101
|
N M, J M, V U, H N M. Unraveling genomic and phenotypic nature of multidrug-resistant (MDR) Pseudomonas aeruginosa VRFPA04 isolated from keratitis patient. Microbiol Res 2016; 193:140-149. [PMID: 27825482 DOI: 10.1016/j.micres.2016.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/29/2016] [Accepted: 10/08/2016] [Indexed: 02/07/2023]
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa VRFPA04, obtained from a keratitis patient was found to exhibit resistance to betalactam (Penicillins, cephalosporins, including carbapenems, except aztreonam), aminoglycosides, quinolone group of drugs and susceptible to colistin. The complete genome sequencing of the ocular isolate to measure and ascertain the degree of multidrug resistance in VRFPA04 strain resulted in 6,818,030bp (6.8Mb) genome sizes, which happen to be the third largest genome available in the Genbank to date. Two chromosomally integrated class I integrons carrying blaVIM-2 carbapenemase gene, multiple secretory systems consisting of types I-VI and VIII proteins and ocular virulence factors exo-T, Y, U and exotoxin A, a gene that inhibits protein synthesis which could have caused corneal cell death and Phytohormone auxin biosynthetic protein were detected in the genome of VRFPA04 Genome. In addition, 58 Regions of Genomic Plasticity (RGPs) regions, multiple phage genomes, genomic islands, CRISPR genes and RND family efflux pumps, such as MexCD-OprJ and MexEF-OprN and its regulators, MexT and MexR, were unraveled in VRFPA04. Thus, the current study reveals the virulence factors and resistome nature of an ocular isolate P aeruginosa VRFPA04 genome.
Collapse
Affiliation(s)
- Murugan N
- Dept of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, 6000 06, India; School of Chemical & Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, 613401, India
| | - Malathi J
- Dept of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, 6000 06, India.
| | - Umashankar V
- Centre for Bioinformatics, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, 6000 06, India
| | - Madhavan H N
- Dept of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, 6000 06, India
| |
Collapse
|
102
|
Reboud E, Elsen S, Bouillot S, Golovkine G, Basso P, Jeannot K, Attrée I, Huber P. Phenotype and toxicity of the recently discovered exlA-positive Pseudomonas aeruginosa strains collected worldwide. Environ Microbiol 2016; 18:3425-3439. [PMID: 26914644 DOI: 10.1111/1462-2920.13262] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/11/2016] [Indexed: 11/30/2022]
Abstract
We recently identified a hypervirulent strain of Pseudomonas aeruginosa, differing significantly from the classical strains in that it lacks the type 3 secretion system (T3SS), a major determinant of P. aeruginosa virulence. This new strain secretes a novel toxin, called ExlA, which induces plasma membrane rupture in host cells. For this study, we collected 18 other exlA-positive T3SS-negative strains, analyzed their main virulence factors and tested their toxicity in various models. Phylogenetic analysis revealed two groups. The strains were isolated on five continents from patients with various pathologies or in the environment. Their proteolytic activity and their motion abilities were highly different, as well as their capacity to infect epithelial, endothelial, fibroblastic and immune cells, which correlated directly with ExlA secretion levels. In contrast, their toxicity towards human erythrocytes was limited. Some strains were hypervirulent in a mouse pneumonia model and others on chicory leaves. We conclude that (i) exlA-positive strains can colonize different habitats and may induce various infection types, (ii) the strains secreting significant amounts of ExlA are cytotoxic for most cell types but are poorly hemolytic, (iii) toxicity in planta does not correlate with ExlA secretion.
Collapse
Affiliation(s)
- Emeline Reboud
- Univ. Grenoble Alpes, 38000, Grenoble, France
- CNRS, ERL5261, 38000, Grenoble, France
- CEA, iRTSV-BCI, 38000, Grenoble, France
- INSERM, U1036, 38000, Grenoble, France
| | - Sylvie Elsen
- Univ. Grenoble Alpes, 38000, Grenoble, France
- CNRS, ERL5261, 38000, Grenoble, France
- CEA, iRTSV-BCI, 38000, Grenoble, France
- INSERM, U1036, 38000, Grenoble, France
| | - Stéphanie Bouillot
- Univ. Grenoble Alpes, 38000, Grenoble, France
- CNRS, ERL5261, 38000, Grenoble, France
- CEA, iRTSV-BCI, 38000, Grenoble, France
- INSERM, U1036, 38000, Grenoble, France
| | - Guillaume Golovkine
- Univ. Grenoble Alpes, 38000, Grenoble, France
- CNRS, ERL5261, 38000, Grenoble, France
- CEA, iRTSV-BCI, 38000, Grenoble, France
- INSERM, U1036, 38000, Grenoble, France
| | - Pauline Basso
- Univ. Grenoble Alpes, 38000, Grenoble, France
- CNRS, ERL5261, 38000, Grenoble, France
- CEA, iRTSV-BCI, 38000, Grenoble, France
- INSERM, U1036, 38000, Grenoble, France
| | - Katy Jeannot
- Hôpital Universitaire de Besançon, 25030, Besançon, France
| | - Ina Attrée
- Univ. Grenoble Alpes, 38000, Grenoble, France
- CNRS, ERL5261, 38000, Grenoble, France
- CEA, iRTSV-BCI, 38000, Grenoble, France
- INSERM, U1036, 38000, Grenoble, France
| | - Philippe Huber
- Univ. Grenoble Alpes, 38000, Grenoble, France.
- CNRS, ERL5261, 38000, Grenoble, France.
- CEA, iRTSV-BCI, 38000, Grenoble, France.
- INSERM, U1036, 38000, Grenoble, France.
| |
Collapse
|
103
|
Huber P, Basso P, Reboud E, Attrée I. Pseudomonas aeruginosa renews its virulence factors. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:564-571. [PMID: 27428387 DOI: 10.1111/1758-2229.12443] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Highly divergent strains of the major human opportunistic pathogen Pseudomonas aeruginosa have been isolated around the world by different research laboratories. They came from patients with various types of infectious diseases or from the environment. These strains are devoid of the major virulence factor used by classical strains, the Type III secretion system, but possess additional putative virulence factors, including a novel two-partner secretion system, ExlBA, responsible for the hypervirulent behavior of some clinical isolates. Here, we review the genetic and phenotypic characteristics of these recently-discovered P. aeruginosa outliers.
Collapse
Affiliation(s)
- Philippe Huber
- University of Grenoble Alpes, Grenoble 38000, France
- CNRS, ERL5261, Grenoble 38000, France
- CEA, BIG-BCI, Grenoble, 38000, France
- INSERM, U1036, Grenoble, 38000, France
| | - Pauline Basso
- University of Grenoble Alpes, Grenoble 38000, France
- CNRS, ERL5261, Grenoble 38000, France
- CEA, BIG-BCI, Grenoble, 38000, France
- INSERM, U1036, Grenoble, 38000, France
| | - Emeline Reboud
- University of Grenoble Alpes, Grenoble 38000, France
- CNRS, ERL5261, Grenoble 38000, France
- CEA, BIG-BCI, Grenoble, 38000, France
- INSERM, U1036, Grenoble, 38000, France
| | - Ina Attrée
- University of Grenoble Alpes, Grenoble 38000, France
- CNRS, ERL5261, Grenoble 38000, France
- CEA, BIG-BCI, Grenoble, 38000, France
- INSERM, U1036, Grenoble, 38000, France
| |
Collapse
|
104
|
Radford DR, Ahmadi H, Leon-Velarde CG, Balamurugan S. Propagation method for persistent high yield of diverse Listeria phages on permissive hosts at refrigeration temperatures. Res Microbiol 2016; 167:685-691. [DOI: 10.1016/j.resmic.2016.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 11/15/2022]
|
105
|
Pseudomonas aeruginosa ATCC 9027 is a non-virulent strain suitable for mono-rhamnolipids production. Appl Microbiol Biotechnol 2016; 100:9995-10004. [PMID: 27566690 DOI: 10.1007/s00253-016-7789-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/27/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
Abstract
Rhamnolipids produced by Pseudomonas aeruginosa are biosurfactants with a high biotechnological potential, but their extensive commercialization is limited by the potential virulence of P. aeruginosa and by restrictions in producing these surfactants in heterologous hosts. In this work, we report the characterization of P. aeruginosa strain ATCC 9027 in terms of its genome-sequence, virulence, antibiotic resistance, and its ability to produce mono-rhamnolipids when carrying plasmids with different cloned genes from the type strain PAO1. The genes that were expressed from the plasmids are those coding for enzymes involved in the synthesis of this biosurfactant (rhlA and rhlB), as well as the gene that codes for the RhlR transcriptional regulator. We confirm that strain ATCC 9027 forms part of the PA7 clade, but contrary to strain PA7, it is sensitive to antibiotics and is completely avirulent in a mouse model. We also report that strain ATCC 9027 mono-rhamnolipid synthesis is limited by the expression of the rhlAB-R operon. Thus, this strain carrying the rhlAB-R operon produces similar rhamnolipids levels as PAO1 strain. We determined that strain ATCC 9027 with rhlAB-R operon was not virulent to mice. These results show that strain ATCC 9027, expressing PAO1 rhlAB-R operon, has a high biotechnological potential for industrial mono-rhamnolipid production.
Collapse
|
106
|
Morita Y, Nakashima KI, Nishino K, Kotani K, Tomida J, Inoue M, Kawamura Y. Berberine Is a Novel Type Efflux Inhibitor Which Attenuates the MexXY-Mediated Aminoglycoside Resistance in Pseudomonas aeruginosa. Front Microbiol 2016; 7:1223. [PMID: 27547203 PMCID: PMC4975076 DOI: 10.3389/fmicb.2016.01223] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 07/22/2016] [Indexed: 01/10/2023] Open
Abstract
The emergence and spread of multidrug-resistant P. aeruginosa infections is of great concern, as very few agents are effective against strains of this species. Methanolic extracts from the Coptidis Rhizoma (the rhizomes of Coptis japonica var. major Satake) or Phellodendri Cortex (the bark of Phellodendron chinense Schneider) markedly reduced resistance to anti-pseudomonal aminoglycosides (e.g., amikacin) in multidrug-resistant P. aeruginosa strains. Berberine, the most abundant benzylisoquinoline alkaloid in the two extracts, reduced aminoglycoside resistance of P. aeruginosa via a mechanism that required the MexXY multidrug efflux system; berberine also reduced aminoglycoside MICs in Achromobacter xylosoxidans and Burkholderia cepacia, two species that harbor intrinsic multidrug efflux systems very similar to the MexXY. Furthermore this compound inhibited MexXY-dependent antibiotic resistance of other classes including cephalosporins (cefepime), macrolides (erythromycin), and lincosamides (lincomycin) demonstrated using a pseudomonad lacking the four other major Mex pumps. Although phenylalanine-arginine beta-naphthylamide (PAβN), a well-known efflux inhibitor, antagonized aminoglycoside in a MexXY-dependent manner, a lower concentration of berberine was sufficient to reduce amikacin resistance of P. aeruginosa in the presence of PAβN. Moreover, berberine enhanced the synergistic effects of amikacin and piperacillin (and vice versa) in multidrug-resistant P. aeruginosa strains. Thus, berberine appears to be a novel type inhibitor of the MexXY-dependent aminoglycoside efflux in P. aeruginosa. As aminoglycosides are molecules of choice to treat severe infections the clinical impact is potentially important.
Collapse
Affiliation(s)
- Yuji Morita
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| | - Ken-Ichi Nakashima
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| | - Kunihiko Nishino
- Department of Biomolecular Science and Regulation, Institute of Scientific and Industrial Research, Osaka University Osaka, Japan
| | - Kenta Kotani
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| | - Junko Tomida
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| | - Makoto Inoue
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| | - Yoshiaki Kawamura
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| |
Collapse
|
107
|
Jani M, Mathee K, Azad RK. Identification of Novel Genomic Islands in Liverpool Epidemic Strain of Pseudomonas aeruginosa Using Segmentation and Clustering. Front Microbiol 2016; 7:1210. [PMID: 27536294 PMCID: PMC4971588 DOI: 10.3389/fmicb.2016.01210] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/20/2016] [Indexed: 02/03/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen implicated in a myriad of infections and a leading pathogen responsible for mortality in patients with cystic fibrosis (CF). Horizontal transfers of genes among the microorganisms living within CF patients have led to highly virulent and multi-drug resistant strains such as the Liverpool epidemic strain of P. aeruginosa, namely the LESB58 strain that has the propensity to acquire virulence and antibiotic resistance genes. Often these genes are acquired in large clusters, referred to as "genomic islands (GIs)." To decipher GIs and understand their contributions to the evolution of virulence and antibiotic resistance in P. aeruginosa LESB58, we utilized a recursive segmentation and clustering procedure, presented here as a genome-mining tool, "GEMINI." GEMINI was validated on experimentally verified islands in the LESB58 strain before examining its potential to decipher novel islands. Of the 6062 genes in P. aeruginosa LESB58, 596 genes were identified to be resident on 20 GIs of which 12 have not been previously reported. Comparative genomics provided evidence in support of our novel predictions. Furthermore, GEMINI unraveled the mosaic structure of islands that are composed of segments of likely different evolutionary origins, and demonstrated its ability to identify potential strain biomarkers. These newly found islands likely have contributed to the hyper-virulence and multidrug resistance of the Liverpool epidemic strain of P. aeruginosa.
Collapse
Affiliation(s)
- Mehul Jani
- Department of Biological Sciences, University of North Texas Denton, TX, USA
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine Global Health Consortium, and Biomolecular Sciences Institute, Florida International University Miami, FL, USA
| | - Rajeev K Azad
- Department of Biological Sciences, University of North TexasDenton, TX, USA; Department of Mathematics, University of North TexasDenton, TX, USA
| |
Collapse
|
108
|
Transcriptome Profiling of Antimicrobial Resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2016; 60:4722-33. [PMID: 27216077 DOI: 10.1128/aac.00075-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/19/2016] [Indexed: 11/20/2022] Open
Abstract
Emerging resistance to antimicrobials and the lack of new antibiotic drug candidates underscore the need for optimization of current diagnostics and therapies to diminish the evolution and spread of multidrug resistance. As the antibiotic resistance status of a bacterial pathogen is defined by its genome, resistance profiling by applying next-generation sequencing (NGS) technologies may in the future accomplish pathogen identification, prompt initiation of targeted individualized treatment, and the implementation of optimized infection control measures. In this study, qualitative RNA sequencing was used to identify key genetic determinants of antibiotic resistance in 135 clinical Pseudomonas aeruginosa isolates from diverse geographic and infection site origins. By applying transcriptome-wide association studies, adaptive variations associated with resistance to the antibiotic classes fluoroquinolones, aminoglycosides, and β-lactams were identified. Besides potential novel biomarkers with a direct correlation to resistance, global patterns of phenotype-associated gene expression and sequence variations were identified by predictive machine learning approaches. Our research serves to establish genotype-based molecular diagnostic tools for the identification of the current resistance profiles of bacterial pathogens and paves the way for faster diagnostics for more efficient, targeted treatment strategies to also mitigate the future potential for resistance evolution.
Collapse
|
109
|
Buzid A, Shang F, Reen FJ, Muimhneacháin EÓ, Clarke SL, Zhou L, Luong JHT, O'Gara F, McGlacken GP, Glennon JD. Molecular Signature of Pseudomonas aeruginosa with Simultaneous Nanomolar Detection of Quorum Sensing Signaling Molecules at a Boron-Doped Diamond Electrode. Sci Rep 2016; 6:30001. [PMID: 27427496 PMCID: PMC4948026 DOI: 10.1038/srep30001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/27/2016] [Indexed: 12/03/2022] Open
Abstract
Electroanalysis was performed using a boron-doped diamond (BDD) electrode for the simultaneous detection of 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and pyocyanin (PYO). PQS and its precursor HHQ are two important signal molecules produced by Pseudomonas aeruginosa, while PYO is a redox active toxin involved in virulence and pathogenesis. This Gram-negative and opportunistic human pathogen is associated with a hospital-acquired infection particularly in patients with compromised immunity and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. Early detection is crucial in the clinical management of this pathogen, with established infections entering a biofilm lifestyle that is refractory to conventional antibiotic therapies. Herein, a detection procedure was optimized and proven for the simultaneous detection of PYO, HHQ and PQS in standard mixtures, biological samples, and P. aeruginosa spiked CF sputum samples with remarkable sensitivity, down to nanomolar levels. Differential pulse voltammetry (DPV) scans were also applicable for monitoring the production of PYO, HHQ and PQS in P. aeruginosa PA14 over 8 h of cultivation. The simultaneous detection of these three compounds represents a molecular signature specific to this pathogen.
Collapse
Affiliation(s)
- Alyah Buzid
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Ireland.,Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - Fengjun Shang
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Ireland.,Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - F Jerry Reen
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Ireland
| | - Eoin Ó Muimhneacháin
- Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - Sarah L Clarke
- Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - Lin Zhou
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Ireland.,Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - John H T Luong
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Ireland.,Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Ireland
| | - Gerard P McGlacken
- Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - Jeremy D Glennon
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Ireland.,Department of Chemistry and Analytical &Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| |
Collapse
|
110
|
Boukerb AM, Decor A, Ribun S, Tabaroni R, Rousset A, Commin L, Buff S, Doléans-Jordheim A, Vidal S, Varrot A, Imberty A, Cournoyer B. Genomic Rearrangements and Functional Diversification of lecA and lecB Lectin-Coding Regions Impacting the Efficacy of Glycomimetics Directed against Pseudomonas aeruginosa. Front Microbiol 2016; 7:811. [PMID: 27303392 PMCID: PMC4885879 DOI: 10.3389/fmicb.2016.00811] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/12/2016] [Indexed: 11/13/2022] Open
Abstract
LecA and LecB tetrameric lectins take part in oligosaccharide-mediated adhesion-processes of Pseudomonas aeruginosa. Glycomimetics have been designed to block these interactions. The great versatility of P. aeruginosa suggests that the range of application of these glycomimetics could be restricted to genotypes with particular lectin types. The likelihood of having genomic and genetic changes impacting LecA and LecB interactions with glycomimetics such as galactosylated and fucosylated calix[4]arene was investigated over a collection of strains from the main clades of P. aeruginosa. Lectin types were defined, and their ligand specificities were inferred. These analyses showed a loss of lecA among the PA7 clade. Genomic changes impacting lec loci were thus assessed using strains of this clade, and by making comparisons with the PAO1 genome. The lecA regions were found challenged by phage attacks and PAGI-2 (genomic island) integrations. A prophage was linked to the loss of lecA. The lecB regions were found less impacted by such rearrangements but greater lecB than lecA genetic divergences were recorded. Sixteen combinations of LecA and LecB types were observed. Amino acid variations were mapped on PAO1 crystal structures. Most significant changes were observed on LecBPA7, and found close to the fucose binding site. Glycan array analyses were performed with purified LecBPA7. LecBPA7 was found less specific for fucosylated oligosaccharides than LecBPAO1, with a preference for H type 2 rather than type 1, and Lewis(a) rather than Lewis(x). Comparison of the crystal structures of LecBPA7 and LecBPAO1 in complex with Lewis(a) showed these changes in specificity to have resulted from a modification of the water network between the lectin, galactose and GlcNAc residues. Incidence of these modifications on the interactions with calix[4]arene glycomimetics at the cell level was investigated. An aggregation test was used to establish the efficacy of these ligands. Great variations in the responses were observed. Glycomimetics directed against LecB yielded the highest numbers of aggregates for strains from all clades. The use of a PAO1ΔlecB strain confirmed a role of LecB in this aggregation phenotype. Fucosylated calix[4]arene showed the greatest potential for a use in the prevention of P. aeruginosa infections.
Collapse
Affiliation(s)
- Amine M Boukerb
- Equipes de Recherche, Bactéries Pathogènes Opportunistes et Environnement, Centre de Ressources Biologiques - Environnement Microbiologie Lyon, UMR Centre National de la Recherche Scientifique 5557 Ecologie Microbienne, Université Lyon 1 and VetAgro Sup Lyon, France
| | - Aude Decor
- Centre de Recherche sur les Macromolécules Végétales (UPR 5301), Centre National de la Recherche Scientifique and Université Grenoble Alpes Grenoble, France
| | - Sébastien Ribun
- Equipes de Recherche, Bactéries Pathogènes Opportunistes et Environnement, Centre de Ressources Biologiques - Environnement Microbiologie Lyon, UMR Centre National de la Recherche Scientifique 5557 Ecologie Microbienne, Université Lyon 1 and VetAgro Sup Lyon, France
| | - Rachel Tabaroni
- Centre de Recherche sur les Macromolécules Végétales (UPR 5301), Centre National de la Recherche Scientifique and Université Grenoble Alpes Grenoble, France
| | - Audric Rousset
- Laboratoire de Chimie Organique 2 - Glycochimie, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR Centre National de la Recherche Scientifique 5246, Université Lyon 1 Lyon, France
| | - Loris Commin
- Université de Lyon, VetAgro Sup, UPSP 2011-03-101, Interactions Cellules Environnement and CRB-ANIM (ANR-INBS11-0003) Marcy-L'Etoile, France
| | - Samuel Buff
- Université de Lyon, VetAgro Sup, UPSP 2011-03-101, Interactions Cellules Environnement and CRB-ANIM (ANR-INBS11-0003) Marcy-L'Etoile, France
| | - Anne Doléans-Jordheim
- Equipes de Recherche, Bactéries Pathogènes Opportunistes et Environnement, Centre de Ressources Biologiques - Environnement Microbiologie Lyon, UMR Centre National de la Recherche Scientifique 5557 Ecologie Microbienne, Université Lyon 1 and VetAgro Sup Lyon, France
| | - Sébastien Vidal
- Laboratoire de Chimie Organique 2 - Glycochimie, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR Centre National de la Recherche Scientifique 5246, Université Lyon 1 Lyon, France
| | - Annabelle Varrot
- Centre de Recherche sur les Macromolécules Végétales (UPR 5301), Centre National de la Recherche Scientifique and Université Grenoble Alpes Grenoble, France
| | - Anne Imberty
- Centre de Recherche sur les Macromolécules Végétales (UPR 5301), Centre National de la Recherche Scientifique and Université Grenoble Alpes Grenoble, France
| | - Benoit Cournoyer
- Equipes de Recherche, Bactéries Pathogènes Opportunistes et Environnement, Centre de Ressources Biologiques - Environnement Microbiologie Lyon, UMR Centre National de la Recherche Scientifique 5557 Ecologie Microbienne, Université Lyon 1 and VetAgro Sup Lyon, France
| |
Collapse
|
111
|
Sommer R, Wagner S, Varrot A, Nycholat CM, Khaledi A, Häussler S, Paulson JC, Imberty A, Titz A. The virulence factor LecB varies in clinical isolates: consequences for ligand binding and drug discovery. Chem Sci 2016; 7:4990-5001. [PMID: 30155149 PMCID: PMC6018602 DOI: 10.1039/c6sc00696e] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/05/2016] [Indexed: 01/18/2023] Open
Abstract
P. aeruginosa causes a substantial number of nosocomial infections and is the leading cause of death of cystic fibrosis patients. This Gram-negative bacterium is highly resistant against antibiotics and further protects itself by forming a biofilm. Moreover, a high genomic variability among clinical isolates complicates therapy. Its lectin LecB is a virulence factor and necessary for adhesion and biofilm formation. We analyzed the sequence of LecB variants in a library of clinical isolates and demonstrate that it can serve as a marker for strain family classification. LecB from the highly virulent model strain PA14 presents 13% sequence divergence with LecB from the well characterized PAO1 strain. These differences might result in differing ligand binding specificities and ultimately in reduced efficacy of drugs directed towards LecB. Despite several amino acid variations at the carbohydrate binding site, glycan array analysis showed a comparable binding pattern for both variants. A common high affinity ligand could be identified and after its chemoenzymatic synthesis verified in a competitive binding assay: an N-glycan presenting two blood group O epitopes (H-type 2 antigen). Molecular modeling of the complex suggests a bivalent interaction of the ligand with the LecB tetramer by bridging two separate binding sites. This binding rationalizes the strong avidity (35 nM) of LecBPA14 to this human fucosylated N-glycan. Biochemical evaluation of a panel of glycan ligands revealed that LecBPA14 demonstrated higher glycan affinity compared to LecBPAO1 including the extraordinarily potent affinity of 70 nM towards the monovalent human antigen Lewisa. The structural basis of this unusual high affinity ligand binding for lectins was rationalized by solving the protein crystal structures of LecBPA14 with several glycans.
Collapse
Affiliation(s)
- Roman Sommer
- Chemical Biology of Carbohydrates , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , D-66123 Saarbrücken , Germany . ; http://www.helmholtz-hzi.de/cbch.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover , Braunschweig , Germany
| | - Stefanie Wagner
- Chemical Biology of Carbohydrates , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , D-66123 Saarbrücken , Germany . ; http://www.helmholtz-hzi.de/cbch.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover , Braunschweig , Germany
| | - Annabelle Varrot
- Centre de Recherche sur les Macromolécules Végétales (CERMAV-UPR5301) , CNRS and Université Grenoble Alpes , BP53 , F-38041 Grenoble cedex 9 , France
| | - Corwin M Nycholat
- Department of Cell and Molecular Biology and Department of Chemical Physiology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , CA 92037 , USA
| | - Ariane Khaledi
- Molecular Bacteriology , Helmholtz Centre for Infection Research , D-38124 Braunschweig , Germany
| | - Susanne Häussler
- Molecular Bacteriology , Helmholtz Centre for Infection Research , D-38124 Braunschweig , Germany
| | - James C Paulson
- Department of Cell and Molecular Biology and Department of Chemical Physiology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , CA 92037 , USA
| | - Anne Imberty
- Centre de Recherche sur les Macromolécules Végétales (CERMAV-UPR5301) , CNRS and Université Grenoble Alpes , BP53 , F-38041 Grenoble cedex 9 , France
| | - Alexander Titz
- Chemical Biology of Carbohydrates , Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , D-66123 Saarbrücken , Germany . ; http://www.helmholtz-hzi.de/cbch.,Deutsches Zentrum für Infektionsforschung (DZIF) , Standort Hannover , Braunschweig , Germany
| |
Collapse
|
112
|
Bi D, Xie Y, Tai C, Jiang X, Zhang J, Harrison EM, Jia S, Deng Z, Rajakumar K, Ou HY. A Site-Specific Integrative Plasmid Found in Pseudomonas aeruginosa Clinical Isolate HS87 along with A Plasmid Carrying an Aminoglycoside-Resistant Gene. PLoS One 2016; 11:e0148367. [PMID: 26841043 PMCID: PMC4739549 DOI: 10.1371/journal.pone.0148367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/19/2016] [Indexed: 12/30/2022] Open
Abstract
Plasmids play critical roles in bacterial fitness and evolution of Pseudomonas aeruginosa. Here two plasmids found in a drug-resistant P. aeruginosa clinical isolate HS87 were completely sequenced. The pHS87b plasmid (11.2 kb) carries phage-related genes and function-unknown genes. Notably, pHS87b encodes an integrase and has an adjacent tRNAThr-associated attachment site. A corresponding integrated form of pHS87b at the tRNAThr locus was identified on the chromosome of P. aeruginosa, showing that pHS87b is able to site-specifically integrate into the 3’-end of the tRNAThr gene. The pHS87a plasmid (26.8 kb) displays a plastic structure containing a putative replication module, stability factors and a variable region. The RepA of pHS87a shows significant similarity to the replication proteins of pPT23A-family plasmids. pHS87a carries a transposon Tn6049, a truncated insertion sequence ΔIS1071 and a Tn402-like class 1 integron which contains an aacA4 cassette that may confer aminoglycoside resistance. Thus, pHS87b is a site-specific integrative plasmid whereas pHS87a is a plastic antibiotic resistance plasmid. The two native plasmids may promote the fitness and evolution of P. aeruginosa.
Collapse
Affiliation(s)
- Dexi Bi
- State Key Laboratory for Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Yingzhou Xie
- State Key Laboratory for Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Cui Tai
- State Key Laboratory for Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Xiaofei Jiang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Ewan M. Harrison
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Shiru Jia
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Zixin Deng
- State Key Laboratory for Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Kumar Rajakumar
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Hong-Yu Ou
- State Key Laboratory for Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiaotong University, Shanghai, China
- * E-mail:
| |
Collapse
|
113
|
Utilization of Crude Glycerol as a Substrate for the Production of Rhamnolipid by Pseudomonas aeruginosa. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2016; 2016:3464509. [PMID: 26942014 PMCID: PMC4749778 DOI: 10.1155/2016/3464509] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/13/2015] [Accepted: 12/15/2015] [Indexed: 11/27/2022]
Abstract
Biosurfactants are produced by bacteria or yeast utilizing different substrates as sugars, glycerol, or oils. They have important applications in the detergent, oil, and pharmaceutical industries. Glycerol is the product of biodiesel industry and the existing glycerol market cannot accommodate the excess amounts generated; consequently, new markets for refined glycerol need to be developed. The aim of present work is to optimize the production of microbial rhamnolipid using waste glycerol. We have developed a process for the production of rhamnolipid biosurfactants using glycerol as the sole carbon source by a local Pseudomonas aeruginosa isolate that was obtained from an extensive screening program. A factorial design was applied with the goal of optimizing the rhamnolipid production. The highest production yield was obtained after 2 days when cells were grown in minimal salt media at pH 6, containing 1% (v/v) glycerol and 2% (w/v) sodium nitrate as nitrogen source, at 37°C and at 180 rpm, and reached 2.164 g/L after 54 hours (0.04 g/L h). Analysis of the produced rhamnolipids by TLC, HPLC, and FTIR confirmed the nature of the biosurfactant as monorhamnolipid. Glycerol can serve as a source for the production of rhamnolipid from microbial isolates providing a cheap and reliable substrate.
Collapse
|
114
|
Bianconi I, Jeukens J, Freschi L, Alcalá-Franco B, Facchini M, Boyle B, Molinaro A, Kukavica-Ibrulj I, Tümmler B, Levesque RC, Bragonzi A. Comparative genomics and biological characterization of sequential Pseudomonas aeruginosa isolates from persistent airways infection. BMC Genomics 2015; 16:1105. [PMID: 26714629 PMCID: PMC4696338 DOI: 10.1186/s12864-015-2276-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/06/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa establishes life-long chronic airway infections in cystic fibrosis (CF) patients. As the disease progresses, P. aeruginosa pathoadaptive variants are distinguished from the initially acquired strain. However, the genetic basis and the biology of host-bacteria interactions leading to a persistent lifestyle of P. aeruginosa are not understood. As a model system to study long term and persistent CF infections, the P. aeruginosa RP73, isolated 16.9 years after the onset of airways colonization from a CF patient, was investigated. Comparisons with strains RP1, isolated at the onset of the colonization, and clonal RP45, isolated 7 years before RP73 were carried out to better characterize genomic evolution of P. aeruginosa in the context of CF pathogenicity. RESULTS Virulence assessments in disease animal model, genome sequencing and comparative genomics analysis were performed for clinical RP73, RP45, RP1 and prototype strains. In murine model, RP73 showed lower lethality and a remarkable capability of long-term persistence in chronic airways infection when compared to other strains. Pathological analysis of murine lungs confirmed advanced chronic pulmonary disease, inflammation and mucus secretory cells hyperplasia. Genomic analysis predicted twelve genomic islands in the RP73 genome, some of which distinguished RP73 from other prototype strains and corresponded to regions of genome plasticity. Further, comparative genomic analyses with sequential RP isolates showed signatures of pathoadaptive mutations in virulence factors potentially linked to the development of chronic infections in CF. CONCLUSIONS The genome plasticity of P. aeruginosa particularly in the RP73 strain strongly indicated that these alterations may form the genetic basis defining host-bacteria interactions leading to a persistent lifestyle in human lungs.
Collapse
Affiliation(s)
- Irene Bianconi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| | - Julie Jeukens
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Canada.
| | - Luca Freschi
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Canada.
| | - Beatriz Alcalá-Franco
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| | - Marcella Facchini
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| | - Brian Boyle
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Canada.
| | | | - Irena Kukavica-Ibrulj
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Canada.
| | | | - Roger C Levesque
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec, Canada.
| | - Alessandra Bragonzi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
115
|
Complete Genome Sequence of Pseudomonas aeruginosa PA1, Isolated from a Patient with a Respiratory Tract Infection. GENOME ANNOUNCEMENTS 2015; 3:3/6/e01453-15. [PMID: 26659688 PMCID: PMC4675953 DOI: 10.1128/genomea.01453-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report the 6,498,072-bp complete genome sequence of Pseudomonas aeruginosa PA1, which was isolated from a patient with a respiratory tract infection in Chongqing, People's Republic of China. Whole-genome sequencing was performed using single-molecule real-time (SMRT) technology, and de novo assembly revealed a single contig with 396-fold sequence coverage.
Collapse
|
116
|
van Belkum A, Soriaga LB, LaFave MC, Akella S, Veyrieras JB, Barbu EM, Shortridge D, Blanc B, Hannum G, Zambardi G, Miller K, Enright MC, Mugnier N, Brami D, Schicklin S, Felderman M, Schwartz AS, Richardson TH, Peterson TC, Hubby B, Cady KC. Phylogenetic Distribution of CRISPR-Cas Systems in Antibiotic-Resistant Pseudomonas aeruginosa. mBio 2015; 6:e01796-15. [PMID: 26604259 PMCID: PMC4669384 DOI: 10.1128/mbio.01796-15] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/26/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Pseudomonas aeruginosa is an antibiotic-refractory pathogen with a large genome and extensive genotypic diversity. Historically, P. aeruginosa has been a major model system for understanding the molecular mechanisms underlying type I clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein (CRISPR-Cas)-based bacterial immune system function. However, little information on the phylogenetic distribution and potential role of these CRISPR-Cas systems in molding the P. aeruginosa accessory genome and antibiotic resistance elements is known. Computational approaches were used to identify and characterize CRISPR-Cas systems within 672 genomes, and in the process, we identified a previously unreported and putatively mobile type I-C P. aeruginosa CRISPR-Cas system. Furthermore, genomes harboring noninhibited type I-F and I-E CRISPR-Cas systems were on average ~300 kb smaller than those without a CRISPR-Cas system. In silico analysis demonstrated that the accessory genome (n = 22,036 genes) harbored the majority of identified CRISPR-Cas targets. We also assembled a global spacer library that aided the identification of difficult-to-characterize mobile genetic elements within next-generation sequencing (NGS) data and allowed CRISPR typing of a majority of P. aeruginosa strains. In summary, our analysis demonstrated that CRISPR-Cas systems play an important role in shaping the accessory genomes of globally distributed P. aeruginosa isolates. IMPORTANCE P. aeruginosa is both an antibiotic-refractory pathogen and an important model system for type I CRISPR-Cas bacterial immune systems. By combining the genome sequences of 672 newly and previously sequenced genomes, we were able to provide a global view of the phylogenetic distribution, conservation, and potential targets of these systems. This analysis identified a new and putatively mobile P. aeruginosa CRISPR-Cas subtype, characterized the diverse distribution of known CRISPR-inhibiting genes, and provided a potential new use for CRISPR spacer libraries in accessory genome analysis. Our data demonstrated the importance of CRISPR-Cas systems in modulating the accessory genomes of globally distributed strains while also providing substantial data for subsequent genomic and experimental studies in multiple fields. Understanding why certain genotypes of P. aeruginosa are clinically prevalent and adept at horizontally acquiring virulence and antibiotic resistance elements is of major clinical and economic importance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Mark C Enright
- Manchester Metropolitan University, Manchester, United Kingdom
| | | | - Daniel Brami
- Synthetic Genomics, Inc., La Jolla, California, USA
| | | | | | | | | | | | - Bolyn Hubby
- Synthetic Genomics, Inc., La Jolla, California, USA
| | - Kyle C Cady
- Synthetic Genomics, Inc., La Jolla, California, USA
| |
Collapse
|
117
|
Genome Sequences of Three Strains of the Pseudomonas aeruginosa PA7 Clade. GENOME ANNOUNCEMENTS 2015; 3:3/6/e01366-15. [PMID: 26586898 PMCID: PMC4653800 DOI: 10.1128/genomea.01366-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Draft genome sequences of three P. aeruginosa strains from the PA7 clade are presented here. Their lengths are 6.36 (EML528), 6.44 (EML545), and 6.33 Mb (EML548). Comparisons with the PA7 genome showed 5,113 conserved coding sequences (CDSs), and significant numbers of strain-specific CDSs. Their analysis will improve our understanding of this highly divergent clade.
Collapse
|
118
|
Varga JJ, Barbier M, Mulet X, Bielecki P, Bartell JA, Owings JP, Martinez-Ramos I, Hittle LE, Davis MR, Damron FH, Liechti GW, Puchałka J, dos Santos VAPM, Ernst RK, Papin JA, Albertí S, Oliver A, Goldberg JB. Genotypic and phenotypic analyses of a Pseudomonas aeruginosa chronic bronchiectasis isolate reveal differences from cystic fibrosis and laboratory strains. BMC Genomics 2015; 16:883. [PMID: 26519161 PMCID: PMC4628258 DOI: 10.1186/s12864-015-2069-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/03/2015] [Indexed: 01/24/2023] Open
Abstract
Background Pseudomonas aeruginosa is an environmentally ubiquitous Gram-negative bacterium and important opportunistic human pathogen, causing severe chronic respiratory infections in patients with underlying conditions such as cystic fibrosis (CF) or bronchiectasis. In order to identify mechanisms responsible for adaptation during bronchiectasis infections, a bronchiectasis isolate, PAHM4, was phenotypically and genotypically characterized. Results This strain displays phenotypes that have been associated with chronic respiratory infections in CF including alginate over-production, rough lipopolysaccharide, quorum-sensing deficiency, loss of motility, decreased protease secretion, and hypermutation. Hypermutation is a key adaptation of this bacterium during the course of chronic respiratory infections and analysis indicates that PAHM4 encodes a mutated mutS gene responsible for a ~1,000-fold increase in mutation rate compared to wild-type laboratory strain P. aeruginosa PAO1. Antibiotic resistance profiles and sequence data indicate that this strain acquired numerous mutations associated with increased resistance levels to β-lactams, aminoglycosides, and fluoroquinolones when compared to PAO1. Sequencing of PAHM4 revealed a 6.38 Mbp genome, 5.9 % of which were unrecognized in previously reported P. aeruginosa genome sequences. Transcriptome analysis suggests a general down-regulation of virulence factors, while metabolism of amino acids and lipids is up-regulated when compared to PAO1 and metabolic modeling identified further potential differences between PAO1 and PAHM4. Conclusions This work provides insights into the potential differential adaptation of this bacterium to the lung of patients with bronchiectasis compared to other clinical settings such as cystic fibrosis, findings that should aid the development of disease-appropriate treatment strategies for P. aeruginosa infections. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2069-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John J Varga
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Emory + Children's Center for Cystic Fibrosis Research, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA. .,Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.
| | - Xavier Mulet
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma, de Mallorca, Spain.
| | - Piotr Bielecki
- Synthetic and Systems Biology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany. .,Present address: Immunobiology Department, Yale University, School of Medicine, New Haven, CT, 06511, USA.
| | - Jennifer A Bartell
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| | - Joshua P Owings
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Emory + Children's Center for Cystic Fibrosis Research, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| | | | - Lauren E Hittle
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, University of Maryland, Baltimore, MD, USA.
| | - Michael R Davis
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA. .,Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.
| | - George W Liechti
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| | - Jacek Puchałka
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma, de Mallorca, Spain. .,Present address: Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany.
| | - Vitor A P Martins dos Santos
- Systems and Synthetic Biology, Wageningen University, Wageningen, Netherlands. .,Present address: Chair of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands. .,Present address: LifeGlimmer GmbH, Berlin, Germany.
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, University of Maryland, Baltimore, MD, USA.
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| | - Sebastian Albertí
- IUNICS, University of the Balearic Islands, Palma, de Mallorca, Spain.
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma, de Mallorca, Spain.
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Emory + Children's Center for Cystic Fibrosis Research, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA. .,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
119
|
Draft Genome Sequence of Pseudomonas aeruginosa ATCC 9027 (DSM 1128), an Important Rhamnolipid Surfactant Producer and Sterility Testing Strain. GENOME ANNOUNCEMENTS 2015; 3:3/5/e01259-15. [PMID: 26514765 PMCID: PMC4626611 DOI: 10.1128/genomea.01259-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa ATCC 9027 (DSM1128) is often used as a quality-control strain for sterility and microbial contamination testing and is an important biosurfactant producer. Here, we present the 6.4-Mb draft genome sequence and highlight some genomic differences to its closest relative, P. aeruginosa strain PA7.
Collapse
|
120
|
Marvig RL, Dolce D, Sommer LM, Petersen B, Ciofu O, Campana S, Molin S, Taccetti G, Johansen HK. Within-host microevolution of Pseudomonas aeruginosa in Italian cystic fibrosis patients. BMC Microbiol 2015; 15:218. [PMID: 26482905 PMCID: PMC4612410 DOI: 10.1186/s12866-015-0563-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 10/12/2015] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Chronic infection with Pseudomonas aeruginosa is a major cause of morbidity and mortality in cystic fibrosis (CF) patients, and a more complete understanding of P. aeruginosa within-host genomic evolution, transmission, and population genomics may provide a basis for improving intervention strategies. Here, we report the first genomic analysis of P. aeruginosa isolates sampled from Italian CF patients. RESULTS By genome sequencing of 26 isolates sampled over 19 years from four patients, we elucidated the within-host evolution of clonal lineages in each individual patient. Many of the identified mutations were located in pathoadaptive genes previously associated with host adaptation, and we correlated mutations with changes in CF-relevant phenotypes such as antibiotic resistance. In addition, the genomic analysis revealed that three patients shared the same clone. Furthermore, we compared the genomes of the Italian CF isolates to a panel of genome sequenced strains of P. aeruginosa from other countries. Isolates from two of the Italian lineages belonged to clonal complexes of P. aeruginosa that have previously been identified in Danish CF patients, and our genomic comparison showed that clonal isolates from the same country may be more distantly related than clonal isolates from different countries. CONCLUSIONS This is the first whole-genome analysis of P. aeruginosa isolated from Italian CF patients, and together with both phenotypic and clinical information this dataset facilitates a more detailed understanding of P. aeruginosa within-host genomic evolution, transmission, and population genomics. We conclude that the evolution of the Italian lineages resembles what has been found in other countries.
Collapse
Affiliation(s)
- Rasmus Lykke Marvig
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark.
| | - Daniela Dolce
- Department of Paediatric Medicine, Cystic Fibrosis Centre, Anna Meyer Children's University Hospital, Florence, Italy.
| | - Lea M Sommer
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark. .,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| | - Bent Petersen
- Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark.
| | - Oana Ciofu
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Silvia Campana
- Department of Paediatric Medicine, Cystic Fibrosis Centre, Anna Meyer Children's University Hospital, Florence, Italy.
| | - Søren Molin
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark. .,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| | - Giovanni Taccetti
- Department of Paediatric Medicine, Cystic Fibrosis Centre, Anna Meyer Children's University Hospital, Florence, Italy.
| | - Helle Krogh Johansen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
121
|
Freschi L, Jeukens J, Kukavica-Ibrulj I, Boyle B, Dupont MJ, Laroche J, Larose S, Maaroufi H, Fothergill JL, Moore M, Winsor GL, Aaron SD, Barbeau J, Bell SC, Burns JL, Camara M, Cantin A, Charette SJ, Dewar K, Déziel É, Grimwood K, Hancock REW, Harrison JJ, Heeb S, Jelsbak L, Jia B, Kenna DT, Kidd TJ, Klockgether J, Lam JS, Lamont IL, Lewenza S, Loman N, Malouin F, Manos J, McArthur AG, McKeown J, Milot J, Naghra H, Nguyen D, Pereira SK, Perron GG, Pirnay JP, Rainey PB, Rousseau S, Santos PM, Stephenson A, Taylor V, Turton JF, Waglechner N, Williams P, Thrane SW, Wright GD, Brinkman FSL, Tucker NP, Tümmler B, Winstanley C, Levesque RC. Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium. Front Microbiol 2015; 6:1036. [PMID: 26483767 PMCID: PMC4586430 DOI: 10.3389/fmicb.2015.01036] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/11/2015] [Indexed: 11/24/2022] Open
Abstract
The International Pseudomonas aeruginosa Consortium is sequencing over 1000 genomes and building an analysis pipeline for the study of Pseudomonas genome evolution, antibiotic resistance and virulence genes. Metadata, including genomic and phenotypic data for each isolate of the collection, are available through the International Pseudomonas Consortium Database (http://ipcd.ibis.ulaval.ca/). Here, we present our strategy and the results that emerged from the analysis of the first 389 genomes. With as yet unmatched resolution, our results confirm that P. aeruginosa strains can be divided into three major groups that are further divided into subgroups, some not previously reported in the literature. We also provide the first snapshot of P. aeruginosa strain diversity with respect to antibiotic resistance. Our approach will allow us to draw potential links between environmental strains and those implicated in human and animal infections, understand how patients become infected and how the infection evolves over time as well as identify prognostic markers for better evidence-based decisions on patient care.
Collapse
Affiliation(s)
- Luca Freschi
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| | - Julie Jeukens
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| | | | - Brian Boyle
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| | - Marie-Josée Dupont
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| | - Jérôme Laroche
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| | - Stéphane Larose
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| | - Halim Maaroufi
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| | - Joanne L Fothergill
- Institute of Infection and Global Health, University of Liverpool Liverpool, UK
| | - Matthew Moore
- Institute of Infection and Global Health, University of Liverpool Liverpool, UK
| | - Geoffrey L Winsor
- Department of Molecular Biology and Biochemistry, Simon Fraser University Vancouver, BC, Canada
| | - Shawn D Aaron
- Ottawa Hospital Research Institute Ottawa, ON, Canada
| | - Jean Barbeau
- Faculté de Médecine Dentaire, Université de Montréal Montréal, QC, Canada
| | - Scott C Bell
- QIMR Berghofer Medical Research Institute Brisbane, QLD, Australia
| | - Jane L Burns
- Seattle Children's Research Institute, University of Washington School of Medicine Seattle, WA, USA
| | - Miguel Camara
- School of Life Sciences, University of Nottingham Nottingham, UK
| | - André Cantin
- Département de Médecine, Université de Sherbrooke Sherbrooke, QC, Canada
| | - Steve J Charette
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Quebec, QC, Canada ; Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval Quebec, QC, Canada
| | - Ken Dewar
- Department of Human Genetics, McGill University Montreal, QC, Canada
| | - Éric Déziel
- INRS Institut Armand Frappier Laval, QC, Canada
| | - Keith Grimwood
- School of Medicine, Griffith University Gold Coast, QLD, Australia
| | - Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia Vancouver, BC, Canada
| | - Joe J Harrison
- Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Stephan Heeb
- School of Life Sciences, University of Nottingham Nottingham, UK
| | - Lars Jelsbak
- Department of Systems Biology, Technical University of Denmark Lyngby, Denmark
| | - Baofeng Jia
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University Hamilton, ON, Canada
| | - Dervla T Kenna
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England London, UK
| | - Timothy J Kidd
- Child Health Research Centre, The University of Queensland Brisbane, QLD, Australia ; Centre for Infection and Immunity, Queen's University Belfast Belfast, UK
| | - Jens Klockgether
- Klinische Forschergruppe, Medizinische Hochschule Hannover, Germany
| | - Joseph S Lam
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Iain L Lamont
- Department of Biochemistry, University of Otago Dunedin, New Zealand
| | - Shawn Lewenza
- Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Nick Loman
- Institute for Microbiology and Infection, University of Birmingham Birmingham, UK
| | - François Malouin
- Département de Médecine, Université de Sherbrooke Sherbrooke, QC, Canada
| | - Jim Manos
- Department of Infectious Diseases and Immunology, The University of Sydney Sydney, NSW, Australia
| | - Andrew G McArthur
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University Hamilton, ON, Canada
| | - Josie McKeown
- School of Life Sciences, University of Nottingham Nottingham, UK
| | - Julie Milot
- Department of Pneumology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval Quebec, QC, Canada
| | - Hardeep Naghra
- School of Life Sciences, University of Nottingham Nottingham, UK
| | - Dao Nguyen
- Department of Human Genetics, McGill University Montreal, QC, Canada ; Department of Microbiology and Immunology and Department of Experimental Medicine, McGill University Montreal, QC, Canada
| | - Sheldon K Pereira
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University Hamilton, ON, Canada
| | - Gabriel G Perron
- Department of Biology, Bard College, Annandale-On-Hudson NY, USA
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital Brussels, Belgium
| | - Paul B Rainey
- New Zealand Institute for Advanced Study, Massey University Albany, New Zealand ; Max Planck Institute for Evolutionary Biology Plön, Germany
| | - Simon Rousseau
- Department of Human Genetics, McGill University Montreal, QC, Canada
| | - Pedro M Santos
- Department of Biology, University of Minho Braga, Portugal
| | | | - Véronique Taylor
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Jane F Turton
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England London, UK
| | - Nicholas Waglechner
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University Hamilton, ON, Canada
| | - Paul Williams
- School of Life Sciences, University of Nottingham Nottingham, UK
| | - Sandra W Thrane
- Department of Systems Biology, Technical University of Denmark Lyngby, Denmark
| | - Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University Hamilton, ON, Canada
| | - Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University Vancouver, BC, Canada
| | - Nicholas P Tucker
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde Glasgow, UK
| | - Burkhard Tümmler
- Klinische Forschergruppe, Medizinische Hochschule Hannover, Germany
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool Liverpool, UK
| | - Roger C Levesque
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| |
Collapse
|
122
|
Ghequire MGK, Dillen Y, Lambrichts I, Proost P, Wattiez R, De Mot R. Different Ancestries of R Tailocins in Rhizospheric Pseudomonas Isolates. Genome Biol Evol 2015; 7:2810-28. [PMID: 26412856 PMCID: PMC4684702 DOI: 10.1093/gbe/evv184] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacterial genomes accommodate a variety of mobile genetic elements, including bacteriophage-related clusters that encode phage tail-like protein complexes playing a role in interactions with eukaryotic or prokaryotic cells. Such tailocins are unable to replicate inside target cells due to the lack of a phage head with associated DNA. A subset of tailocins mediate antagonistic activities with bacteriocin-like specificity. Functional characterization of bactericidal tailocins of two Pseudomonas putida rhizosphere isolates revealed not only extensive similarity with the tail assembly module of the Pseudomonas aeruginosa R-type pyocins but also differences in genomic integration site, regulatory genes, and lytic release modules. Conversely, these three features are quite similar between strains of the P. putida and Pseudomonas fluorescens clades, although phylogenetic analysis of tail genes suggests them to have evolved separately. Unlike P. aeruginosa R pyocin elements, the tailocin gene clusters of other pseudomonads frequently carry cargo genes, including bacteriocins. Compared with P. aeruginosa, the tailocin tail fiber sequences that act as specificity determinants have diverged much more extensively among the other pseudomonad species, mostly isolates from soil and plant environments. Activity of the P. putida antibacterial particles requires a functional lipopolysaccharide layer on target cells, but contrary to R pyocins from P. aeruginosa, strain susceptibilities surpass species boundaries.
Collapse
Affiliation(s)
- Maarten G K Ghequire
- Centre of Microbial and Plant Genetics (CMPG), University of Leuven, Heverlee, Belgium
| | - Yörg Dillen
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Leuven, Belgium
| | - Ivo Lambrichts
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, University of Leuven, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - René De Mot
- Centre of Microbial and Plant Genetics (CMPG), University of Leuven, Heverlee, Belgium
| |
Collapse
|
123
|
The Widespread Multidrug-Resistant Serotype O12 Pseudomonas aeruginosa Clone Emerged through Concomitant Horizontal Transfer of Serotype Antigen and Antibiotic Resistance Gene Clusters. mBio 2015; 6:e01396-15. [PMID: 26396243 PMCID: PMC4600120 DOI: 10.1128/mbio.01396-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The O-specific antigen (OSA) in Pseudomonas aeruginosa lipopolysaccharide is highly varied by sugar identity, side chains, and bond between O-repeats. These differences classified P. aeruginosa into 20 distinct serotypes. In the past few decades, O12 has emerged as the predominant serotype in clinical settings and outbreaks. These serotype O12 isolates exhibit high levels of resistance to various classes of antibiotics. Here, we explore how the P. aeruginosa OSA biosynthesis gene clusters evolve in the population by investigating the association between the phylogenetic relationships among 83 P. aeruginosa strains and their serotypes. While most serotypes were closely linked to the core genome phylogeny, we observed horizontal exchange of OSA biosynthesis genes among phylogenetically distinct P. aeruginosa strains. Specifically, we identified a “serotype island” ranging from 62 kb to 185 kb containing the P. aeruginosa O12 OSA gene cluster, an antibiotic resistance determinant (gyrAC248T), and other genes that have been transferred between P. aeruginosa strains with distinct core genome architectures. We showed that these genes were likely acquired from an O12 serotype strain that is closely related to P. aeruginosa PA7. Acquisition and recombination of the “serotype island” resulted in displacement of the native OSA gene cluster and expression of the O12 serotype in the recipients. Serotype switching by recombination has apparently occurred multiple times involving bacteria of various genomic backgrounds. In conclusion, serotype switching in combination with acquisition of an antibiotic resistance determinant most likely contributed to the dissemination of the O12 serotype in clinical settings. Infection rates in hospital settings by multidrug-resistant (MDR) Pseudomonas aeruginosa clones have increased during the past decades, and serotype O12 is predominant among these epidemic strains. It is not known why the MDR phenotype is associated with serotype O12 and how this clone type has emerged. This study shows that evolution of MDR O12 strains involved a switch from an ancestral O4 serotype to O12. Serotype switching was the result of horizontal transfer and genetic recombination of lipopolysaccharide (LPS) biosynthesis genes originating from an MDR taxonomic outlier P. aeruginosa strain. Moreover, the recombination event also resulted in acquisition of antibiotic resistance genes. These results impact on our understanding of MDR outbreak strain and serotype evolution and can potentially assist in better monitoring and prevention.
Collapse
|
124
|
Belon C, Soscia C, Bernut A, Laubier A, Bleves S, Blanc-Potard AB. A Macrophage Subversion Factor Is Shared by Intracellular and Extracellular Pathogens. PLoS Pathog 2015; 11:e1004969. [PMID: 26080006 PMCID: PMC4469704 DOI: 10.1371/journal.ppat.1004969] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/21/2015] [Indexed: 01/03/2023] Open
Abstract
Pathogenic bacteria have developed strategies to adapt to host environment and resist host immune response. Several intracellular bacterial pathogens, including Salmonella enterica and Mycobacterium tuberculosis, share the horizontally-acquired MgtC virulence factor that is important for multiplication inside macrophages. MgtC is also found in pathogenic Pseudomonas species. Here we investigate for the first time the role of MgtC in the virulence of an extracellular pathogen, Pseudomonas aeruginosa. A P. aeruginosa mgtC mutant is attenuated in the systemic infection model of zebrafish embryos, and strikingly, the attenuated phenotype is dependent on the presence of macrophages. In ex vivo experiments, the P. aeruginosa mgtC mutant is more sensitive to macrophage killing than the wild-type strain. However, wild-type and mutant strains behave similarly toward macrophage killing when macrophages are treated with an inhibitor of the vacuolar proton ATPase. Importantly, P. aeruginosa mgtC gene expression is strongly induced within macrophages and phagosome acidification contributes to an optimal expression of the gene. Thus, our results support the implication of a macrophage intracellular stage during P. aeruginosa acute infection and suggest that Pseudomonas MgtC requires phagosome acidification to play its intracellular role. Moreover, we demonstrate that P. aeruginosa MgtC is required for optimal growth in Mg2+ deprived medium, a property shared by MgtC factors from intracellular pathogens and, under Mg2+ limitation, P. aeruginosa MgtC prevents biofilm formation. We propose that MgtC shares a similar function in intracellular and extracellular pathogens, which contributes to macrophage resistance and fine-tune adaptation to host immune response in relation to the different bacterial lifestyles. In addition, the phenotypes observed with the mgtC mutant in infection models can be mimicked in wild-type P. aeruginosa strain by producing a MgtC antagonistic peptide, thus highlighting MgtC as a promising new target for anti-virulence strategies. Pathogenic bacteria have to resist host immune response and MgtC is used by several intracellular pathogens to promote bacterial multiplication inside macrophages. Here we investigated MgtC’s role in the virulence of an extracellular pathogen, Pseudomonas aeruginosa. A P. aeruginosa mgtC mutant is attenuated in zebrafish embryos, but only in the presence of macrophages. Moreover, this mutant is more rapidly killed by macrophages than the wild-type strain. Both phenotypes can be mimicked upon production of a MgtC antagonistic peptide in wild-type Pseudomonas strain. MgtC thus provides a singular example of a virulence determinant that promotes strategies to subvert the antimicrobial behavior of macrophages, in both intracellular and extracellular pathogens and our results support an intramacrophage stage during in P. aeruginosa acute infection, as well as an interplay between MgtC role and phagosome acidification. In addition, P. aeruginosa MgtC is required for growth in Mg2+ deprived medium, a property shared by MgtC factors from intracellular pathogens, and limits biofilm formation. MgtC may share a similar function in intracellular and extracellular pathogens, with an outcome adapted to the different bacterial lifestyles
Collapse
Affiliation(s)
- Claudine Belon
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS-UMR5235, Montpellier, France
| | - Chantal Soscia
- CNRS & Aix-Marseille Université, Laboratoire d’Ingénierie des Systèmes Macromoléculaires (UMR7255), Marseille, France
| | - Audrey Bernut
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS-UMR5235, Montpellier, France
| | - Aurélie Laubier
- CNRS & Aix-Marseille Université, Laboratoire d’Ingénierie des Systèmes Macromoléculaires (UMR7255), Marseille, France
| | - Sophie Bleves
- CNRS & Aix-Marseille Université, Laboratoire d’Ingénierie des Systèmes Macromoléculaires (UMR7255), Marseille, France
- * E-mail: (SB); (ABBP)
| | - Anne-Béatrice Blanc-Potard
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS-UMR5235, Montpellier, France
- * E-mail: (SB); (ABBP)
| |
Collapse
|
125
|
Song H, Zhou Z, Liu Y, Deng S, Xu H. Kinetics and Mechanism of Fenpropathrin Biodegradation by a Newly Isolated Pseudomonas aeruginosa sp. Strain JQ-41. Curr Microbiol 2015; 71:326-32. [PMID: 26068594 DOI: 10.1007/s00284-015-0852-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
Abstract
A soil bacterium designated strain JQ-41, capable of growth on fenpropathrin as the sole carbon source and energy source, was isolated from a long-term pyrethroid insecticide-treated orchard. Based on the morphology, physio-biochemical characteristics, and 16S rDNA gene analysis, as well as the G+C content of the genomic DNA, the strain JQ-41 was identified as Pseudomonas aeruginosa. Up to 92.3% of 50 mg l(-1) fenpropathrin was degraded by P. aeruginosa strain at 30°C and pH 7 within 7 days. The kinetic parameters q max, K s, and K i were established to be 1.14 day(-1), 38.41 mg l(-1), and 137.67 mg l(-1), respectively, and the critical inhibitor concentration was determined to be 72.72 mg l(-1). Cell surface hydrophobicity of P. aeruginosa strain was enhanced during growth on fenpropathrin. Three metabolites from fenpropathrin degradation were identified by gas chromatography mass spectrometry, and then a possible degradation pathway was proposed. In addition, this isolate was also able to degrade a wide range of synthetic pyrethroid insecticides including cypermethrin, deltamethrin, bifenthrin, and cyhalothrin with the degradation process following the first-order kinetic model. Taken together, our results provide insights into the kinetics and mechanism of fenpropathrin degradation by P. aeruginosa strain and also highlight its promising potential in bioremediation of pyrethroid-contaminated environment.
Collapse
Affiliation(s)
- Haihai Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | | | | | | | | |
Collapse
|
126
|
Valot B, Guyeux C, Rolland JY, Mazouzi K, Bertrand X, Hocquet D. What It Takes to Be a Pseudomonas aeruginosa? The Core Genome of the Opportunistic Pathogen Updated. PLoS One 2015; 10:e0126468. [PMID: 25961859 PMCID: PMC4427113 DOI: 10.1371/journal.pone.0126468] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/02/2015] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen able to thrive in highly diverse ecological niches and to infect compromised patients. Its genome exhibits a mosaic structure composed of a core genome into which accessory genes are inserted en bloc at specific sites. The size and the content of the core genome are open for debate as their estimation depends on the set of genomes considered and the pipeline of gene detection and clustering. Here, we redefined the size and the content of the core genome of P. aeruginosa from fully re-analyzed genomes of 17 reference strains. After the optimization of gene detection and clustering parameters, the core genome was defined at 5,233 orthologs, which represented ~ 88% of the average genome. Extrapolation indicated that our panel was suitable to estimate the core genome that will remain constant even if new genomes are added. The core genome contained resistance determinants to the major antibiotic families as well as most metabolic, respiratory, and virulence genes. Although some virulence genes were accessory, they often related to conserved biological functions. Long-standing prophage elements were subjected to a genetic drift to eventually display a G+C content as higher as that of the core genome. This contrasts with the low G+C content of highly conserved ribosomal genes. The conservation of metabolic and respiratory genes could guarantee the ability of the species to thrive on a variety of carbon sources for energy in aerobiosis and anaerobiosis. Virtually all the strains, of environmental or clinical origin, have the complete toolkit to become resistant to the major antipseudomonal compounds and possess basic pathogenic mechanisms to infect humans. The knowledge of the genes shared by the majority of the P. aeruginosa isolates is a prerequisite for designing effective therapeutics to combat the wide variety of human infections.
Collapse
Affiliation(s)
- Benoît Valot
- UMR CNRS 6249, Chrono-environnement, Université de Franche-Comté, Besançon, France
| | - Christophe Guyeux
- UMR CNRS 6174, Institut FEMTO-ST, Département DISC, Université de Franche-Comté, Belfort, France
| | - Julien Yves Rolland
- UMR CNRS 6623, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, Besançon, France
| | - Kamel Mazouzi
- Mésocentre de calculs, Université de Franche-Comté, Besançon, France
| | - Xavier Bertrand
- UMR CNRS 6249, Chrono-environnement, Université de Franche-Comté, Besançon, France
- Laboratoire d’Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France
| | - Didier Hocquet
- UMR CNRS 6249, Chrono-environnement, Université de Franche-Comté, Besançon, France
- Laboratoire d’Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France
- * E-mail:
| |
Collapse
|
127
|
Farrugia DN, Elbourne LDH, Mabbutt BC, Paulsen IT. A novel family of integrases associated with prophages and genomic islands integrated within the tRNA-dihydrouridine synthase A (dusA) gene. Nucleic Acids Res 2015; 43:4547-57. [PMID: 25883135 PMCID: PMC4482086 DOI: 10.1093/nar/gkv337] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 04/01/2015] [Indexed: 12/12/2022] Open
Abstract
Genomic islands play a key role in prokaryotic genome plasticity. Genomic islands integrate into chromosomal loci such as transfer RNA genes and protein coding genes, whilst retaining various cargo genes that potentially bestow novel functions on the host organism. A gene encoding a putative integrase was identified at a single site within the 5′ end of the dusA gene in the genomes of over 200 bacteria. This integrase was discovered to be a component of numerous genomic islands, which appear to share a target site within the dusA gene. dusA encodes the tRNA-dihydrouridine synthase A enzyme, which catalyses the post-transcriptional reduction of uridine to dihydrouridine in tRNA. Genomic islands encoding homologous dusA-associated integrases were found at a much lower frequency within the related dusB and dusC genes, and non-dus genes. Excision of these dusA-associated islands from the chromosome as circularized intermediates was confirmed by polymerase chain reaction. Analysis of the dusA-associated islands indicated that they were highly diverse, with the integrase gene representing the only universal common feature.
Collapse
Affiliation(s)
- Daniel N Farrugia
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Liam D H Elbourne
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Bridget C Mabbutt
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
128
|
Marvig RL, Sommer LM, Jelsbak L, Molin S, Johansen HK. Evolutionary insight from whole-genome sequencing of Pseudomonas aeruginosa from cystic fibrosis patients. Future Microbiol 2015; 10:599-611. [DOI: 10.2217/fmb.15.3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa causes chronic airway infections in patients with cystic fibrosis (CF), and it is directly associated with the morbidity and mortality connected with this disease. The ability of P. aeruginosa to establish chronic infections in CF patients is suggested to be due to the large genetic repertoire of P. aeruginosa and its ability to genetically adapt to the host environment. Here, we review the recent work that has applied whole-genome sequencing to understand P. aeruginosa population genomics, within-host microevolution and diversity, mutational mechanisms, genetic adaptation and transmission events. Finally, we summarize the advances in relation to medical applications and laboratory evolution experiments.
Collapse
Affiliation(s)
| | - Lea M Sommer
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lars Jelsbak
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Søren Molin
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
129
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 961] [Impact Index Per Article: 106.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
130
|
Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and systematics in Pseudomonas. Front Microbiol 2015; 6:214. [PMID: 26074881 PMCID: PMC4447124 DOI: 10.3389/fmicb.2015.00214] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/02/2015] [Indexed: 11/13/2022] Open
Abstract
The genus Pseudomonas currently contains 144 species, making it the genus of Gram-negative bacteria that contains the largest number of species. Currently, multilocus sequence analysis (MLSA) is the preferred method for establishing the phylogeny between species and genera. Four partial gene sequences of housekeeping genes (16S rRNA, gyrB, rpoB, and rpoD) were obtained from 112 complete or draft genomes of strains related to the genus Pseudomonas that were available in databases. These genes were analyzed together with the corresponding sequences of 133 Pseudomonas type strains of validly published species to assess their correct phylogenetic assignations. We confirmed that 30% of the sequenced genomes of non-type strains were not correctly assigned at the species level in the accepted taxonomy of the genus and that 20% of the strains were not identified at the species level. Most of these strains had been isolated and classified several years ago, and their taxonomic status has not been updated by modern techniques. MLSA was also compared with indices based on the analysis of whole-genome sequences that have been proposed for species delineation, such as tetranucleotide usage patterns (TETRA), average nucleotide identity (ANIm, based on MUMmer and ANIb, based on BLAST) and genome-to-genome distance (GGDC). TETRA was useful for discriminating Pseudomonas from other genera, whereas ANIb and GGDC clearly separated strains of different species. ANIb showed the strongest correlation with MLSA. The correct species classification is a prerequisite for most diversity and evolutionary studies. This work highlights the necessity for complete genomic sequences of type strains to build a phylogenomic taxonomy and that all new genome sequences submitted to databases should be correctly assigned to species to avoid taxonomic inconsistencies.
Collapse
Affiliation(s)
- Margarita Gomila
- Microbiology, Department of Biology, Universitat de les Illes Balears Palma de Mallorca, Spain
| | - Arantxa Peña
- Microbiology, Department of Biology, Universitat de les Illes Balears Palma de Mallorca, Spain
| | - Magdalena Mulet
- Microbiology, Department of Biology, Universitat de les Illes Balears Palma de Mallorca, Spain
| | - Jorge Lalucat
- Microbiology, Department of Biology, Universitat de les Illes Balears Palma de Mallorca, Spain ; Institut Mediterrani d'Estudis Avançats (Consejo Superior de Investigaciones Científicas-Universidad de las Islas Baleares) Palma de Mallorca, Spain
| | - Elena García-Valdés
- Microbiology, Department of Biology, Universitat de les Illes Balears Palma de Mallorca, Spain ; Institut Mediterrani d'Estudis Avançats (Consejo Superior de Investigaciones Científicas-Universidad de las Islas Baleares) Palma de Mallorca, Spain
| |
Collapse
|
131
|
Morita Y, Tomida J, Kawamura Y. Efflux-mediated fluoroquinolone resistance in the multidrug-resistant Pseudomonas aeruginosa clinical isolate PA7: identification of a novel MexS variant involved in upregulation of the mexEF-oprN multidrug efflux operon. Front Microbiol 2015; 6:8. [PMID: 25653649 PMCID: PMC4301020 DOI: 10.3389/fmicb.2015.00008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/05/2015] [Indexed: 11/24/2022] Open
Abstract
The emergence of multidrug-resistant Pseudomonas aeruginosa has become a serious problem in medical settings. P. aeruginosa clinical isolate PA7 is resistant to fluoroquinolones, aminoglycosides, and most β-lactams but not imipenem. In this study, enhanced efflux-mediated fluoroquinolone resistance of PA7 was shown to reflect increased expression of two resistance nodulation cell division (RND) -type multidrug efflux operons, mexEF-oprN and mexXY-oprA. Such a clinical isolate has rarely been reported because MexEF-OprN-overproducing mutants often increase susceptibility to aminoglycosides apparently owing to impairment of the MexXY system. A mutant of PA7 lacking three RND-type multidrug efflux operons (mexAB-oprM, mexEF-oprN, and mexXY-oprA) was susceptible to all anti-pseudomonas agents we tested, supporting an idea that these RND-type multidrug efflux transporters are molecular targets to overcome multidrug resistance in P. aeruginosa. mexEF-oprN-upregulation in P. aeruginosa PA7 was shown due to a MexS variant harboring the Valine-155 amino acid residue. This is the first genetic evidence shown that a MexS variant causes mexEF-oprN-upregulation in P. aeruginosa clinical isolates.
Collapse
Affiliation(s)
- Yuji Morita
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| | - Junko Tomida
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| | - Yoshiaki Kawamura
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| |
Collapse
|
132
|
Eusebio N, Amorim AA, Gamboa F, Araujo R. Molecular identification and genotyping of Pseudomonas aeruginosa isolated from cystic fibrosis and non-cystic fibrosis patients with bronchiectasis. Pathog Dis 2014; 73:1-7. [DOI: 10.1093/femspd/ftu014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
133
|
Hobman JL, Crossman LC. Bacterial antimicrobial metal ion resistance. J Med Microbiol 2014; 64:471-497. [PMID: 25418738 DOI: 10.1099/jmm.0.023036-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/17/2014] [Indexed: 01/23/2023] Open
Abstract
Metals such as mercury, arsenic, copper and silver have been used in various forms as antimicrobials for thousands of years with until recently, little understanding of their mode of action. The discovery of antibiotics and new organic antimicrobial compounds during the twentieth century saw a general decline in the clinical use of antimicrobial metal compounds, with the exception of the rediscovery of the use of silver for burns treatments and niche uses for other metal compounds. Antibiotics and new antimicrobials were regarded as being safer for the patient and more effective than the metal-based compounds they supplanted. Bacterial metal ion resistances were first discovered in the second half of the twentieth century. The detailed mechanisms of resistance have now been characterized in a wide range of bacteria. As the use of antimicrobial metals is limited, it is legitimate to ask: are antimicrobial metal resistances in pathogenic and commensal bacteria important now? This review details the new, rediscovered and 'never went away' uses of antimicrobial metals; examines the prevalence and linkage of antimicrobial metal resistance genes to other antimicrobial resistance genes; and examines the evidence for horizontal transfer of these genes between bacteria. Finally, we discuss the possible implications of the widespread dissemination of these resistances on re-emergent uses of antimicrobial metals and how this could impact upon the antibiotic resistance problem.
Collapse
Affiliation(s)
- Jon L Hobman
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Lisa C Crossman
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
134
|
The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility. Antimicrob Agents Chemother 2014; 59:427-36. [PMID: 25367914 DOI: 10.1128/aac.03954-14] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many clinical isolates of Pseudomonas aeruginosa cause infections that are difficult to eradicate due to their resistance to a wide variety of antibiotics. Key genetic determinants of resistance were identified through genome sequences of 390 clinical isolates of P. aeruginosa, obtained from diverse geographic locations collected between 2003 and 2012 and were related to microbiological susceptibility data for meropenem, levofloxacin, and amikacin. β-Lactamases and integron cassette arrangements were enriched in the established multidrug-resistant lineages of sequence types ST111 (predominantly O12) and ST235 (O11). This study demonstrates the utility of next-generation sequencing (NGS) in defining relevant resistance elements and highlights the diversity of resistance determinants within P. aeruginosa. This information is valuable in furthering the design of diagnostics and therapeutics for the treatment of P. aeruginosa infections.
Collapse
|
135
|
A type III secretion negative clinical strain of Pseudomonas aeruginosa employs a two-partner secreted exolysin to induce hemorrhagic pneumonia. Cell Host Microbe 2014; 15:164-76. [PMID: 24528863 DOI: 10.1016/j.chom.2014.01.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/05/2013] [Accepted: 01/02/2014] [Indexed: 11/21/2022]
Abstract
Virulence of Pseudomonas aeruginosa is typically attributed to its type III secretion system (T3SS). A taxonomic outlier, the P. aeruginosa PA7 strain, lacks a T3SS locus, and no virulence phenotype is attributed to PA7. We characterized a PA7-related, T3SS-negative P. aeruginosa strain, CLJ1, isolated from a patient with fatal hemorrhagic pneumonia. CLJ1 is highly virulent in mice, leading to lung hemorrhage and septicemia. CLJ1-infected primary endothelial cells display characteristics of membrane damage and permeabilization. Proteomic analysis of CLJ1 culture supernatants identified a hemolysin/hemagglutinin family pore-forming toxin, Exolysin (ExlA), that is exported via ExlB, representing a putative two-partner secretion system. A recombinant P. aeruginosa PAO1ΔpscD::exlBA strain, deficient for T3SS but engineered to express ExlA, gained lytic capacity on endothelial cells and full virulence in mice, demonstrating that ExlA is necessary and sufficient for pathogenicity. This highlights clinically relevant T3SS-independent hypervirulence, isolates, and points to a broader P. aeruginosa pathogenic repertoire.
Collapse
|
136
|
Ozer EA, Allen JP, Hauser AR. Characterization of the core and accessory genomes of Pseudomonas aeruginosa using bioinformatic tools Spine and AGEnt. BMC Genomics 2014; 15:737. [PMID: 25168460 PMCID: PMC4155085 DOI: 10.1186/1471-2164-15-737] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 08/22/2014] [Indexed: 12/11/2022] Open
Abstract
Background Pseudomonas aeruginosa is an important opportunistic pathogen responsible for many infections in hospitalized and immunocompromised patients. Previous reports estimated that approximately 10% of its 6.6 Mbp genome varies from strain to strain and is therefore referred to as “accessory genome”. Elements within the accessory genome of P. aeruginosa have been associated with differences in virulence and antibiotic resistance. As whole genome sequencing of bacterial strains becomes more widespread and cost-effective, methods to quickly and reliably identify accessory genomic elements in newly sequenced P. aeruginosa genomes will be needed. Results We developed a bioinformatic method for identifying the accessory genome of P. aeruginosa. First, the core genome was determined based on sequence conserved among the completed genomes of twelve reference strains using Spine, a software program developed for this purpose. The core genome was 5.84 Mbp in size and contained 5,316 coding sequences. We then developed an in silico genome subtraction program named AGEnt to filter out core genomic sequences from P. aeruginosa whole genomes to identify accessory genomic sequences of these reference strains. This analysis determined that the accessory genome of P. aeruginosa ranged from 6.9-18.0% of the total genome, was enriched for genes associated with mobile elements, and was comprised of a majority of genes with unknown or unclear function. Using these genomes, we showed that AGEnt performed well compared to other publically available programs designed to detect accessory genomic elements. We then demonstrated the utility of the AGEnt program by applying it to the draft genomes of two previously unsequenced P. aeruginosa strains, PA99 and PA103. Conclusions The P. aeruginosa genome is rich in accessory genetic material. The AGEnt program accurately identified the accessory genomes of newly sequenced P. aeruginosa strains, even when draft genomes were used. As P. aeruginosa genomes become available at an increasingly rapid pace, this program will be useful in cataloging the expanding accessory genome of this bacterium and in discerning correlations between phenotype and accessory genome makeup. The combination of Spine and AGEnt should be useful in defining the accessory genomes of other bacterial species as well. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-737) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Egon A Ozer
- Department of Medicine, Division of Infectious Diseases, Northwestern University, 645 North Michigan Avenue, Suite 900, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
137
|
Ghequire MGK, De Mot R. Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol Rev 2014; 38:523-68. [PMID: 24923764 DOI: 10.1111/1574-6976.12079] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/05/2014] [Accepted: 05/16/2014] [Indexed: 12/26/2022] Open
Abstract
Members of the Pseudomonas genus produce diverse secondary metabolites affecting other bacteria, fungi or predating nematodes and protozoa but are also equipped with the capacity to secrete different types of ribosomally encoded toxic peptides and proteins, ranging from small microcins to large tailocins. Studies with the human pathogen Pseudomonas aeruginosa have revealed that effector proteins of type VI secretion systems are part of the antibacterial armamentarium deployed by pseudomonads. A novel class of antibacterial proteins with structural similarity to plant lectins was discovered by studying antagonism among plant-associated Pseudomonas strains. A genomic perspective on pseudomonad bacteriocinogeny shows that the modular architecture of S pyocins of P. aeruginosa is retained in a large diversified group of bacteriocins, most of which target DNA or RNA. Similar modularity is present in as yet poorly characterized Rhs (recombination hot spot) proteins and CDI (contact-dependent inhibition) proteins. Well-delimited domains for receptor recognition or cytotoxicity enable the design of chimeric toxins with novel functionalities, which has been applied successfully for S and R pyocins. Little is known regarding how these antibacterials are released and ultimately reach their targets. Other remaining issues concern the identification of environmental triggers activating these systems and assessment of their ecological impact in niches populated by pseudomonads.
Collapse
|
138
|
Cadoret F, Ball G, Douzi B, Voulhoux R. Txc, a new type II secretion system of Pseudomonas aeruginosa strain PA7, is regulated by the TtsS/TtsR two-component system and directs specific secretion of the CbpE chitin-binding protein. J Bacteriol 2014; 196:2376-86. [PMID: 24748613 PMCID: PMC4054165 DOI: 10.1128/jb.01563-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/11/2014] [Indexed: 01/20/2023] Open
Abstract
We present here the functional characterization of a third complete type II secretion system (T2SS) found in newly sequenced Pseudomonas aeruginosa strain PA7. We call this system Txc (third Xcp homolog). This system is encoded by the RGP69 region of genome plasticity found uniquely in strain PA7. In addition to the 11 txc genes, RGP69 contains two additional genes encoding a possible T2SS substrate and a predicted unorthodox sensor protein, TtsS (type II secretion sensor). We also identified a gene encoding a two-component response regulator called TtsR (type II secretion regulator), which is located upstream of the ttsS gene and just outside RGP69. We show that TtsS and TtsR constitute a new and functional two-component system that controls the production and secretion of the RGP69-encoded T2SS substrate in a Txc-dependent manner. Finally, we demonstrate that this Txc-secreted substrate binds chitin, and we therefore name it CbpE (chitin-binding protein E).
Collapse
Affiliation(s)
- Frédéric Cadoret
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UMR7255), CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Geneviève Ball
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UMR7255), CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Badreddine Douzi
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UMR7255), CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Romé Voulhoux
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UMR7255), CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| |
Collapse
|
139
|
Genome Sequence of the Nonpathogenic Pseudomonas aeruginosa Strain ATCC 15442. GENOME ANNOUNCEMENTS 2014; 2:2/2/e00421-14. [PMID: 24786961 PMCID: PMC4007996 DOI: 10.1128/genomea.00421-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa ATCC 15442 is an environmental strain of the Pseudomonas genus. Here, we present a 6.77-Mb assembly of its genome sequence. Besides giving insights into characteristics associated with the pathogenicity of P. aeruginosa, such as virulence, drug resistance, and biofilm formation, the genome sequence may provide some information related to biotechnological utilization of the strain.
Collapse
|
140
|
Sall KM, Casabona MG, Bordi C, Huber P, de Bentzmann S, Attrée I, Elsen S. A gacS deletion in Pseudomonas aeruginosa cystic fibrosis isolate CHA shapes its virulence. PLoS One 2014; 9:e95936. [PMID: 24780952 PMCID: PMC4004566 DOI: 10.1371/journal.pone.0095936] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/30/2014] [Indexed: 11/21/2022] Open
Abstract
Pseudomonas aeruginosa, a human opportunistic pathogen, is capable of provoking acute and chronic infections that are associated with defined sets of virulence factors. During chronic infections, the bacterium accumulates mutations that silence some and activate other genes. Here we show that the cystic fibrosis isolate CHA exhibits a unique virulence phenotype featuring a mucoid morphology, an active Type III Secretion System (T3SS, hallmark of acute infections), and no Type VI Secretion System (H1-T6SS). This virulence profile is due to a 426 bp deletion in the 3′ end of the gacS gene encoding an essential regulatory protein. The absence of GacS disturbs the Gac/Rsm pathway leading to depletion of the small regulatory RNAs RsmY/RsmZ and, in consequence, to expression of T3SS, while switching off the expression of H1-T6SS and Pel polysaccharides. The CHA isolate also exhibits full ability to swim and twitch, due to active flagellum and Type IVa pili. Thus, unlike the classical scheme of balance between virulence factors, clinical strains may adapt to a local niche by expressing both alginate exopolysaccharide, a hallmark of membrane stress that protects from antibiotic action, host defences and phagocytosis, and efficient T3S machinery that is considered as an aggressive virulence factor.
Collapse
Affiliation(s)
- Khady Mayebine Sall
- INSERM, UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- UJF-Grenoble 1, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Maria Guillermina Casabona
- INSERM, UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- UJF-Grenoble 1, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Christophe Bordi
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR 7255 CNRS - Aix Marseille University, Marseille, France
| | - Philippe Huber
- INSERM, UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- UJF-Grenoble 1, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Sophie de Bentzmann
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR 7255 CNRS - Aix Marseille University, Marseille, France
| | - Ina Attrée
- INSERM, UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- UJF-Grenoble 1, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Sylvie Elsen
- INSERM, UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- UJF-Grenoble 1, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
- * E-mail:
| |
Collapse
|
141
|
Grosso-Becerra MV, Santos-Medellín C, González-Valdez A, Méndez JL, Delgado G, Morales-Espinosa R, Servín-González L, Alcaraz LD, Soberón-Chávez G. Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity. BMC Genomics 2014; 15:318. [PMID: 24773920 PMCID: PMC4234422 DOI: 10.1186/1471-2164-15-318] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 03/24/2014] [Indexed: 12/28/2022] Open
Abstract
Background Pseudomonas aeruginosa is an opportunistic pathogen with a high incidence of hospital infections that represents a threat to immune compromised patients. Genomic studies have shown that, in contrast to other pathogenic bacteria, clinical and environmental isolates do not show particular genomic differences. In addition, genetic variability of all the P. aeruginosa strains whose genomes have been sequenced is extremely low. This low genomic variability might be explained if clinical strains constitute a subpopulation of this bacterial species present in environments that are close to human populations, which preferentially produce virulence associated traits. Results In this work, we sequenced the genomes and performed phenotypic descriptions for four non-human P. aeruginosa isolates collected from a plant, the ocean, a water-spring, and from dolphin stomach. We show that the four strains are phenotypically diverse and that this is not reflected in genomic variability, since their genomes are almost identical. Furthermore, we performed a detailed comparative genomic analysis of the four strains studied in this work with the thirteen previously reported P. aeruginosa genomes by means of describing their core and pan-genomes. Conclusions Contrary to what has been described for other bacteria we have found that the P. aeruginosa core genome is constituted by a high proportion of genes and that its pan-genome is thus relatively small. Considering the high degree of genomic conservation between isolates of P. aeruginosa from diverse environments, including human tissues, some implications for the treatment of infections are discussed. This work also represents a methodological contribution for the genomic study of P. aeruginosa, since we provide a database of the comparison of all the proteins encoded by the seventeen strains analyzed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, DF, México.
| |
Collapse
|
142
|
Qin X. Chronic pulmonary pseudomonal infection in patients with cystic fibrosis: A model for early phase symbiotic evolution. Crit Rev Microbiol 2014; 42:144-57. [PMID: 24766052 DOI: 10.3109/1040841x.2014.907235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gain of "antimicrobial resistance" and "adaptive virulence" has been the dominant view of Pseudomonas aeruginosa (Pa) in cystic fibrosis (CF) in the progressively damaged host airway over the course of this chronic infection. However, the pathogenic effects of CF airway-adapted Pa strains are notably reduced. We propose that CF Pa and other bacterial cohabitants undergo host adaptation which resembles the changes found in bacterial symbionts in animal hosts. Development of clonally selected and intraspecific isogenic Pa strains which display divergent colony morphology, growth rate, auxotrophy, and antibiotic susceptibility in vitro suggests an adaptive sequence of infective exploitation-parasitism-symbiotic evolution driven by host defenses. Most importantly, the emergence of CF pseudomonal auxotrophy is frequently associated with a few specific amino acids. The selective retention or loss of specific amino acid biosynthesis in CF-adapted Pa reflects bacterium-host symbiosis and coevolution during chronic infection, not nutrient availability. This principle also argues against the long-standing concept of dietary availability leading to evolution of essential amino acid requirements in humans. A novel model of pseudomonal adaptation through multicellular bacterial syntrophy is proposed to explain early events in bacterial gene decay and decreased (not increased) virulence due to symbiotic response to host defense.
Collapse
Affiliation(s)
- Xuan Qin
- a Microbiology Laboratory, Seattle Children's Hospital , and.,b Department of Laboratory Medicine , University of Washington , School of Medicine Seattle , Washington , USA
| |
Collapse
|
143
|
Dingemans J, Ye L, Hildebrand F, Tontodonati F, Craggs M, Bilocq F, De Vos D, Crabbé A, Van Houdt R, Malfroot A, Cornelis P. The deletion of TonB-dependent receptor genes is part of the genome reduction process that occurs during adaptation of Pseudomonas aeruginosa to the cystic fibrosis lung. Pathog Dis 2014; 71:26-38. [PMID: 24659602 DOI: 10.1111/2049-632x.12170] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 01/02/2023] Open
Abstract
Chronic Pseudomonas aeruginosa infections are the main cause of morbidity among patients with cystic fibrosis (CF) due to persistent lung inflammation caused by interaction between this bacterium and the immune system. Longitudinal studies of clonally related isolates of a dominant CF clone have indicated that genome reduction frequently occurs during adaptation of P. aeruginosa in the CF lung. In this study, we have evaluated the P. aeruginosa population structure of patients attending the Universitair Ziekenhuis Brussel (UZ Brussel) CF reference center using a combination of genotyping methods. Although the UZ Brussel P. aeruginosa CF population is characterized by the absence of a dominant CF clone, some potential interpatient transmissions could be detected. Interestingly, one of these clones showed deletion of the alternative type I ferripyoverdine receptor gene fpvB. Furthermore, we found that several other TonB-dependent receptors are deleted as well. The genome of one potentially transmissible CF clone was sequenced, revealing large deleted regions including all type III secretion system genes and several virulence genes. Remarkably, a large number of deleted genes are shared between the P. aeruginosa CF clone described in this study and isolates belonging to the dominant Copenhagen CF DK2 clone, suggesting parallel evolution.
Collapse
Affiliation(s)
- Jozef Dingemans
- Department of Bioengineering Sciences, Research Group Microbiology, Vrije Universiteit Brussel and VIB Structural Biology, Brussels, Belgium; Unit of Microbiology, Expert Group Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Déraspe M, Alexander DC, Xiong J, Ma JH, Low DE, Jamieson FB, Roy PH. Genomic analysis of Pseudomonas aeruginosa PA96, the host of carbapenem resistance plasmid pOZ176. FEMS Microbiol Lett 2014; 356:212-6. [PMID: 24673340 DOI: 10.1111/1574-6968.12435] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/19/2014] [Accepted: 03/24/2014] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas aeruginosa PA96 is a clinical isolate from Guangzhou, China, that is multiresistant to antibiotics. We previously described the 500-kb IncP-2 plasmid, pOZ176 that encodes many resistance genes including the IMP-9 carbapenemase. Whole-genome sequencing of PA96 enabled characterization of its genomic islands, virulence factors, and chromosomal resistance genes. We filled gaps using PCR and used optical mapping to confirm the correct contig order. We automatically annotated the core genome and manually annotated the genomic islands. The genome is 6 444 091 bp and encodes 5853 ORFs. From the whole-genome sequence, we constructed a physical map and constructed a phylogenetic tree for comparison with sequenced P. aeruginosa strains. Analysis of known core genome virulence factors and resistance genes revealed few differences with other strains, but the major virulence island is closer to that of DK2 than to PA14. PA96 most closely resembles the environmental strain M18, and notably shares a common serotype, pyoverdin type, flagellar operon, type IV pilin, and several genomic islands with M18.
Collapse
Affiliation(s)
- Maxime Déraspe
- Centre de Recherche en Infectiologie, CHU de Québec, Québec, QC, Canada; Département de Biochimie, de microbiologie, et de bio-informatique, Université Laval, Québec, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
145
|
Abstract
The most common prokaryotic signal transduction mechanisms are the one-component systems in which a single polypeptide contains both a sensory domain and a DNA-binding domain. Among the >20 classes of one-component systems, the TetR family of regulators (TFRs) are widely associated with antibiotic resistance and the regulation of genes encoding small-molecule exporters. However, TFRs play a much broader role, controlling genes involved in metabolism, antibiotic production, quorum sensing, and many other aspects of prokaryotic physiology. There are several well-established model systems for understanding these important proteins, and structural studies have begun to unveil the mechanisms by which they bind DNA and recognize small-molecule ligands. The sequences for more than 200,000 TFRs are available in the public databases, and genomics studies are identifying their target genes. Three-dimensional structures have been solved for close to 200 TFRs. Comparison of these structures reveals a common overall architecture of nine conserved α helices. The most important open question concerning TFR biology is the nature and diversity of their ligands and how these relate to the biochemical processes under their control.
Collapse
|
146
|
Allen JP, Ozer EA, Hauser AR. Different paths to pathogenesis. Trends Microbiol 2014; 22:168-9. [PMID: 24629347 DOI: 10.1016/j.tim.2014.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 12/28/2022]
Abstract
In a recent issue of Cell Host & Microbe, Elsen and colleagues identify a novel hemolysin in a highly virulent Pseudomonas aeruginosa strain that lacks a type III secretion system. Their analysis provides another example of how individual strains of P. aeruginosa utilize different virulence mechanisms to cause severe infections.
Collapse
Affiliation(s)
- Jonathan P Allen
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL 60611, USA
| | - Egon A Ozer
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL 60611, USA; Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alan R Hauser
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL 60611, USA; Department of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
147
|
Witney AA, Gould KA, Pope CF, Bolt F, Stoker NG, Cubbon MD, Bradley CR, Fraise A, Breathnach AS, Butcher PD, Planche TD, Hinds J. Genome sequencing and characterization of an extensively drug-resistant sequence type 111 serotype O12 hospital outbreak strain of Pseudomonas aeruginosa. Clin Microbiol Infect 2014; 20:O609-18. [PMID: 24422878 DOI: 10.1111/1469-0691.12528] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 11/29/2022]
Abstract
A series of extensively drug-resistant isolates of Pseudomonas aeruginosa from two outbreaks in UK hospitals were characterized by whole genome sequencing (WGS). Although these isolates were resistant to antibiotics other than colistin, we confirmed that they are still sensitive to disinfectants. The sequencing confirmed that isolates in the larger outbreak were serotype O12, and also revealed that they belonged to sequence type ST111, which is a major epidemic strain of P. aeruginosa throughout Europe. As this is the first reported sequence of an ST111 strain, the genome was examined in depth, focusing particularly on antibiotic resistance and potential virulence genes, and on the reported regions of genome plasticity. High degrees of sequence similarity were discovered between outbreak isolates collected from recently infected patients, isolates from sinks, an isolate from the sewer, and a historical isolate, suggesting that the ST111 strain has been endemic in the hospital for many years. The ability to translate easily from outbreak investigation to detailed genome biology by use of the same data demonstrates the flexibility of WGS application in a clinical setting.
Collapse
Affiliation(s)
- A A Witney
- Division of Clinical Sciences, St George's University of London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Tümmler B, Wiehlmann L, Klockgether J, Cramer N. Advances in understanding Pseudomonas. F1000PRIME REPORTS 2014; 6:9. [PMID: 24592321 PMCID: PMC3913036 DOI: 10.12703/p6-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pseudomonas aeruginosa, the type species of pseudomonads, is an opportunistic pathogen that colonizes a wide range of niches. Current genome sequencing projects are producing previously inconceivable detail about the population biology and evolution of P. aeruginosa. Its pan-genome has a larger genetic repertoire than the human genome, which explains the broad metabolic capabilities of P. aeruginosa and its ubiquitous distribution in aquatic habitats. P. aeruginosa may persist in the airways of individuals with cystic fibrosis for decades. The ongoing whole-genome analyses of serial isolates from cystic fibrosis patients provide the so far singular opportunity to monitor the microevolution of a bacterial pathogen during chronic infection over thousands of generations. Although the evolution in cystic fibrosis lungs is neutral overall, some pathoadaptive mutations are selected during the within-host evolutionary process. Even a single mutation may be sufficient to generate novel complex traits provided that predisposing mutational events have previously occurred in the clonal lineage.
Collapse
|
149
|
Toska J, Sun Y, Carbonell DA, Foster ANS, Jacobs MR, Pearlman E, Rietsch A. Diversity of virulence phenotypes among type III secretion negative Pseudomonas aeruginosa clinical isolates. PLoS One 2014; 9:e86829. [PMID: 24466261 PMCID: PMC3900666 DOI: 10.1371/journal.pone.0086829] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/14/2013] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is a frequent cause of acute infections. The primary virulence factor that has been linked to clinical disease is the type III secretion system, a molecular syringe that delivers effector proteins directly into host cells. Despite the importance of type III secretion in dictating clinical outcomes and promoting disease in animal models of infections, clinical isolates often do not express the type III secretion system in vitro. Here we screened 81 clinical P. aeruginosa isolates for secretion of type III secretion system substrates by western blot. Non-expressing strains were also subjected to a functional test assaying the ability to intoxicate epithelial cells in vitro, and to survive and cause disease in a murine model of corneal infection. 26 of 81 clinical isolates were found to be type III secretion negative by western blot. 17 of these 26 non-expressing strains were tested for their ability to cause epithelial cell rounding. Of these, three isolates caused epithelial cell rounding in a type III secretion system dependent manner, and one strain was cytotoxic in a T3SS-independent manner. Five T3SS-negative isolates were also tested for their ability to cause disease in a murine model of corneal infection. Of these isolates, two strains caused severe corneal disease in a T3SS-independent manner. Interestingly, one of these strains caused significant disease (inflammation) despite being cleared. Our data therefore show that P. aeruginosa clinical isolates can cause disease in a T3SS-independent manner, demonstrating the existence of novel modifiers of clinical disease.
Collapse
Affiliation(s)
- Jonida Toska
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yan Sun
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Dalina Alvarez Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Altreisha N. -S. Foster
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Michael R. Jacobs
- Department of Pathology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, United States of America
| | - Eric Pearlman
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Arne Rietsch
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
150
|
Matthijs S, Ye L, Stijlemans B, Cornelis P, Bossuyt F, Roelants K. Low structural variation in the host-defense peptide repertoire of the dwarf clawed frog Hymenochirus boettgeri (Pipidae). PLoS One 2014; 9:e86339. [PMID: 24466037 PMCID: PMC3899252 DOI: 10.1371/journal.pone.0086339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/06/2013] [Indexed: 02/05/2023] Open
Abstract
THE skin secretion of many amphibians contains peptides that are able to kill a broad range of microorganisms (antimicrobial peptides: AMPs) and potentially play a role in innate immune defense. Similar to the toxin arsenals of various animals, amphibian AMP repertoires typically show major structural variation, and previous studies have suggested that this may be the result of diversifying selection in adaptation to a diverse spectrum of pathogens. Here we report on transcriptome analyses that indicate a very different pattern in the dwarf clawed frog H. boettgeri. Our analyses reveal a diverse set of transcripts containing two to six tandem repeats, together encoding 14 distinct peptides. Five of these have recently been identified as AMPs, while three more are shown here to potently inhibit the growth of gram-negative bacteria, including multi-drug resistant strains of the medically important Pseudomonas aeruginosa. Although the number of predicted peptides is similar to the numbers of related AMPs in Xenopus and Silurana frog species, they show significantly lower structural variation. Selection analyses confirm that, in contrast to the AMPs of other amphibians, the H. boettgeri peptides did not evolve under diversifying selection. Instead, the low sequence variation among tandem repeats resulted from purifying selection, recent duplication and/or concerted gene evolution. Our study demonstrates that defense peptide repertoires of closely related taxa, after diverging from each other, may evolve under differential selective regimes, leading to contrasting patterns of structural diversity.
Collapse
Affiliation(s)
- Severine Matthijs
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lumeng Ye
- Department of Bioengineering Sciences, Research Group of Microbiology and Vlaams Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium
| | - Benoit Stijlemans
- Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Pierre Cornelis
- Department of Bioengineering Sciences, Research Group of Microbiology and Vlaams Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium
| | - Franky Bossuyt
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
- * E-mail:
| |
Collapse
|