101
|
Goel R, Muthusamy B, Pandey A, Prasad TSK. Human protein reference database and human proteinpedia as discovery resources for molecular biotechnology. Mol Biotechnol 2011; 48:87-95. [PMID: 20927658 DOI: 10.1007/s12033-010-9336-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the recent years, research in molecular biotechnology has transformed from being small scale studies targeted at a single or a small set of molecule(s) into a combination of high throughput discovery platforms and extensive validations. Such a discovery platform provided an unbiased approach which resulted in the identification of several novel genetic and protein biomarkers. High throughput nature of these investigations coupled with higher sensitivity and specificity of Next Generation technologies provided qualitatively and quantitatively richer biological data. These developments have also revolutionized biological research and speed of data generation. However, it is becoming difficult for individual investigators to directly benefit from this data because they are not easily accessible. Data resources became necessary to assimilate, store and disseminate information that could allow future discoveries. We have developed two resources--Human Protein Reference Database (HPRD) and Human Proteinpedia, which integrate knowledge relevant to human proteins. A number of protein features including protein-protein interactions, post-translational modifications, subcellular localization, and tissue expression, which have been studied using different strategies were incorporated in these databases. Human Proteinpedia also provides a portal for community participation to annotate and share proteomic data and uses HPRD as the scaffold for data processing. Proteomic investigators can even share unpublished data in Human Proteinpedia, which provides a meaningful platform for data sharing. As proteomic information reflects a direct view of cellular systems, proteomics is expected to complement other areas of biology such as genomics, transcriptomics, molecular biology, cloning, and classical genetics in understanding the relationships among multiple facets of biological systems.
Collapse
Affiliation(s)
- Renu Goel
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | | | | | | |
Collapse
|
102
|
Affiliation(s)
- Roberto Stasi
- Department of Haematology, St George’s Hospital, London
| | - Adrian C. Newland
- Department of Haematology, Barts and the London NHS Trust, London, UK
| |
Collapse
|
103
|
Protéomique et médecine transfusionnelle. Transfus Clin Biol 2011; 18:79-96. [DOI: 10.1016/j.tracli.2011.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 02/17/2011] [Indexed: 01/02/2023]
|
104
|
Di Michele M, Thys C, Waelkens E, Overbergh L, D'Hertog W, Mathieu C, De Vos R, Peerlinck K, Van Geet C, Freson K. An integrated proteomics and genomics analysis to unravel a heterogeneous platelet secretion defect. J Proteomics 2011; 74:902-13. [PMID: 21406263 DOI: 10.1016/j.jprot.2011.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 02/28/2011] [Accepted: 03/03/2011] [Indexed: 01/14/2023]
Abstract
Eight patients with clinical bleeding problems have evidence for platelet storage pool disease as they present with impaired platelet aggregation and secretion with low concentrations of ADP and collagen and an absence of second phase aggregation with epinephrine. Electron microscopy analysis further showed a reduced but not absent amount of platelet dense granules, and CD63 staining was decreased compared to healthy controls. The presence of alpha granules and CD62P expression after platelet activation was normal. This work aimed at identifying differentially expressed proteins in the platelet releasate and its remaining pellet after activation with A23187 and TRAP in patients and controls using DIGE-based proteomic technology. We identified 44 differentially expressed proteins in patients and the altered expression for some of them was confirmed by immunoblot analysis. Most of these proteins belong to the class of cytoskeleton-related proteins. In addition, 29 cytoskeleton-related genes showed an altered expression in platelet mRNA from patients using a real-time PCR array. In conclusion, our study shows that the dense granule secretion defect in patients with platelet storage pool disease is highly heterogeneous with evidence of an underlying cytoskeleton defect.
Collapse
Affiliation(s)
- Michela Di Michele
- Center for Molecular and Vascular Biology, University Hospital Leuven, KULeuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Krishnan S, Gaspari M, Corte AD, Bianchi P, Crescente M, Cerletti C, Torella D, Indolfi C, de Gaetano G, Donati MB, Rotilio D, Cuda G. OFFgel-based multidimensional LC-MS/MS approach to the cataloguing of the human platelet proteome for an interactomic profile. Electrophoresis 2011; 32:686-95. [DOI: 10.1002/elps.201000592] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/13/2010] [Accepted: 12/26/2010] [Indexed: 11/05/2022]
|
106
|
Ma C, Yao Y, Yue QX, Zhou XW, Yang PY, Wu WY, Guan SH, Jiang BH, Yang M, Liu X, Guo DA. Differential proteomic analysis of platelets suggested possible signal cascades network in platelets treated with salvianolic acid B. PLoS One 2011; 6:e14692. [PMID: 21379382 PMCID: PMC3040754 DOI: 10.1371/journal.pone.0014692] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 01/25/2011] [Indexed: 11/19/2022] Open
Abstract
Background Salvianolic acid B (SB) is an active component isolated from Danshen, a traditional Chinese medicine widely used for the treatment of cardiovascular disorders. Previous study suggested that SB might inhibit adhesion as well as aggregation of platelets by a mechanism involving the integrin α2β1. But, the signal cascades in platelets after SB binding are still not clear. Methodology/Principal Findings In the present study, a differential proteomic analysis (two-dimensional electrophoresis) was conducted to check the protein expression profiles of rat platelets with or without treatment of SB. Proteins altered in level after SB exposure were identified by MALDI-TOF MS/MS. Treatment of SB caused regulation of 20 proteins such as heat shock-related 70 kDa protein 2 (hsp70), LIM domain protein CLP-36, copine I, peroxiredoxin-2, coronin-1 B and cytoplasmic dynein intermediate chain 2C. The regulation of SB on protein levels was confirmed by Western blotting. The signal cascades network induced by SB after its binding with integrin α2β1 was predicted. To certify the predicted network, binding affinity of SB to integrin α2β1 was checked in vitro and ex vivo in platelets. Furthermore, the effects of SB on protein levels of hsp70, coronin-1B and intracellular levels of Ca(2+) and reactive oxygen species (ROS) were checked with or without pre-treatment of platelets using antibody against integrin α2β1. Electron microscopy study confirmed that SB affected cytoskeleton structure of platelets. Conclusions/Significance Integrin α2β1 might be one of the direct target proteins of SB in platelets. The signal cascades network of SB after binding with integrin α2β1 might include regulation of intracellular Ca(2+) level, cytoskeleton-related proteins such as coronin-1B and cytoskeleton structure of platelets.
Collapse
Affiliation(s)
- Chao Ma
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Abstract
Platelets are specialized blood cells that play central roles in physiologic and pathologic processes of hemostasis, wound healing, host defense, thrombosis, inflammation, and tumor metastasis. Activation of platelets is crucial for platelet function that includes a complex interplay of adhesion, signaling molecules, and release of bioactive factors. Transfusion of platelet concentrates is an important treatment component for thrombocytopenia and bleeding. Recent progress in high-throughput mRNA and protein profiling techniques has advanced the understanding of platelet biological functions toward identifying novel platelet-expressed and secreted proteins, analyzing functional changes between normal and pathologic states, and determining the effects of processing and storage on platelet concentrates for transfusion. It is important to understand the different standard methods of platelet preparation and how they differ from the perspective for use as research samples in clinical chemistry. Two simple methods are described here for the preparation of research-scale platelet samples from whole blood, and detailed notes are provided about the methods used for the preparation of platelet concentrates for transfusion.
Collapse
|
108
|
Devine DV, Schubert P. Proteomic applications in blood transfusion: working the jigsaw puzzle. Vox Sang 2010; 100:84-91. [DOI: 10.1111/j.1423-0410.2010.01433.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
109
|
Delobel J, Rubin O, Prudent M, Crettaz D, Tissot JD, Lion N. Biomarker analysis of stored blood products: emphasis on pre-analytical issues. Int J Mol Sci 2010; 11:4601-17. [PMID: 21151459 PMCID: PMC3000103 DOI: 10.3390/ijms11114601] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 11/10/2010] [Accepted: 11/14/2010] [Indexed: 12/28/2022] Open
Abstract
Millions of blood products are transfused every year; many lives are thus directly concerned by transfusion. The three main labile blood products used in transfusion are erythrocyte concentrates, platelet concentrates and fresh frozen plasma. Each of these products has to be stored according to its particular components. However, during storage, modifications or degradation of those components may occur, and are known as storage lesions. Thus, biomarker discovery of in vivo blood aging as well as in vitro labile blood products storage lesions is of high interest for the transfusion medicine community. Pre-analytical issues are of major importance in analyzing the various blood products during storage conditions as well as according to various protocols that are currently used in blood banks for their preparations. This paper will review key elements that have to be taken into account in the context of proteomic-based biomarker discovery applied to blood banking.
Collapse
Affiliation(s)
- Julien Delobel
- Service Régional Vaudois de Transfusion Sanguine, route de la Corniche 2, CH-1066 Epalinges, Switzerland; E-Mails: (J.D.); (O.R.); (M.P.); (D.C.); (N.L.)
- Faculté de Biologie et Médecine, Université de Lausanne, rue du Bugnon 21, CH-1011 Lausanne, Switzerland
| | - Olivier Rubin
- Service Régional Vaudois de Transfusion Sanguine, route de la Corniche 2, CH-1066 Epalinges, Switzerland; E-Mails: (J.D.); (O.R.); (M.P.); (D.C.); (N.L.)
- Faculté de Biologie et Médecine, Université de Lausanne, rue du Bugnon 21, CH-1011 Lausanne, Switzerland
| | - Michel Prudent
- Service Régional Vaudois de Transfusion Sanguine, route de la Corniche 2, CH-1066 Epalinges, Switzerland; E-Mails: (J.D.); (O.R.); (M.P.); (D.C.); (N.L.)
| | - David Crettaz
- Service Régional Vaudois de Transfusion Sanguine, route de la Corniche 2, CH-1066 Epalinges, Switzerland; E-Mails: (J.D.); (O.R.); (M.P.); (D.C.); (N.L.)
| | - Jean-Daniel Tissot
- Service Régional Vaudois de Transfusion Sanguine, route de la Corniche 2, CH-1066 Epalinges, Switzerland; E-Mails: (J.D.); (O.R.); (M.P.); (D.C.); (N.L.)
| | - Niels Lion
- Service Régional Vaudois de Transfusion Sanguine, route de la Corniche 2, CH-1066 Epalinges, Switzerland; E-Mails: (J.D.); (O.R.); (M.P.); (D.C.); (N.L.)
| |
Collapse
|
110
|
Májek P, Reicheltová Z, Stikarová J, Suttnar J, Sobotková A, Dyr JE. Proteome changes in platelets activated by arachidonic acid, collagen, and thrombin. Proteome Sci 2010. [PMID: 21073729 DOI: 10.1186/1477-5956-8-56.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Platelets are small anucleated blood particles that play a key role in the control of bleeding. Platelets need to be activated to perform their functions and participate in hemostasis. The process of activation is accompanied by vast protein reorganization and posttranslational modifications. The goal of this study was to identify changes in proteins in platelets activated by different agonists. Platelets were activated by three different agonists - arachidonic acid, collagen, and thrombin. 2D SDS-PAGE (pI 4-7) was used to separate platelet proteins. Proteomes of activated and resting platelets were compared with each other by Progenesis SameSpots statistical software; and proteins were identified by nanoLC-MS/MS. RESULTS 190 spots were found to be significantly different. Of these, 180 spots were successfully identified and correspond to 144 different proteins. Five proteins were found that had not previously been identified in platelets: protein CDV3 homolog, protein ETHE1, protein LZIC, FGFR1 oncogene partner 2, and guanine nucleotide-binding protein subunit beta-5. Using spot expression profile analysis, we found two proteins (WD repeat-containing protein 1 and mitochondrial glycerol-3-phosphate dehydrogenase) that may be part of thrombin specific activation or signal transduction pathway(s). CONCLUSIONS Our results, characterizing the differences within proteins in both activated (by various agonists) and resting platelets, can thus contribute to the basic knowledge of platelets and to the understanding of the function and development of new antiplatelet drugs.
Collapse
Affiliation(s)
- Pavel Májek
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
111
|
Májek P, Reicheltová Z, Stikarová J, Suttnar J, Sobotková A, Dyr JE. Proteome changes in platelets activated by arachidonic acid, collagen, and thrombin. Proteome Sci 2010; 8:56. [PMID: 21073729 PMCID: PMC2996359 DOI: 10.1186/1477-5956-8-56] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 11/12/2010] [Indexed: 12/27/2022] Open
Abstract
Background Platelets are small anucleated blood particles that play a key role in the control of bleeding. Platelets need to be activated to perform their functions and participate in hemostasis. The process of activation is accompanied by vast protein reorganization and posttranslational modifications. The goal of this study was to identify changes in proteins in platelets activated by different agonists. Platelets were activated by three different agonists - arachidonic acid, collagen, and thrombin. 2D SDS-PAGE (pI 4-7) was used to separate platelet proteins. Proteomes of activated and resting platelets were compared with each other by Progenesis SameSpots statistical software; and proteins were identified by nanoLC-MS/MS. Results 190 spots were found to be significantly different. Of these, 180 spots were successfully identified and correspond to 144 different proteins. Five proteins were found that had not previously been identified in platelets: protein CDV3 homolog, protein ETHE1, protein LZIC, FGFR1 oncogene partner 2, and guanine nucleotide-binding protein subunit beta-5. Using spot expression profile analysis, we found two proteins (WD repeat-containing protein 1 and mitochondrial glycerol-3-phosphate dehydrogenase) that may be part of thrombin specific activation or signal transduction pathway(s). Conclusions Our results, characterizing the differences within proteins in both activated (by various agonists) and resting platelets, can thus contribute to the basic knowledge of platelets and to the understanding of the function and development of new antiplatelet drugs.
Collapse
Affiliation(s)
- Pavel Májek
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
112
|
Thijs T, Nuyttens BP, Deckmyn H, Broos K. Platelet physiology and antiplatelet agents. Clin Chem Lab Med 2010; 48 Suppl 1:S3-13. [PMID: 21054192 DOI: 10.1515/cclm.2010.363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Apart from the central beneficial role platelets play in hemostasis, they are also involved in atherothrombotic diseases. Here, we review the current knowledge of platelet intracellular signal transduction pathways involved in platelet adhesion, activation, amplification of the activation signal and aggregation, as well as pathways limiting platelet aggregation. A thorough understanding of these pathways allows explanation of the mechanism of action of existing antiplatelet agents, but also helps to identify targets for novel drug development.
Collapse
Affiliation(s)
- Tim Thijs
- Laboratory for Thrombosis Research, KU Leuven campus Kortrijk, Kortrijk, Belgium
| | | | | | | |
Collapse
|
113
|
Mass spectrometry-based proteomics in biomedical research: emerging technologies and future strategies. Expert Rev Mol Med 2010; 12:e30. [DOI: 10.1017/s1462399410001614] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In recent years, the technology and methods widely available for mass spectrometry (MS)-based proteomics have increased in power and potential, allowing the study of protein-level processes occurring in biological systems. Although these methods remain an active area of research, established techniques are already helping answer biological questions. Here, this recent evolution of MS-based proteomics and its applications are reviewed, including standard methods for protein and peptide separation, biochemical fractionation, quantitation, targeted MS approaches such as selected reaction monitoring, data analysis and bioinformatics. Recent research in many of these areas reveals that proteomics has moved beyond simply cataloguing proteins in biological systems and is finally living up to its initial potential – as an essential tool to aid related disciplines, notably health research. From here, there is great potential for MS-based proteomics to move beyond basic research, into clinical research and diagnostics.
Collapse
|