirectly on nodal gene expression. Here we describe additional regulatory genes that contribute to the oral ectoderm regulatory state during specification in Strongylocentrotus purpuratus, and show how their spatial expression changes dynamically during development. By means of system wide perturbation analyses we have significantly improved current knowledge of the epistatic relations among the regulatory genes of the oral ectoderm. From these studies there emerge diverse circuitries relating downstream regulatory genes directly and indirectly to Nodal signaling. A key intermediary regulator, the role of which had not previously been discerned, is the not gene. In addition to activating several genes earlier described as targets of Nodal signaling, the not gene product acts to repress other oral ectoderm genes, contributing crucially to the bilateral spatial organization of the embryonic oral ectoderm.
Collapse
Affiliation(s)
- Enhu Li
- Division of Biology, California Institute of Technology, Pasadena, 91125, USA
| | | | | |
Collapse
|
116
|
Müller P, Rogers KW, Jordan BM, Lee JS, Robson D, Ramanathan S, Schier AF. Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system. Science 2012; 336:721-4. [PMID: 22499809 DOI: 10.1126/science.1221920] [Citation(s) in RCA: 266] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological systems involving short-range activators and long-range inhibitors can generate complex patterns. Reaction-diffusion models postulate that differences in signaling range are caused by differential diffusivity of inhibitor and activator. Other models suggest that differential clearance underlies different signaling ranges. To test these models, we measured the biophysical properties of the Nodal/Lefty activator/inhibitor system during zebrafish embryogenesis. Analysis of Nodal and Lefty gradients revealed that Nodals have a shorter range than Lefty proteins. Pulse-labeling analysis indicated that Nodals and Leftys have similar clearance kinetics, whereas fluorescence recovery assays revealed that Leftys have a higher effective diffusion coefficient than Nodals. These results indicate that differential diffusivity is the major determinant of the differences in Nodal/Lefty range and provide biophysical support for reaction-diffusion models of activator/inhibitor-mediated patterning.
Collapse
Affiliation(s)
- Patrick Müller
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | |
Collapse
|
117
|
Wei Z, Range R, Angerer R, Angerer L. Axial patterning interactions in the sea urchin embryo: suppression of nodal by Wnt1 signaling. Development 2012; 139:1662-9. [PMID: 22438568 DOI: 10.1242/dev.075051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wnt and Nodal signaling pathways are required for initial patterning of cell fates along anterior-posterior (AP) and dorsal-ventral (DV) axes, respectively, of sea urchin embryos during cleavage and early blastula stages. These mechanisms are connected because expression of nodal depends on early Wnt/β-catenin signaling. Here, we show that an important subsequent function of Wnt signaling is to control the shape of the nodal expression domain and maintain correct specification of different cell types along the axes of the embryo. In the absence of Wnt1, the posterior-ventral region of the embryo is severely altered during early gastrulation. Strikingly, at this time, nodal and its downstream target genes gsc and bra are expressed ectopically, extending posteriorly to the blastopore. They override the initial specification of posterior-ventral ectoderm and endoderm fates, eliminating the ventral contribution to the gut and displacing the ciliary band dorsally towards, and occasionally beyond, the blastopore. Consequently, in Wnt1 morphants, the blastopore is located at the border of the re-specified posterior-ventral oral ectoderm and by larval stages it is in the same plane near the stomodeum on the ventral side. In normal embryos, a Nodal-dependent process downregulates wnt1 expression in dorsal posterior cells during early gastrulation, focusing Wnt1 signaling to the posterior-ventral region where it suppresses nodal expression. These subsequent interactions between Wnt and Nodal signaling are thus mutually antagonistic, each limiting the range of the other's activity, in order to maintain and stabilize the body plan initially established by those same signaling pathways in the early embryo.
Collapse
Affiliation(s)
- Zheng Wei
- National Institute for Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20891, USA
| | | | | | | |
Collapse
|
118
|
Pantropic retroviruses as a transduction tool for sea urchin embryos. Proc Natl Acad Sci U S A 2012; 109:5334-9. [PMID: 22431628 DOI: 10.1073/pnas.1117846109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sea urchins are an important model for experiments at the intersection of development and systems biology, and technical innovations that enhance the utility of this model are of great value. This study explores pantropic retroviruses as a transduction tool for sea urchin embryos, and demonstrates that pantropic retroviruses infect sea urchin embryos with high efficiency and genomically integrate at a copy number of one per cell. We successfully used a self-inactivation strategy to both insert a sea urchin-specific enhancer and disrupt the endogenous viral enhancer. The resulting self-inactivating viruses drive global and persistent gene expression, consistent with genomic integration during the first cell cycle. Together, these data provide substantial proof of principle for transduction technology in sea urchin embryos.
Collapse
|
119
|
Yaguchi J, Angerer LM, Inaba K, Yaguchi S. Zinc finger homeobox is required for the differentiation of serotonergic neurons in the sea urchin embryo. Dev Biol 2012; 363:74-83. [PMID: 22210002 PMCID: PMC3288183 DOI: 10.1016/j.ydbio.2011.12.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 12/07/2011] [Accepted: 12/13/2011] [Indexed: 12/18/2022]
Abstract
Serotonergic neurons differentiate in the neurogenic animal plate ectoderm of the sea urchin embryo. The regulatory mechanisms that control the specification or differentiation of these neurons in the sea urchin embryo are not yet understood, although, after the genome was sequenced, many genes encoding transcription factors expressed in this region were identified. Here, we report that zinc finger homeobox (zfhx1/z81) is expressed in serotonergic neural precursor cells, using double in situ hybridization screening with a serotonergic neural marker, tryptophan 5-hydroxylase (tph) encoding a serotonin synthase that is required for the differentiation of serotonergic neurons. zfhx1/z81 begins to be expressed at gastrula stage in individual cells in the anterior neuroectoderm, some of which also express delta. zfhx1/z81 expression gradually disappears as neural differentiation begins with tph expression. When the translation of Zfhx1/Z81 is blocked by morpholino injection, embryos express neither tph nor the neural marker synaptotagminB in cells of the animal plate, and serotonergic neurons do not differentiate. In contrast, Zfhx1/Z81 morphants do express fez, another neural precursor marker, which appears to function in the initial phase of specification/differentiation of serotonergic neurons. In addition, zfhx1/z81 is one of the targets suppressed in the animal plate by anti-neural signals such as Nodal as well as Delta-Notch. We conclude that Zfhx1/Z81 functions during the specification of individual anterior neural precursors and promotes the expression of tph and synaptotagminB, required for the differentiation of serotonergic neurons.
Collapse
Affiliation(s)
- Junko Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
- Initiative for the Promotion of Young Scientists’ Independent Research, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Lynne M. Angerer
- Developmental Mechanisms Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. MSC 4326, Bethesda, MD 20892, USA
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
- Initiative for the Promotion of Young Scientists’ Independent Research, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| |
Collapse
|
120
|
Affiliation(s)
- Nori Satoh
- Marine Genomics Unit; Okinawa Institute of Science and Technology; Onna Okinawa 904-0495 Japan
| | - Kuni Tagawa
- Marine Biological Laboratory; Graduate School of Science; Hiroshima University; Mukaishima Hiroshima 722-0073 Japan
| | - Hiroki Takahashi
- Division of Developmental Biology; National Institute of Basic Biology; Okagaki Aichi 445-8585 Japan
| |
Collapse
|
121
|
Cavalieri V, Guarcello R, Spinelli G. Specific expression of a TRIM-containing factor in ectoderm cells affects the skeletal morphogenetic program of the sea urchin embryo. Development 2011; 138:4279-90. [PMID: 21896632 DOI: 10.1242/dev.066480] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the indirect developing sea urchin embryo, the primary mesenchyme cells (PMCs) acquire most of the positional and temporal information from the overlying ectoderm for skeletal initiation and growth. In this study, we characterize the function of the novel gene strim1, which encodes a tripartite motif-containing (TRIM) protein, that adds to the list of genes constituting the epithelial-mesenchymal signaling network. We report that strim1 is expressed in ectoderm regions adjacent to the bilateral clusters of PMCs and that its misexpression leads to severe skeletal abnormalities. Reciprocally, knock down of strim1 function abrogates PMC positioning and blocks skeletogenesis. Blastomere transplantation experiments establish that the defects in PMC patterning, number and skeletal growth depend upon strim1 misexpression in ectoderm cells. Furthermore, clonal expression of strim1 into knocked down embryos locally restores skeletogenesis. We also provide evidence that the Otp and Pax2/5/8 regulators, as well as FGFA, but not VEGF, ligand act downstream to strim1 in ectoderm cells, and that strim1 triggers the expression of the PMC marker sm30, an ectoderm-signaling dependent gene. We conclude that the strim1 function elicits specific gene expression both in ectoderm cells and PMCs to guide the skeletal biomineralization during morphogenesis.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari STEMBIO, Università di Palermo, Viale delle Scienze Edificio 16, 90128 Palermo, Italy.
| | | | | |
Collapse
|
122
|
Angerer LM, Yaguchi S, Angerer RC, Burke RD. The evolution of nervous system patterning: insights from sea urchin development. Development 2011; 138:3613-23. [PMID: 21828090 PMCID: PMC3152920 DOI: 10.1242/dev.058172] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies of the sea urchin embryo have elucidated the mechanisms that localize and pattern its nervous system. These studies have revealed the presence of two overlapping regions of neurogenic potential at the beginning of embryogenesis, each of which becomes progressively restricted by separate, yet linked, signals, including Wnt and subsequently Nodal and BMP. These signals act to specify and localize the embryonic neural fields - the anterior neuroectoderm and the more posterior ciliary band neuroectoderm - during development. Here, we review these conserved nervous system patterning signals and consider how the relationships between them might have changed during deuterostome evolution.
Collapse
Affiliation(s)
- Lynne M Angerer
- National Institute for Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
123
|
Abstract
Embryos of the echinoderms, especially those of sea urchins and sea stars, have been studied as model organisms for over 100 years. The simplicity of their early development, and the ease of experimentally perturbing this development, provides an excellent platform for mechanistic studies of cell specification and morphogenesis. As a result, echinoderms have contributed significantly to our understanding of many developmental mechanisms, including those that govern the structure and design of gene regulatory networks, those that direct cell lineage specification, and those that regulate the dynamic morphogenetic events that shape the early embryo.
Collapse
Affiliation(s)
- David R McClay
- Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
124
|
Yaguchi S, Yaguchi J, Wei Z, Jin Y, Angerer LM, Inaba K. Fez function is required to maintain the size of the animal plate in the sea urchin embryo. Development 2011; 138:4233-43. [PMID: 21852402 DOI: 10.1242/dev.069856] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Partitioning ectoderm precisely into neurogenic and non-neurogenic regions is an essential step for neurogenesis of almost all bilaterian embryos. Although it is widely accepted that antagonism between BMP and its inhibitors primarily sets up the border between these two types of ectoderm, it is unclear how such extracellular, diffusible molecules create a sharp and precise border at the single-cell level. Here, we show that Fez, a zinc finger protein, functions as an intracellular factor attenuating BMP signaling specifically within the neurogenic region at the anterior end of sea urchin embryos, termed the animal plate. When Fez function is blocked, the size of this neurogenic ectoderm becomes smaller than normal. However, this reduction is rescued in Fez morphants simply by blocking BMP2/4 translation, indicating that Fez maintains the size of the animal plate by attenuating BMP2/4 function. Consistent with this, the gradient of BMP activity along the aboral side of the animal plate, as measured by pSmad1/5/8 levels, drops significantly in cells expressing Fez and this steep decline requires Fez function. Our data reveal that this neurogenic ectoderm produces an intrinsic system that attenuates BMP signaling to ensure the establishment of a stable, well-defined neural territory, the animal plate.
Collapse
Affiliation(s)
- Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan.
| | | | | | | | | | | |
Collapse
|
125
|
Range R, Lepage T. Maternal Oct1/2 is required for Nodal and Vg1/Univin expression during dorsal-ventral axis specification in the sea urchin embryo. Dev Biol 2011; 357:440-9. [PMID: 21782809 DOI: 10.1016/j.ydbio.2011.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 07/01/2011] [Accepted: 07/05/2011] [Indexed: 01/19/2023]
Abstract
The TGFβ family member Nodal is expressed early in the presumptive ventral ectoderm of the early sea urchin embryo and its activity is crucial for dorsal-ventral (D/V) axis specification. Analysis of the nodal promoter identified a number of critical binding sites for transcription factors of different families including Sox, Oct, TCF and bZIP, but in most cases the specific factors that regulate nodal expression are not known. In this study, we report that the maternal factor Oct1/2 functions as a positive regulator of nodal and that its activity is essential for the initiation of nodal expression. Inhibition of Oct1/2 mRNA translation produced embryos with severe axial defects similar to those observed following inhibition of Nodal function. We show that perturbing Oct1/2 function specifically disrupted specification of the ventral and dorsal ectodermal regions and that these effects were caused by the failure of nodal to be expressed early in development. Furthermore, we identified the key gene vg1/univin, which is also necessary for nodal expression, as an additional factor that was completely dependent on Oct1/2 for its zygotic expression. These data demonstrate that the maternal Oct1/2 protein plays an early and essential role in D/V axis specification by initiating the expression of nodal and vg1/univin, two genes that act at the top of the D/V ectoderm gene regulatory network.
Collapse
Affiliation(s)
- Ryan Range
- Université Pierre et Marie Curie (Paris 6), UMR 7009 CNRS, Observatoire Océanologique, 06230 Villefranche-sur-mer, France
| | | |
Collapse
|
126
|
Wei Z, Angerer RC, Angerer LM. Direct development of neurons within foregut endoderm of sea urchin embryos. Proc Natl Acad Sci U S A 2011; 108:9143-7. [PMID: 21576476 PMCID: PMC3107264 DOI: 10.1073/pnas.1018513108] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although it is well established that neural cells are ectodermal derivatives in bilaterian animals, here we report the surprising discovery that some of the pharyngeal neurons of sea urchin embryos develop de novo from the endoderm. The appearance of these neurons is independent of mouth formation, in which the stomodeal ectoderm joins the foregut. The neurons do not derive from migration of ectoderm cells to the foregut, as shown by lineage tracing with the photoactivatable protein KikGR. Their specification and development depend on expression of Nkx3-2, which in turn depends on Six3, both of which are expressed in the foregut lineage. SoxB1, which is closely related to the vertebrate Sox factors that support a neural precursor state, is also expressed in the foregut throughout gastrulation, suggesting that this region of the fully formed archenteron retains an unexpected pluripotency. Together, these results lead to the unexpected conclusion that, within a cell lineage already specified to be endoderm by a well-established gene regulatory network [Peter IS, Davidson EH (2010) Dev Biol 340:188-199], there also operates a Six3/Nkx3-2-dependent pathway required for the de novo specification of some of the neurons in the pharynx. As a result, neuroendoderm precursors form in the foregut aided by retention of a SoxB1-dependent pluripotent state.
Collapse
Affiliation(s)
- Zheng Wei
- National Institute for Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Robert C. Angerer
- National Institute for Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Lynne M. Angerer
- National Institute for Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
127
|
Röttinger E, Martindale MQ. Ventralization of an indirect developing hemichordate by NiCl₂ suggests a conserved mechanism of dorso-ventral (D/V) patterning in Ambulacraria (hemichordates and echinoderms). Dev Biol 2011; 354:173-90. [PMID: 21466800 DOI: 10.1016/j.ydbio.2011.03.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 03/07/2011] [Accepted: 03/28/2011] [Indexed: 12/16/2022]
Abstract
One of the earliest steps in embryonic development is the establishment of the future body axes. Morphological and molecular data place the Ambulacraria (echinoderms and hemichordates) within the Deuterostomia and as the sister taxon to chordates. Extensive work over the last decades in echinoid (sea urchins) echinoderms has led to the characterization of gene regulatory networks underlying germ layer specification and axis formation during embryogenesis. However, with the exception of recent studies from a direct developing hemichordate (Saccoglossus kowalevskii), very little is known about the molecular mechanism underlying early hemichordate development. Unlike echinoids, indirect developing hemichordates retain the larval body axes and major larval tissues after metamorphosis into the adult worm. In order to gain insight into dorso-ventral (D/V) patterning, we used nickel chloride (NiCl₂), a potent ventralizing agent on echinoderm embryos, on the indirect developing enteropneust hemichordate, Ptychodera flava. Our present study shows that NiCl₂ disrupts the D/V axis and induces formation of a circumferential mouth when treated before the onset of gastrulation. Molecular analysis, using newly isolated tissue-specific markers, shows that the ventral ectoderm is expanded at expense of dorsal ectoderm in treated embryos, but has little effect on germ layer or anterior-posterior markers. The resulting ventralized phenotype, the effective dose, and the NiCl₂ sensitive response period of Ptychodera flava, is very similar to the effects of nickel on embryonic development described in larval echinoderms. These strong similarities allow one to speculate that a NiCl₂ sensitive pathway involved in dorso-ventral patterning may be shared between echinoderms, hemichordates and a putative ambulacrarian ancestor. Furthermore, nickel treatments ventralize the direct developing hemichordate, S. kowalevskii indicating that a common pathway patterns both larval and adult body plans of the ambulacrarian ancestor and provides insight in to the origin of the chordate body plan.
Collapse
Affiliation(s)
- E Röttinger
- Kewalo Marine Laboratory, PBRC, University of Hawaii, Honolulu, HI, USA
| | | |
Collapse
|