102
|
Ruiz-Estévez M, Cabrero J, Camacho JPM. B-chromosome ribosomal DNA is functional in the grasshopper Eyprepocnemis plorans. PLoS One 2012; 7:e36600. [PMID: 22570730 PMCID: PMC3343036 DOI: 10.1371/journal.pone.0036600] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/09/2012] [Indexed: 11/19/2022] Open
Abstract
B-chromosomes are frequently argued to be genetically inert elements, but activity for some particular genes has been reported, especially for ribosomal RNA (rRNA) genes whose expression can easily be detected at the cytological level by the visualization of their phenotypic expression, i.e., the nucleolus. The B(24) chromosome in the grasshopper Eyprepocnemis plorans frequently shows a nucleolus attached to it during meiotic prophase I. Here we show the presence of rRNA transcripts that unequivocally came from the B(24) chromosome. To detect these transcripts, we designed primers specifically anchoring at the ITS-2 region, so that the reverse primer was complementary to the B chromosome DNA sequence including a differential adenine insertion being absent in the ITS2 of A chromosomes. PCR analysis carried out on genomic DNA showed amplification in B-carrying males but not in B-lacking ones. PCR analyses performed on complementary DNA showed amplification in about half of B-carrying males. Joint cytological and molecular analysis performed on 34 B-carrying males showed a close correspondence between the presence of B-specific transcripts and of nucleoli attached to the B chromosome. In addition, the molecular analysis revealed activity of the B chromosome rDNA in 10 out of the 13 B-carrying females analysed. Our results suggest that the nucleoli attached to B chromosomes are actively formed by expression of the rDNA carried by them, and not by recruitment of nucleolar materials formed in A chromosome nucleolar organizing regions. Therefore, B-chromosome rDNA in E. plorans is functional since it is actively transcribed to form the nucleolus attached to the B chromosome. This demonstrates that some heterochromatic B chromosomes can harbour functional genes.
Collapse
Affiliation(s)
| | | | - Josefa Cabrero
- Departamento de Genética, Universidad de Granada, Granada, Spain
| | | |
Collapse
|
103
|
Zhou Q, Zhu HM, Huang QF, Zhao L, Zhang GJ, Roy SW, Vicoso B, Xuan ZL, Ruan J, Zhang Y, Zhao RP, Ye C, Zhang XQ, Wang J, Wang W, Bachtrog D. Deciphering neo-sex and B chromosome evolution by the draft genome of Drosophila albomicans. BMC Genomics 2012; 13:109. [PMID: 22439699 PMCID: PMC3353239 DOI: 10.1186/1471-2164-13-109] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 03/22/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Drosophila albomicans is a unique model organism for studying both sex chromosome and B chromosome evolution. A pair of its autosomes comprising roughly 40% of the whole genome has fused to the ancient X and Y chromosomes only about 0.12 million years ago, thereby creating the youngest and most gene-rich neo-sex system reported to date. This species also possesses recently derived B chromosomes that show non-Mendelian inheritance and significantly influence fertility. METHODS We sequenced male flies with B chromosomes at 124.5-fold genome coverage using next-generation sequencing. To characterize neo-Y specific changes and B chromosome sequences, we also sequenced inbred female flies derived from the same strain but without B's at 28.5-fold. RESULTS We assembled a female genome and placed 53% of the sequence and 85% of the annotated proteins into specific chromosomes, by comparison with the 12 Drosophila genomes. Despite its very recent origin, the non-recombining neo-Y chromosome shows various signs of degeneration, including a significant enrichment of non-functional genes compared to the neo-X, and an excess of tandem duplications relative to other chromosomes. We also characterized a B-chromosome linked scaffold that contains an actively transcribed unit and shows sequence similarity to the subcentromeric regions of both the ancient X and the neo-X chromosome. CONCLUSIONS Our results provide novel insights into the very early stages of sex chromosome evolution and B chromosome origination, and suggest an unprecedented connection between the births of these two systems in D. albomicans.
Collapse
Affiliation(s)
- Qi Zhou
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Hong-mei Zhu
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Quan-fei Huang
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Li Zhao
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Guo-jie Zhang
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Scott W Roy
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Beatriz Vicoso
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Zhao-lin Xuan
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Jue Ruan
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Yue Zhang
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ruo-ping Zhao
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Chen Ye
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Xiu-qing Zhang
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Jun Wang
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Wen Wang
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Doris Bachtrog
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|