101
|
Liu Z, Hao X, Zhang Y, Zhang J, Carey CD, Falo LD, Storkus WJ, You Z. Intratumoral delivery of tumor antigen-loaded DC and tumor-primed CD4 + T cells combined with agonist α-GITR mAb promotes durable CD8 + T-cell-dependent antitumor immunity. Oncoimmunology 2017; 6:e1315487. [PMID: 28680744 DOI: 10.1080/2162402x.2017.1315487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 01/09/2023] Open
Abstract
The progressive tumor microenvironment (TME) coordinately supports tumor cell expansion and metastasis, while it antagonizes the survival and (poly-)functionality of antitumor T effector cells. There remains a clear need to develop novel therapeutic strategies that can transform the TME into a pro-inflammatory niche that recruits and sustains protective immune cell populations. While intravenous treatment with tumor-primed CD4+ T cells combined with intraperitoneal delivery of agonist anti-glucocorticoid-induced TNF receptor (α-GITR) mAb results in objective antitumor responses in murine early stage disease models, this approach is ineffective against more advanced tumors. Further subcutaneous co-administration of a vaccine consisting of tumor antigen-loaded dendritic cells (DC) failed to improve the antitumor efficacy of this approach. Remarkably, these same three therapeutic agents elicited significant antitumor benefits when the antitumor CD4+ T cells and tumor antigen-loaded DC were co-injected directly into tumors along with intratumoral or intraperitoneal delivery of α-GITR mAb. This latter protocol induced the production of an array of antitumor cytokines and chemokines within the TME, supporting increased tumor-infiltration by antitumor CD8+ T cells capable of mediating tumor regression and extended overall survival.
Collapse
Affiliation(s)
- Zuqiang Liu
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Xingxing Hao
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yi Zhang
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,The 3rd Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | - Jiying Zhang
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cara D Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Walter J Storkus
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhaoyang You
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
102
|
Lohmueller J, Finn OJ. Current modalities in cancer immunotherapy: Immunomodulatory antibodies, CARs and vaccines. Pharmacol Ther 2017; 178:31-47. [PMID: 28322974 DOI: 10.1016/j.pharmthera.2017.03.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Successes of immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cell therapy in curing patients with otherwise lethal cancers have validated immunotherapy as a treatment for cancer and have inspired excitement for its broader potential. Most promising is the ability of each approach to eliminate bulky and advanced-stage cancers and to achieve durable cures. Despite this success, to date only a subset of cancer patients and a limited number of cancer types respond to these therapies. A major goal now is to expand the types of cancer and number of patients who can be successfully treated. To this end a multitude of immunotherapies are being tested clinically in new combinations, and many new immunomodulatory antibodies and CARs are in development. A third major immunotherapeutic approach with renewed interest is cancer vaccines. While over 20years of therapeutic cancer vaccine trials have met with limited success, these studies have laid the groundwork for the use of therapeutic vaccines in combination with other immunotherapies or alone as prophylactic cancer vaccines. Prophylactic vaccines are now poised to revolutionize cancer prevention as they have done for the prevention of infectious diseases. In this review we examine three major cancer immunotherapy modalities: immunomodulatory antibodies, CAR T cell therapy and vaccines. For each we describe the current state of the art and outline major challenges and research directions forward.
Collapse
Affiliation(s)
- Jason Lohmueller
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA, USA
| | - Olivera J Finn
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA, USA.
| |
Collapse
|
103
|
Economopoulou P, Kotsantis I, Psyrri A. The promise of immunotherapy in head and neck squamous cell carcinoma: combinatorial immunotherapy approaches. ESMO Open 2017; 1:e000122. [PMID: 28848660 PMCID: PMC5548974 DOI: 10.1136/esmoopen-2016-000122] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/21/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022] Open
Abstract
The immune system plays a fundamental role in preventing cancer development by recognising and eliminating tumour cells. The recent success in the field of immunotherapy has confirmed the potential to exploit the immune response as a cancer treatment. Head and neck squamous cell carcinoma (HNSCC) is a malignancy characterized by dismal prognosis and high mortality rate; low survival outcomes in combination with significant toxicity of current treatment strategies highlight the necessity for novel therapeutic modalities. HNSCC is a favourable disease for immunotherapy, as immune escape plays a key role in tumour initiation and progression. T-cell checkpoint inhibitors targeting programmed cell death protein-1 have emerged as novel immunotherapy agents showing remarkable efficacy in HNSCC. However, only a minority of patients derive benefit for single-agent immunotherapies. In this regard, combinatorial immunotherapy approaches represent an alternative strategy that might increase the number of patients who respond to immunotherapy. Focusing on HNSCC, this review will summarise novel combinations of immune checkpoint blockade with other immunotherapy treatment modalities.
Collapse
Affiliation(s)
- Panagiota Economopoulou
- 2nd Department of Internal Medicine, Section of Medical Oncology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Kotsantis
- 2nd Department of Internal Medicine, Section of Medical Oncology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Amanda Psyrri
- 2nd Department of Internal Medicine, Section of Medical Oncology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
104
|
Leyland R, Watkins A, Mulgrew KA, Holoweckyj N, Bamber L, Tigue NJ, Offer E, Andrews J, Yan L, Mullins S, Oberst MD, Coates Ulrichsen J, Leinster DA, McGlinchey K, Young L, Morrow M, Hammond SA, Mallinder P, Herath A, Leow CC, Wilkinson RW, Stewart R. A Novel Murine GITR Ligand Fusion Protein Induces Antitumor Activity as a Monotherapy That Is Further Enhanced in Combination with an OX40 Agonist. Clin Cancer Res 2017; 23:3416-3427. [DOI: 10.1158/1078-0432.ccr-16-2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/14/2016] [Accepted: 01/02/2017] [Indexed: 11/16/2022]
|
105
|
Abstract
Abstract
The progressive growth and spread of tumour cells in the form of metastases requires an interaction of healthy host cells, such as endothelial cells, fibroblasts, and other cells of mesenchymal origin with immune cells taking part in innate and adaptive responses within the tumour lesion and entire body. The host cells interact with tumour cells to create a dynamic tumour microenvironment, in which healthy cells can both positively and negatively influence the growth and spread of the tumour. The balance of cellular homeostasis and the effect of substances they secrete on the tumour microenvironment determine whether the tumour has a tendency to grow or disappear, and whether the cells remain within the lesion or are capable of metastasis to other regions of the body. Intercellular interactions also determine the tumour’s susceptibility to radiation or other types of cancer treatment. They may also be a rational explanation for differences in treatment outcomes, in which some metastases regress and others progress in response to the same treatment method.
Collapse
Affiliation(s)
- Urszula Lisiecka
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine University of Life Sciences, 20-950 Lublin, Poland
| | - Krzysztof Kostro
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine University of Life Sciences, 20-950 Lublin, Poland
| |
Collapse
|
106
|
Mahne AE, Mauze S, Joyce-Shaikh B, Xia J, Bowman EP, Beebe AM, Cua DJ, Jain R. Dual Roles for Regulatory T-cell Depletion and Costimulatory Signaling in Agonistic GITR Targeting for Tumor Immunotherapy. Cancer Res 2016; 77:1108-1118. [DOI: 10.1158/0008-5472.can-16-0797] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 09/14/2016] [Accepted: 09/27/2016] [Indexed: 11/16/2022]
|
107
|
Park JC, Hahn NM. Emerging role of immunotherapy in urothelial carcinoma-Future directions and novel therapies. Urol Oncol 2016; 34:566-576. [PMID: 27773553 DOI: 10.1016/j.urolonc.2016.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 01/05/2023]
Abstract
Tremendous advances in our understanding of the tumor immunology and molecular biology of urothelial carcinoma (UC) have led to the recent approval of immunotherapy as a novel option for patients with UC with advanced disease. Despite the promising data of novel immune checkpoint inhibitors, only a small subset of patients with UC achieves durable remissions. Because an optimal antitumor response requires coordination of multiple immune, tumor, and microenvironment effector cells, novel approaches targeting distinct mechanisms of action likely in combination are needed. In addition, discovery of reliable immune biomarkers, understanding of mechanisms of resistance, and novel clinical trial designs are warranted for maximum benefit of UC immunotherapy.
Collapse
Affiliation(s)
- Jong Chul Park
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University in Baltimore, Baltimore, MD
| | - Noah M Hahn
- Departments of Oncology and Urology at Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University in Baltimore, Baltimore, MD.
| |
Collapse
|
108
|
Novel Immunotherapeutic Approaches for Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2016; 8:cancers8100087. [PMID: 27669306 PMCID: PMC5082377 DOI: 10.3390/cancers8100087] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/16/2016] [Accepted: 09/08/2016] [Indexed: 12/11/2022] Open
Abstract
The immune system plays a key role in preventing tumor formation by recognizing and destroying malignant cells. For over a century, researchers have attempted to harness the immune response as a cancer treatment, although this approach has only recently achieved clinical success. Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is associated with cigarette smoking, alcohol consumption, betel nut use, and human papillomavirus infection. Unfortunately, worldwide mortality from HNSCC remains high, partially due to limits on therapy secondary to the significant morbidity associated with current treatments. Therefore, immunotherapeutic approaches to HNSCC treatment are attractive for their potential to reduce morbidity while improving survival. However, the application of immunotherapies to this disease has been challenging because HNSCC is profoundly immunosuppressive, resulting in decreased absolute lymphocyte counts, impaired natural killer cell function, reduced antigen-presenting cell function, and a tumor-permissive cytokine profile. Despite these challenges, numerous clinical trials testing the safety and efficacy of immunotherapeutic approaches to HNSCC treatment are currently underway, many of which have produced promising results. This review will summarize immunotherapeutic approaches to HNSCC that are currently undergoing clinical trials.
Collapse
|
109
|
Knee DA, Hewes B, Brogdon JL. Rationale for anti-GITR cancer immunotherapy. Eur J Cancer 2016; 67:1-10. [PMID: 27591414 DOI: 10.1016/j.ejca.2016.06.028] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 12/18/2022]
Abstract
Over the past decade, our understanding of cancer immunotherapy has evolved from assessing peripheral responses in the blood to monitoring changes in the tumour microenvironment. Both preclinical and clinical experience has taught us that modulation of the tumour microenvironment has significant implications to generating robust antitumour immunity. Clinical benefit has been well documented to correlate with a tumour microenvironment that contains a dense infiltration of CD8+CD45RO+ T effectors and a high ratio of CD8+ T cells to FoxP3+ regulatory T cells (Tregs). In preclinical tumour models, modulation of the Glucocorticoid induced TNF receptor (GITR)/GITR ligand (GITRL) axis suggests this pathway may provide the desired biological outcome of inhibiting Treg function while activating CD8+ T effector cells. This review will focus on the scientific rationale and considerations for the therapeutic targeting of GITR for cancer immunotherapy and will discuss possible combination strategies to enhance clinical benefit.
Collapse
Affiliation(s)
- Deborah A Knee
- Department of Cancer Immunotherapeutics, Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA.
| | - Becker Hewes
- Department of Translational & Clinical Oncology, Novartis Institute for Biomedical Research, 220 Massachusetts Ave, Cambridge, MA, USA.
| | - Jennifer L Brogdon
- Department of Exploratory Immuno-Oncology, Novartis Institute for Biomedical Research, 250 Massachusetts Ave, Cambridge, MA, USA.
| |
Collapse
|
110
|
Vilgelm AE, Johnson DB, Richmond A. Combinatorial approach to cancer immunotherapy: strength in numbers. J Leukoc Biol 2016; 100:275-90. [PMID: 27256570 PMCID: PMC6608090 DOI: 10.1189/jlb.5ri0116-013rr] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/05/2016] [Accepted: 05/11/2016] [Indexed: 12/13/2022] Open
Abstract
Immune-checkpoint blockade therapy with antibodies targeting CTLA-4 and PD-1 has revolutionized melanoma treatment by eliciting responses that can be remarkably durable and is now advancing to other malignancies. However, not all patients respond to immune-checkpoint inhibitors. Extensive preclinical evidence suggests that combining immune-checkpoint inhibitors with other anti-cancer treatments can greatly improve the therapeutic benefit. The first clinical success of the combinatorial approach to cancer immunotherapy was demonstrated using a dual-checkpoint blockade with CTLA-4 and PD-1 inhibitors, which resulted in accelerated FDA approval of this therapeutic regimen. In this review, we discuss the combinations of current and emerging immunotherapeutic agents in clinical and preclinical development and summarize the insights into potential mechanisms of synergistic anti-tumor activity gained from animal studies. These promising combinatorial partners for the immune-checkpoint blockade include therapeutics targeting additional inhibitory receptors of T cells, such as TIM-3, LAG-3, TIGIT, and BTLA, and agonists of T cell costimulatory receptors 4-1BB, OX40, and GITR, as well as agents that promote cancer cell recognition by the immune system, such as tumor vaccines, IDO inhibitors, and agonists of the CD40 receptor of APCs. We also review the therapeutic potential of regimens combining the immune-checkpoint blockade with therapeutic interventions that have been shown to enhance immunogenicity of cancer cells, including oncolytic viruses, RT, epigenetic therapy, and senescence-inducing therapy.
Collapse
Affiliation(s)
- Anna E Vilgelm
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee, USA; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and
| | - Douglas B Johnson
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ann Richmond
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee, USA; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and
| |
Collapse
|
111
|
Fromm G, de Silva S, Giffin L, Xu X, Rose J, Schreiber TH. Gp96-Ig/Costimulator (OX40L, ICOSL, or 4-1BBL) Combination Vaccine Improves T-cell Priming and Enhances Immunity, Memory, and Tumor Elimination. Cancer Immunol Res 2016; 4:766-78. [PMID: 27364122 DOI: 10.1158/2326-6066.cir-15-0228] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 06/06/2016] [Indexed: 11/16/2022]
Abstract
T-cell costimulation typically occurs in a defined microenvironment that is not recapitulated by agonistic antibody therapy. To deliver such stimulation under more favorable conditions, we investigated whether an allogeneic cell-based vaccine that secreted Fc-OX40L, Fc-ICOSL, or Fc-4-1BBL would activate and expand T cells comparably with systemically administered agonist antibodies. Among these costimulators, locally secreted Fc-OX40L provided superior priming of antigen-specific CD8(+) T cells, compared with combinations with OX40 antibodies or vaccine alone. Vaccine-expressed Fc-OX40L also stimulated IFNγ, TNFα, granzyme B, and IL2 by antigen-specific CD8(+) T cells similarly to OX40 antibodies, without off-target consequences such as proinflammatory cytokine induction. Vaccine-secreted Fc-OX40L increased CD127(+)KLRG-1(-) memory precursor cells during the contraction phase, resulting in improved proliferation upon secondary antigen challenge, as compared with OX40 antibody. A cell-based vaccine cosecreting gp96-Ig and Fc-OX40L led to even more pronounced tumor control, complete tumor rejection, and increased tumor antigen-specific T-cell proliferation, including in tumor-infiltrating lymphocytes, as compared with combinations of gp96-Ig vaccine and OX40 antibodies, in mice with established melanoma or colorectal carcinoma. These data suggest that local modulation of the vaccine microenvironment has unexpected advantages over systemic costimulation with agonistic antibodies, which may simplify the clinical translation of such combination immunotherapies into humans. Cancer Immunol Res; 4(9); 766-78. ©2016 AACR.
Collapse
Affiliation(s)
| | | | | | - Xin Xu
- Heat Biologics, Inc., Durham, North Carolina
| | - Jason Rose
- Heat Biologics, Inc., Durham, North Carolina
| | | |
Collapse
|
112
|
Harris SJ, Brown J, Lopez J, Yap TA. Immuno-oncology combinations: raising the tail of the survival curve. Cancer Biol Med 2016; 13:171-93. [PMID: 27458526 PMCID: PMC4944548 DOI: 10.20892/j.issn.2095-3941.2016.0015] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/11/2016] [Indexed: 12/13/2022] Open
Abstract
There have been exponential gains in immuno-oncology in recent times through the development of immune checkpoint inhibitors. Already approved by the U.S. Food and Drug Administration for advanced melanoma and non-small cell lung cancer, immune checkpoint inhibitors also appear to have significant antitumor activity in multiple other tumor types. An exciting component of immunotherapy is the durability of antitumor responses observed, with some patients achieving disease control for many years. Nevertheless, not all patients benefit, and efforts should thus now focus on improving the efficacy of immunotherapy through the use of combination approaches and predictive biomarkers of response and resistance. There are multiple potential rational combinations using an immunotherapy backbone, including existing treatments such as radiotherapy, chemotherapy or molecularly targeted agents, as well as other immunotherapeutics. The aim of such antitumor strategies will be to raise the tail on the survival curve by increasing the number of long term survivors, while managing any additive or synergistic toxicities that may arise with immunotherapy combinations. Rational trial designs based on a clear understanding of tumor biology and drug pharmacology remain paramount. This article reviews the biology underpinning immuno-oncology, discusses existing and novel immunotherapeutic combinations currently in development, the challenges of predictive biomarkers of response and resistance and the impact of immuno-oncology on early phase clinical trial design.
Collapse
Affiliation(s)
| | | | | | - Timothy A. Yap
- Drug Development Unit
- Lung Unit, Royal Marsden Hospital and The Institute of Cancer Research, London SM2 5PT, UK
| |
Collapse
|
113
|
Patel MA, Kim JE, Theodros D, Tam A, Velarde E, Kochel CM, Francica B, Nirschl TR, Ghasemzadeh A, Mathios D, Harris-Bookman S, Jackson CC, Jackson C, Ye X, Tran PT, Tyler B, Coric V, Selby M, Brem H, Drake CG, Pardoll DM, Lim M. Agonist anti-GITR monoclonal antibody and stereotactic radiation induce immune-mediated survival advantage in murine intracranial glioma. J Immunother Cancer 2016; 4:28. [PMID: 27190629 PMCID: PMC4869343 DOI: 10.1186/s40425-016-0132-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 04/26/2016] [Indexed: 12/29/2022] Open
Abstract
Background Glioblastoma (GBM) is a poorly immunogenic neoplasm treated with focused radiation. Immunotherapy has demonstrated synergistic survival effects with stereotactic radiosurgery (SRS) in murine GBM. GITR is a co-stimulatory molecule expressed constitutively on regulatory T-cells and by effector T-cells upon activation. We tested the hypothesis that anti-GITR monoclonal antibody (mAb) and SRS together would confer an immune-mediated survival benefit in glioma using the orthotopic GL261 glioma model. Methods Mice received SRS and anti-GITR 10 days after implantation. The anti-GITR mAbs tested were formatted as mouse IgG1 D265A (anti-GITR (1)) and IgG2a (anti-GITR (2a)) isotypes. Mice were randomized to four treatment groups: (1) control; (2) SRS; (3) anti-GITR; (4) anti-GITR/SRS. SRS was delivered to the tumor in one fraction, and mice were treated with mAb thrice. Mice were euthanized on day 21 to analyze the immunologic profile of tumor, spleen, and tumor draining lymph nodes. Results Anti-GITR (1)/SRS significantly improved survival over either treatment alone (p < .0001) with a cure rate of 24 % versus 0 % in a T-lymphocyte-dependent manner. There was elevated intratumoral CD4+ effector cell infiltration relative to Treg infiltration in mice treated with anti-GITR (1)/SRS, as well as significantly elevated IFNγ and IL-2 production by CD4+ T-cells and elevated IFNγ and TNFα production by CD8+ T-cells. There was increased mRNA expression of M1 markers and decreased expression of M2 markers in tumor infiltrating mononuclear cells. The anti-GITR (2a)/SRS combination did not improve survival, induce tumor regression, or result in Treg depletion. Conclusions These findings provide preclinical evidence for the use of anti-GITR (1) non-depleting antibodies in combination with SRS in GBM. Electronic supplementary material The online version of this article (doi:10.1186/s40425-016-0132-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mira A Patel
- The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jennifer E Kim
- The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Debebe Theodros
- The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ada Tam
- Department of Oncology, Baltimore, USA
| | | | | | | | | | | | - Dimitrios Mathios
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe St. Phipps Building Rm 123, Baltimore, 21287 MD USA
| | - Sarah Harris-Bookman
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe St. Phipps Building Rm 123, Baltimore, 21287 MD USA
| | - Christopher C Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe St. Phipps Building Rm 123, Baltimore, 21287 MD USA
| | - Christina Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe St. Phipps Building Rm 123, Baltimore, 21287 MD USA
| | - Xiaobu Ye
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe St. Phipps Building Rm 123, Baltimore, 21287 MD USA
| | - Phuoc T Tran
- Department of Oncology, Baltimore, USA.,Department Radiation Oncology, Baltimore, USA.,and the Brady Urological Institute, Baltimore, USA
| | - Betty Tyler
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe St. Phipps Building Rm 123, Baltimore, 21287 MD USA
| | | | - Mark Selby
- Bristol-Myers Squibb Company, San Francisco, CA USA
| | - Henry Brem
- The Johns Hopkins University School of Medicine, Baltimore, USA.,Department of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe St. Phipps Building Rm 123, Baltimore, 21287 MD USA
| | | | | | - Michael Lim
- The Johns Hopkins University School of Medicine, Baltimore, USA.,Department of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe St. Phipps Building Rm 123, Baltimore, 21287 MD USA
| |
Collapse
|
114
|
Takeuchi Y, Nishikawa H. Roles of regulatory T cells in cancer immunity. Int Immunol 2016; 28:401-9. [PMID: 27160722 DOI: 10.1093/intimm/dxw025] [Citation(s) in RCA: 380] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023] Open
Abstract
CD4(+) regulatory T cells (Tregs) expressing the transcription factor FoxP3 are highly immune suppressive and play central roles in the maintenance of self-tolerance and immune homeostasis, yet in malignant tumors they promote tumor progression by suppressing effective antitumor immunity. Indeed, higher infiltration by Tregs is observed in tumor tissues, and their depletion augments antitumor immune responses in animal models. Additionally, increased numbers of Tregs and, in particular, decreased ratios of CD8(+) T cells to Tregs among tumor-infiltrating lymphocytes are correlated with poor prognosis in various types of human cancers. The recent success of cancer immunotherapy represented by immune checkpoint blockade has provided a new insight in cancer treatment, yet more than half of the treated patients did not experience clinical benefits. Identifying biomarkers that predict clinical responses and developing novel immunotherapies are therefore urgently required. Cancer patients whose tumors contain a large number of neoantigens stemming from gene mutations, which have not been previously recognized by the immune system, provoke strong antitumor T-cell responses associated with clinical responses following immune checkpoint blockade, depending on the resistance to Treg-mediated suppression. Thus, integration of a strategy restricting Treg-mediated immune suppression may expand the therapeutic spectrum of cancer immunotherapy towards patients with a lower number of neoantigens. In this review, we address the current understanding of Treg-mediated immune suppressive mechanisms in cancer, the involvement of Tregs in cancer immunotherapy, and strategies for effective and tolerable Treg-targeted therapy.
Collapse
Affiliation(s)
- Yoshiko Takeuchi
- Division of Cancer Immunology, EPOC, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan and
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, EPOC, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan and Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
115
|
Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med 2016; 14:73. [PMID: 27151159 PMCID: PMC4858828 DOI: 10.1186/s12916-016-0623-5] [Citation(s) in RCA: 787] [Impact Index Per Article: 98.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022] Open
Abstract
These are exciting times for cancer immunotherapy. After many years of disappointing results, the tide has finally changed and immunotherapy has become a clinically validated treatment for many cancers. Immunotherapeutic strategies include cancer vaccines, oncolytic viruses, adoptive transfer of ex vivo activated T and natural killer cells, and administration of antibodies or recombinant proteins that either costimulate cells or block the so-called immune checkpoint pathways. The recent success of several immunotherapeutic regimes, such as monoclonal antibody blocking of cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD1), has boosted the development of this treatment modality, with the consequence that new therapeutic targets and schemes which combine various immunological agents are now being described at a breathtaking pace. In this review, we outline some of the main strategies in cancer immunotherapy (cancer vaccines, adoptive cellular immunotherapy, immune checkpoint blockade, and oncolytic viruses) and discuss the progress in the synergistic design of immune-targeting combination therapies.
Collapse
Affiliation(s)
- Sofia Farkona
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada
| | - Ivan M Blasutig
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada. .,Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada. .,Clinical Biochemistry, Toronto General Hospital, 200 Elizabet St. Rm 3EB-365, Toronto, ON, M5G2C4, Canada.
| |
Collapse
|
116
|
Mihm MC, Mulé JJ. Reflections on the Histopathology of Tumor-Infiltrating Lymphocytes in Melanoma and the Host Immune Response. Cancer Immunol Res 2016; 3:827-35. [PMID: 26242760 DOI: 10.1158/2326-6066.cir-15-0143] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the past five decades, the role for lymphocytes in host immune response to tumors has been shown, at least in some patients, to be a critical component in disease prognosis. Also, the heterogeneity of lymphocytes has been documented, including the existence of regulatory T cells that suppress the immune response. As the functions of lymphocytes have become better defined in terms of antitumor immunity, specific targets on lymphocytes have been uncovered. The appreciation of the role of immune checkpoints has also led to therapeutic approaches that illustrate the effectiveness of blocking negative regulators of the antitumor immune response. In this Masters of Immunology article, we trace the evolution of our understanding of tumor-infiltrating lymphocytes and discuss their role in melanoma prognosis from the very basic observation of their existence to the latest manipulation of their functions with the result of improvement of the host response against the tumor.
Collapse
Affiliation(s)
- Martin C Mihm
- Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - James J Mulé
- Translational Science, Melanoma Research and Treatment, Moffitt Cancer Center, Tampa, Florida.
| |
Collapse
|
117
|
The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 2016; 13:273-90. [PMID: 26977780 DOI: 10.1038/nrclinonc.2016.25] [Citation(s) in RCA: 757] [Impact Index Per Article: 94.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past decade, advances in the use of monoclonal antibodies (mAbs) and adoptive cellular therapy to treat cancer by modulating the immune response have led to unprecedented responses in patients with advanced-stage tumours that would otherwise have been fatal. To date, three immune-checkpoint-blocking mAbs have been approved in the USA for the treatment of patients with several types of cancer, and more patients will benefit from immunomodulatory mAb therapy in the months and years ahead. Concurrently, the adoptive transfer of genetically modified lymphocytes to treat patients with haematological malignancies has yielded dramatic results, and we anticipate that this approach will rapidly become the standard of care for an increasing number of patients. In this Review, we highlight the latest advances in immunotherapy and discuss the role that it will have in the future of cancer treatment, including settings for which testing combination strategies and 'armoured' CAR T cells are recommended.
Collapse
|
118
|
Nocentini G, Cari L, Ronchetti S, Riccardi C. Modulation of tumor immunity: a patent evaluation of WO2015026684A1. Expert Opin Ther Pat 2016; 26:417-25. [DOI: 10.1517/13543776.2016.1118061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
119
|
Binder DC, Davis AA, Wainwright DA. Immunotherapy for cancer in the central nervous system: Current and future directions. Oncoimmunology 2016; 5:e1082027. [PMID: 27057463 PMCID: PMC4801467 DOI: 10.1080/2162402x.2015.1082027] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and still remains incurable. Although immunotherapeutic vaccination against GBM has demonstrated immune-stimulating activity with some promising survival benefits, tumor relapse is common, highlighting the need for additional and/or combinatorial approaches. Recently, antibodies targeting immune checkpoints were demonstrated to generate impressive clinical responses against advanced melanoma and other malignancies, in addition to showing potential for enhancing vaccination and radiotherapy (RT). Here, we summarize the current knowledge of central nervous system (CNS) immunosuppression, evaluate past and current immunotherapeutic trials and discuss promising future immunotherapeutic directions to treat CNS-localized malignancies.
Collapse
Affiliation(s)
- David C. Binder
- Commitee on Cancer Biology
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Andrew A. Davis
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Derek A. Wainwright
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
120
|
Abstract
T cell checkpoint blockade therapies are revolutionizing the treatment of patients with cancer. Highlighted by the recent success of PD-1 plus CTLA-4 blockade in patients with melanomas, synergistic immunotherapy combinations of modalities represent an important opportunity to improve responses and outcomes for patients. We review the rationale and experience with T cell checkpoint blockade in combination with targeting of other coinhibitory or costimulatory checkpoints, immunomodulatory molecules in the tumor microenvironment, and other anticancer modalities such as vaccines, chemotherapy, and radiation.
Collapse
Affiliation(s)
- Matthew D Hellmann
- Memorial Sloan Kettering Cancer Center, New York, NY, United States; Weill Cornell Medical College, New York, NY, United States
| | - Claire F Friedman
- Memorial Sloan Kettering Cancer Center, New York, NY, United States; Weill Cornell Medical College, New York, NY, United States
| | - Jedd D Wolchok
- Memorial Sloan Kettering Cancer Center, New York, NY, United States; Weill Cornell Medical College, New York, NY, United States.
| |
Collapse
|
121
|
Immune Checkpoint Modulators: An Emerging Antiglioma Armamentarium. J Immunol Res 2016; 2016:4683607. [PMID: 26881264 PMCID: PMC4736366 DOI: 10.1155/2016/4683607] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 12/31/2022] Open
Abstract
Immune checkpoints have come to the forefront of cancer therapies as a powerful and promising strategy to stimulate antitumor T cell activity. Results from recent preclinical and clinical studies demonstrate how checkpoint inhibition can be utilized to prevent tumor immune evasion and both local and systemic immune suppression. This review encompasses the key immune checkpoints that have been found to play a role in tumorigenesis and, more specifically, gliomagenesis. The review will provide an overview of the existing preclinical and clinical data, antitumor efficacy, and clinical applications for each checkpoint with respect to GBM, as well as a summary of combination therapies with chemotherapy and radiation.
Collapse
|
122
|
Márquez-Rodas I, Cerezuela P, Soria A, Berrocal A, Riso A, González-Cao M, Martín-Algarra S. Immune checkpoint inhibitors: therapeutic advances in melanoma. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:267. [PMID: 26605313 DOI: 10.3978/j.issn.2305-5839.2015.10.27] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, new strategies for treating melanoma have been introduced, improving the outlook for this challenging disease. One of the most important advances has been the development of immunotherapy. The better understanding of the role of the immunological system in tumor control has paved the way for strategies to enhance the immune response against cancer cells. Monoclonal antibodies (mAbs) against the immune checkpoints cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed cell death protein 1 (PD-1) and its ligand (PD-L1) have demonstrated high activity in melanoma and other tumors. Ipilimumab, an anti CTLA-4 antibody, was the first drug of this class that was approved. Although the response rate with ipilimumab is low (less than 20% of patients have objective responses), 20% of patients have long survival, with similar results in the first and second line settings. Nivolumab and pembrolizumab, both anti PD-1 inhibitors, have been approved for the treatment of melanoma, with response rates of 40% and a demonstrated survival advantage in phase III trials. This has marked a new era in the treatment of metastatic melanoma and much research is now ongoing with other drugs targeting checkpoint inhibitors. In addition, the agonist of activating molecules on T cells and their combinations are being investigated. Herein we review the clinical development of checkpoint inhibitors and their approval for treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Ivan Márquez-Rodas
- 1 Servicio de Oncología Médica, Hospital General Universitario Gregorio Marañon, Madrid, Spain ; 2 Spanish Melanoma Group (GEM); 3 Servicio Oncología Médica, Hospital General Universitario Santa Lucía, Cartagena, Spain ; 4 Servicio de Oncología Médica, Universitario Ramon y Cajal, Madrid, Spain ; 5 Servicio de Oncología Médica, Hospital General Universitario de Valencia, Valencia, Spain ; 6 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 7 Servicio de Oncología Médica, Clínica Universitaria de Navarra, Pamplona, Spain
| | - Pablo Cerezuela
- 1 Servicio de Oncología Médica, Hospital General Universitario Gregorio Marañon, Madrid, Spain ; 2 Spanish Melanoma Group (GEM); 3 Servicio Oncología Médica, Hospital General Universitario Santa Lucía, Cartagena, Spain ; 4 Servicio de Oncología Médica, Universitario Ramon y Cajal, Madrid, Spain ; 5 Servicio de Oncología Médica, Hospital General Universitario de Valencia, Valencia, Spain ; 6 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 7 Servicio de Oncología Médica, Clínica Universitaria de Navarra, Pamplona, Spain
| | - Ainara Soria
- 1 Servicio de Oncología Médica, Hospital General Universitario Gregorio Marañon, Madrid, Spain ; 2 Spanish Melanoma Group (GEM); 3 Servicio Oncología Médica, Hospital General Universitario Santa Lucía, Cartagena, Spain ; 4 Servicio de Oncología Médica, Universitario Ramon y Cajal, Madrid, Spain ; 5 Servicio de Oncología Médica, Hospital General Universitario de Valencia, Valencia, Spain ; 6 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 7 Servicio de Oncología Médica, Clínica Universitaria de Navarra, Pamplona, Spain
| | - Alfonso Berrocal
- 1 Servicio de Oncología Médica, Hospital General Universitario Gregorio Marañon, Madrid, Spain ; 2 Spanish Melanoma Group (GEM); 3 Servicio Oncología Médica, Hospital General Universitario Santa Lucía, Cartagena, Spain ; 4 Servicio de Oncología Médica, Universitario Ramon y Cajal, Madrid, Spain ; 5 Servicio de Oncología Médica, Hospital General Universitario de Valencia, Valencia, Spain ; 6 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 7 Servicio de Oncología Médica, Clínica Universitaria de Navarra, Pamplona, Spain
| | - Aldo Riso
- 1 Servicio de Oncología Médica, Hospital General Universitario Gregorio Marañon, Madrid, Spain ; 2 Spanish Melanoma Group (GEM); 3 Servicio Oncología Médica, Hospital General Universitario Santa Lucía, Cartagena, Spain ; 4 Servicio de Oncología Médica, Universitario Ramon y Cajal, Madrid, Spain ; 5 Servicio de Oncología Médica, Hospital General Universitario de Valencia, Valencia, Spain ; 6 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 7 Servicio de Oncología Médica, Clínica Universitaria de Navarra, Pamplona, Spain
| | - María González-Cao
- 1 Servicio de Oncología Médica, Hospital General Universitario Gregorio Marañon, Madrid, Spain ; 2 Spanish Melanoma Group (GEM); 3 Servicio Oncología Médica, Hospital General Universitario Santa Lucía, Cartagena, Spain ; 4 Servicio de Oncología Médica, Universitario Ramon y Cajal, Madrid, Spain ; 5 Servicio de Oncología Médica, Hospital General Universitario de Valencia, Valencia, Spain ; 6 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 7 Servicio de Oncología Médica, Clínica Universitaria de Navarra, Pamplona, Spain
| | - Salvador Martín-Algarra
- 1 Servicio de Oncología Médica, Hospital General Universitario Gregorio Marañon, Madrid, Spain ; 2 Spanish Melanoma Group (GEM); 3 Servicio Oncología Médica, Hospital General Universitario Santa Lucía, Cartagena, Spain ; 4 Servicio de Oncología Médica, Universitario Ramon y Cajal, Madrid, Spain ; 5 Servicio de Oncología Médica, Hospital General Universitario de Valencia, Valencia, Spain ; 6 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 7 Servicio de Oncología Médica, Clínica Universitaria de Navarra, Pamplona, Spain
| |
Collapse
|
123
|
Yan F, Du R, Wei F, Zhao H, Yu J, Wang C, Zhan Z, Ding T, Ren X, Chen X, Li H. Expression of TNFR2 by regulatory T cells in peripheral blood is correlated with clinical pathology of lung cancer patients. Cancer Immunol Immunother 2015; 64:1475-85. [PMID: 26280204 PMCID: PMC11029166 DOI: 10.1007/s00262-015-1751-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/06/2015] [Indexed: 12/31/2022]
Abstract
CD4(+)FoxP3(+) regulatory T cells (Tregs) represent a major cellular mediator of cancer immune evasion. The expression of tumor necrosis factor receptor type II (TNFR2) on Tregs is reported to identify the maximally suppressive Treg population in both mice and human. We therefore investigated the phenotype and function of TNFR2(+) Tregs present in the peripheral blood (PB) of 43 lung cancer patients. Further, the association of TNFR2 expression on Tregs with clinicopathological factors was analyzed. The results showed that in the PB of lung cancer patients, Tregs expressed markedly higher levels of TNFR2 than conventional T cells (Tconvs). Expression of TNFR2 appeared to correlate better than CD25(+) and CD127(-) with FoxP3 expression. PB TNFR2(+) Tregs in lung cancer patients were more proliferative and expressed higher levels of the immunosuppressive molecule CTLA-4, and consequently more potently suppressed IFNγ production by cocultured CD8 CTLs. More importantly, higher TNFR2 expression levels on Tregs were associated with lymphatic invasion, distant metastasis and more advanced clinical stage of lung cancer patients. Therefore, our study suggests that TNFR2(+) Tregs play a role in promoting tumor progressive metastasis and expression of TNFR2 by PB Tregs may prove to be a useful prognostic marker in lung cancer patients.
Collapse
Affiliation(s)
- Fan Yan
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Rm 0601, Bldg C6, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300202, People's Republic of China
- National Clinical Research Center of Cancer, Tianjin, People's Republic of China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, People's Republic of China
| | - Ruijuan Du
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Rm 0601, Bldg C6, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300202, People's Republic of China
- National Clinical Research Center of Cancer, Tianjin, People's Republic of China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, People's Republic of China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Rm 0601, Bldg C6, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300202, People's Republic of China
- National Clinical Research Center of Cancer, Tianjin, People's Republic of China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, People's Republic of China
| | - Hua Zhao
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Rm 0601, Bldg C6, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300202, People's Republic of China
- National Clinical Research Center of Cancer, Tianjin, People's Republic of China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, People's Republic of China
| | - Jinpu Yu
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Rm 0601, Bldg C6, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300202, People's Republic of China
- National Clinical Research Center of Cancer, Tianjin, People's Republic of China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, People's Republic of China
| | - Changli Wang
- National Clinical Research Center of Cancer, Tianjin, People's Republic of China
- Department of Pulmonary Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Zhongli Zhan
- National Clinical Research Center of Cancer, Tianjin, People's Republic of China
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Tingting Ding
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Rm 0601, Bldg C6, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300202, People's Republic of China
- National Clinical Research Center of Cancer, Tianjin, People's Republic of China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, People's Republic of China
| | - Xiubao Ren
- Department of Biotherapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
- National Clinical Research Center of Cancer, Tianjin, People's Republic of China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Rm 7032, Bldg N22 (Office), Flat 4C, Staff Quarters S22 (Home), Avenida da Universidade, Taipa, Macau, SAR, People's Republic of China.
| | - Hui Li
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Rm 0601, Bldg C6, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300202, People's Republic of China.
- National Clinical Research Center of Cancer, Tianjin, People's Republic of China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, People's Republic of China.
| |
Collapse
|
124
|
Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 2015; 14:561-84. [PMID: 26228759 DOI: 10.1038/nrd4591] [Citation(s) in RCA: 960] [Impact Index Per Article: 106.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeting immune checkpoints such as programmed cell death protein 1 (PD1), programmed cell death 1 ligand 1 (PDL1) and cytotoxic T lymphocyte antigen 4 (CTLA4) has achieved noteworthy benefit in multiple cancers by blocking immunoinhibitory signals and enabling patients to produce an effective antitumour response. Inhibitors of CTLA4, PD1 or PDL1 administered as single agents have resulted in durable tumour regression in some patients, and combinations of PD1 and CTLA4 inhibitors may enhance antitumour benefit. Numerous additional immunomodulatory pathways as well as inhibitory factors expressed or secreted by myeloid and stromal cells in the tumour microenvironment are potential targets for synergizing with immune checkpoint blockade. Given the breadth of potential targets in the immune system, critical questions to address include which combinations should move forward in development and which patients will benefit from these treatments. This Review discusses the leading drug targets that are expressed on tumour cells and in the tumour microenvironment that allow enhancement of the antitumour immune response.
Collapse
Affiliation(s)
- Kathleen M Mahoney
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA. [2] Division of Haematology and Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA. [3]
| | - Paul D Rennert
- 1] SugarCone Biotech, Holliston, Massachusetts 01746, USA. [2] Videre Biotherapeutics, Watertown, Massachusetts 02472, USA. [3]
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
125
|
Ramakrishna V, Sundarapandiyan K, Zhao B, Bylesjo M, Marsh HC, Keler T. Characterization of the human T cell response to in vitro CD27 costimulation with varlilumab. J Immunother Cancer 2015; 3:37. [PMID: 26500773 PMCID: PMC4619281 DOI: 10.1186/s40425-015-0080-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/03/2015] [Indexed: 12/31/2022] Open
Abstract
Background Clinical targeting of TNFR family of receptors (CD40, CD134 and CD137) with immunostimulatory monoclonal antibodies has been successful in cancer immunotherapy. However, targeting of CD27 with a mAb is a relatively new approach to provide costimulation of immune cells undergoing activation. Thus, activation of human CD27 (TNFRSF7) with a monoclonal antibody (varlilumab) has previously been demonstrated to result in T cell activation and anti-tumor activity in preclinical models, and is currently in early phase clinical trials in patients with advanced malignancies. In this study we used an in vitro system using human peripheral blood T cells to characterize the varlilumab-mediated costimulatory effects in combination with TCR stimulation in terms of phenotypic, transcriptional and functionality changes. Methods T cells were isolated from normal volunteer PBMCs using magnetic bead isolation kits and stimulated in vitro with plate bound anti-CD3 Ab (OKT3) and varlilumab or control Ab for 72 h. Activation profiles were monitored by ELISA or Luminex-based testing cytokine/chemokine releases, cell surface phenotyping for costimulatory and coinhibitory markers and CFSE dye dilution by proliferating T cells and Tregs. Changes in gene expression and transcriptome analysis of varlilumab-stimulated T cells was carried on Agilent Human whole genome microarray datasets using a suite of statistical and bioinformatic software tools. Results Costimulation of T cells with varlilumab required continuous TCR signaling as pre-activated T cells were unable to produce cytokines with CD27 signaling alone. Analysis of T cell subsets further revealed that memory CD4+ and CD8+ T cells were specifically activated with a bias toward CD8+ T lymphocyte proliferation. Activation was accompanied by upregulated cell surface expression of costimulatory [4-1BB, OX40, GITR and ICOS] and coinhibitory [PD-1] molecules. Importantly, varlilumab costimulation did not activate purified Tregs as measured by cytokine production, proliferation and suppression of dividing non-Treg T cells. Analysis of changes in gene expression during varlilumab stimulation of T cells revealed modulation of pro-inflammatory signatures consistent with cellular activation and proliferation, with the IL-2 pathway showing the highest frequency of gene modulation. Conclusions Altogether, the data reveal the requirements and T cell subtype-specific effects of CD27 costimulation, and helps select relevant biomarkers for studying the effects of varlilumab in patients. Electronic supplementary material The online version of this article (doi:10.1186/s40425-015-0080-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Biwei Zhao
- Celldex Therapeutics, Inc., Hampton, NJ 08827 USA
| | | | | | - Tibor Keler
- Celldex Therapeutics, Inc., Hampton, NJ 08827 USA
| |
Collapse
|
126
|
Glucocorticoid-induced tumor necrosis factor receptor-related protein co-stimulation facilitates tumor regression by inducing IL-9-producing helper T cells. Nat Med 2015; 21:1010-7. [PMID: 26280119 DOI: 10.1038/nm.3922] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/13/2015] [Indexed: 12/12/2022]
Abstract
T cell stimulation via glucocorticoid-induced tumor necrosis factor receptor (TNFR)-related protein (GITR) elicits antitumor activity in various tumor models; however, the underlying mechanism of action remains unclear. Here we demonstrate a crucial role for interleukin (IL)-9 in antitumor immunity generated by the GITR agonistic antibody DTA-1. IL-4 receptor knockout (Il4ra(-/-)) mice, which have reduced expression of IL-9, were resistant to tumor growth inhibition by DTA-1. Notably, neutralization of IL-9 considerably impaired tumor rejection induced by DTA-1. In particular, DTA-1-induced IL-9 promoted tumor-specific cytotoxic T lymphocyte (CTL) responses by enhancing the function of dendritic cells in vivo. Furthermore, GITR signaling enhanced the differentiation of IL-9-producing CD4(+) T-helper (TH9) cells in a TNFR-associated factor 6 (TRAF6)- and NF-κB-dependent manner and inhibited the generation of induced regulatory T cells in vitro. Our findings demonstrate that GITR co-stimulation mediates antitumor immunity by promoting TH9 cell differentiation and enhancing CTL responses and thus provide a mechanism of action for GITR agonist-mediated cancer immunotherapies.
Collapse
|
127
|
Abstract
The central nervous system (CNS) possesses powerful local and global immunosuppressive capabilities that modulate unwanted inflammatory reactions in nervous tissue. These same immune-modulatory mechanisms are also co-opted by malignant brain tumors and pose a formidable challenge to brain tumor immunotherapy. Routes by which malignant gliomas coordinate immunosuppression include the mechanical and functional barriers of the CNS; immunosuppressive cytokines and catabolites; immune checkpoint molecules; tumor-infiltrating immune cells; and suppressor immune cells. The challenges to overcoming tumor-induced immunosuppression, however, are not unique to the brain, and several analogous immunosuppressive mechanisms also exist for primary tumors outside of the CNS. Ultimately, the immune responses in the CNS are linked and complementary to immune processes in the periphery, and advances in tumor immunotherapy in peripheral sites may therefore illuminate novel approaches to brain tumor immunotherapy, and vice versa.
Collapse
Affiliation(s)
- Powell Perng
- Department of Neurosurgery, School of Medicine, Johns Hopkins University , Baltimore, MD , USA
| | - Michael Lim
- Department of Neurosurgery, School of Medicine, Johns Hopkins University , Baltimore, MD , USA
| |
Collapse
|
128
|
Sanmamed MF, Pastor F, Rodriguez A, Perez-Gracia JL, Rodriguez-Ruiz ME, Jure-Kunkel M, Melero I. Agonists of Co-stimulation in Cancer Immunotherapy Directed Against CD137, OX40, GITR, CD27, CD28, and ICOS. Semin Oncol 2015; 42:640-55. [PMID: 26320067 DOI: 10.1053/j.seminoncol.2015.05.014] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
T and natural killer (NK) lymphocytes are considered the main effector players in the immune response against tumors. Full activation of T and NK lymphocytes requires the coordinated participation of several surface receptors that meet their cognate ligands through structured transient cell-to-cell interactions known as immune synapses. In the case of T cells, the main route of stimulation is driven by antigens as recognized in the form of short polypeptides associated with major histocompatibility complex (MHC) antigen-presenting molecules. However, the functional outcome of T-cell stimulation towards clonal expansion and effector function acquisition is contingent on the contact of additional surface receptor-ligand pairs and on the actions of cytokines in the milieu. While some of those interactions are inhibitory, others are activating and are collectively termed co-stimulatory receptors. The best studied belong to either the immunoglobulin superfamily or the tumor necrosis factor-receptor (TNFR) family. Co-stimulatory receptors include surface moieties that are constitutively expressed on resting lymphocytes such as CD28 or CD27 and others whose expression is induced upon recent previous antigen priming, ie, CD137, GITR, OX40, and ICOS. Ligation of these glycoproteins with agonist antibodies actively conveys activating signals to the lymphocyte. Those signals, acting through a potentiation of the cellular immune response, give rise to anti-tumor effects in mouse models. Anti-CD137 antibodies are undergoing clinical trials with evidence of clinical activity and anti-OX40 monoclonal antibodies (mAbs) induce interesting immunomodulation effects in humans. Antibodies anti-CD27 and GITR have recently entered clinical trials. The inherent dangers of these immunomodulation strategies are the precipitation of excessive systemic inflammation or/and invigorating silent autoimmunity. Agonist antibodies, recombinant forms of the natural ligands, and polynucleotide-based aptamers constitute the pharmacologic tools to manipulate such receptors. Preclinical data suggest that the greatest potential of these agents is achieved in combined treatment strategies.
Collapse
Affiliation(s)
- Miguel F Sanmamed
- Department of Immunobiology, Yale School of Medicine, New Haven, CT.
| | - Fernando Pastor
- Centro de investigación médica aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Alfonso Rodriguez
- Centro de investigación médica aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | | | | | | | - Ignacio Melero
- Centro de investigación médica aplicada (CIMA), Universidad de Navarra, Pamplona, Spain; Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
129
|
Pedroza-Gonzalez A, Zhou G, Singh SP, Boor PP, Pan Q, Grunhagen D, de Jonge J, Tran TK, Verhoef C, IJzermans JN, Janssen HLA, Biermann K, Kwekkeboom J, Sprengers D. GITR engagement in combination with CTLA-4 blockade completely abrogates immunosuppression mediated by human liver tumor-derived regulatory T cells ex vivo. Oncoimmunology 2015; 4:e1051297. [PMID: 26587321 DOI: 10.1080/2162402x.2015.1051297] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/01/2015] [Accepted: 05/09/2015] [Indexed: 02/08/2023] Open
Abstract
In liver cancer tumor-infiltrating regulatory T cells (Ti-Treg) are potent suppressors of tumor-specific T-cell responses and express high levels of the Treg-associated molecules cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and glucocorticoid-induced tumor necrosis factor receptor (GITR). In this study, we have evaluated the capacity of GITR-ligation, CTLA-4-blockade and a combination of both treatments to alleviate immunosuppression mediated by Ti-Treg. Using ex vivo isolated cells from individuals with hepatocellular carcinoma (HCC) or liver metastases from colorectal cancer (LM-CRC) we show that treatment with a soluble form of the natural ligand of GITR (GITRL), or with blocking antibodies to CTLA-4, reduces the suppression mediated by human liver tumor-infiltrating CD4+Foxp3+ Treg, thereby restoring proliferation and cytokine production by effector T cells. Importantly, combined treatment with low doses of both molecules exhibited stronger recovery of T cell function compared with either treatment alone. Our data suggest that in patients with primary and secondary liver cancer both GITR-ligation and anti-CTLA-4 mAb can improve the antitumor immunity by abrogating Ti-Treg mediated suppression.
Collapse
Affiliation(s)
- Alexander Pedroza-Gonzalez
- Department of Gastroenterology and Hepatology; Erasmus MC University Medical Center ; Rotterdam, The Netherlands ; Laboratory of Immunology Research, Medicine; Faculty of Higher Studies Iztacala; National Autonomous University of Mexico; FES-Iztacala, UNAM ; Mexico City, Mexico
| | - Guoying Zhou
- Department of Gastroenterology and Hepatology; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| | - Simar Pal Singh
- Department of Gastroenterology and Hepatology; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| | - Patrick Pc Boor
- Department of Gastroenterology and Hepatology; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| | - Dirk Grunhagen
- Department of Surgery; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| | - Jeroen de Jonge
- Department of Surgery; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| | - Tc Khe Tran
- Department of Surgery; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| | - Cornelis Verhoef
- Department of Surgery; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| | - Jan Nm IJzermans
- Department of Surgery; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| | - Harry LA Janssen
- Department of Gastroenterology and Hepatology; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| | - Katharina Biermann
- Department of Pathology; Erasmus MC-University Medical Center ; Rotterdam, The Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology; Erasmus MC University Medical Center ; Rotterdam, The Netherlands
| |
Collapse
|
130
|
Shi H, Qi X, Ma B, Cao Y, Wang L, Sun L, Niu H. The status, limitation and improvement of adoptive cellular immunotherapy in advanced urologic malignancies. Chin J Cancer Res 2015; 27:128-37. [PMID: 25937774 DOI: 10.3978/j.issn.1000-9604.2014.12.15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 11/28/2014] [Indexed: 11/14/2022] Open
Abstract
In recent years, immunotherapy has been gradually established as the fourth frequently adopted antitumor therapy, following surgery, chemotherapy and radiotherapy, for advanced urologic malignancies with an improved understanding of theoretical basis, such as molecular biology and immunology. Thereinto, adoptive cellular immunotherapy (ACI) has become one of the hotspots, which comprises a variety of treatment approaches, such as TIL, CIK cell, γδ T cell, CAR-engineered T cell and Allogeneic stem cell transplantation (alloSCT). Although preclinical efficacy has been demonstrated remarkably, clinical trials could not consistently show the benefit due to multi-factors in complex immunosuppressive microenvironment in vivo compared to that of in vitro. Here we review some timely aspects of ACI for advanced urologic malignancies, and describe the current status and limitation of immunotherapy from the cellular level. It's our expectation to provide prompting consideration of novel combinatorial ACI strategies and a resurgence of interest in ACI for advanced urologic malignancies.
Collapse
Affiliation(s)
- Haoqing Shi
- 1 Department of Urology, Affiliated Hospital of Qingdao University, Qingdao 266003, China ; 2 Department of Urology, People's Hospital of Linzi District, Zibo 255400, China ; 3 Medical College of Qingdao University, Qingdao 266021, China
| | - Xiangjie Qi
- 1 Department of Urology, Affiliated Hospital of Qingdao University, Qingdao 266003, China ; 2 Department of Urology, People's Hospital of Linzi District, Zibo 255400, China ; 3 Medical College of Qingdao University, Qingdao 266021, China
| | - Bin Ma
- 1 Department of Urology, Affiliated Hospital of Qingdao University, Qingdao 266003, China ; 2 Department of Urology, People's Hospital of Linzi District, Zibo 255400, China ; 3 Medical College of Qingdao University, Qingdao 266021, China
| | - Yanwei Cao
- 1 Department of Urology, Affiliated Hospital of Qingdao University, Qingdao 266003, China ; 2 Department of Urology, People's Hospital of Linzi District, Zibo 255400, China ; 3 Medical College of Qingdao University, Qingdao 266021, China
| | - Lina Wang
- 1 Department of Urology, Affiliated Hospital of Qingdao University, Qingdao 266003, China ; 2 Department of Urology, People's Hospital of Linzi District, Zibo 255400, China ; 3 Medical College of Qingdao University, Qingdao 266021, China
| | - Lijiang Sun
- 1 Department of Urology, Affiliated Hospital of Qingdao University, Qingdao 266003, China ; 2 Department of Urology, People's Hospital of Linzi District, Zibo 255400, China ; 3 Medical College of Qingdao University, Qingdao 266021, China
| | - Haitao Niu
- 1 Department of Urology, Affiliated Hospital of Qingdao University, Qingdao 266003, China ; 2 Department of Urology, People's Hospital of Linzi District, Zibo 255400, China ; 3 Medical College of Qingdao University, Qingdao 266021, China
| |
Collapse
|
131
|
Glucocorticoid-induced tumour necrosis factor receptor-related protein: a key marker of functional regulatory T cells. J Immunol Res 2015; 2015:171520. [PMID: 25961057 PMCID: PMC4413981 DOI: 10.1155/2015/171520] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/18/2015] [Indexed: 12/18/2022] Open
Abstract
Glucocorticoid-induced tumour necrosis factor receptor-related protein (GITR, TNFRSF18, and CD357) is expressed at high levels in activated T cells and regulatory T cells (Tregs). In this review, we present data from mouse and human studies suggesting that GITR is a crucial player in the differentiation of thymic Tregs (tTregs), and expansion of both tTregs and peripheral Tregs (pTregs). The role of GITR in Treg expansion is confirmed by the association of GITR expression with markers of memory T cells. In this context, it is not surprising that GITR appears to be a marker of active Tregs, as suggested by the association of GITR expression with other markers of Treg activation or cytokines with suppressive activity (e.g., IL-10 and TGF-β), the presence of GITR(+) cells in tissues where Tregs are active (e.g., solid tumours), or functional studies on Tregs. Furthermore, some Treg subsets including Tr1 cells express either low or no classical Treg markers (e.g., FoxP3 and CD25) and do express GITR. Therefore, when evaluating changes in the number of Tregs in human diseases, GITR expression must be evaluated. Moreover, GITR should be considered as a marker for isolating Tregs.
Collapse
|
132
|
|
133
|
Kim JE, Lim M. The role of checkpoints in the treatment of GBM. J Neurooncol 2015; 123:413-23. [PMID: 25749875 DOI: 10.1007/s11060-015-1747-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/16/2015] [Indexed: 12/18/2022]
Abstract
Targeted immunotherapy is founded on the principle that augmentation of effector T cell activity in the tumor microenvironment can translate to tumor regression. Targeted checkpoint inhibitors in the form of agonist or antagonist monoclonal antibodies have come to the fore as a promising strategy to activate systemic immunity and enhance T cell activity by blocking negative signals, enhancing positive signals, or altering the cytokine milieu. This review will examine several immune checkpoints and checkpoint modulators that play a role in cancer pathogenesis, with an emphasis on malignant gliomas.
Collapse
Affiliation(s)
- Jennifer E Kim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
134
|
Abstract
Since the development and approval of Ipilimumab, the first immune checkpoint inhibitor licensed for the treatment of metastatic melanoma, clinicians have gained a better understanding of the mode of action, management of toxicities, and assessment of response to this class of drugs. Several antibodies are now in development, aimed at blocking novel immune checkpoint molecules, such as PD-1 and it's corresponding ligand PD-L1. This article summarizes the mechanism of action, preclinical development, and subsequent clinical studies of immune checkpoint antibodies in melanoma.
Collapse
Affiliation(s)
- Jarushka Naidoo
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - David B Page
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jedd D Wolchok
- Melanoma and Immunotherapy Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
135
|
Schaer DA, Budhu S, Liu C, Bryson C, Malandro N, Cohen A, Zhong H, Yang X, Houghton AN, Merghoub T, Wolchok JD. GITR pathway activation abrogates tumor immune suppression through loss of regulatory T cell lineage stability. Cancer Immunol Res 2015; 1:320-31. [PMID: 24416730 DOI: 10.1158/2326-6066.cir-13-0086] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ligation of GITR (glucocorticoid-induced tumor necrosis factor (TNF) receptor-related gene, or TNFRSF18) by agonist antibody has recently entered into early phase clinical trials for the treatment of advanced malignancies. Although the ability of GITR modulation to induce tumor regression is well-documented in preclinical studies, the underlying mechanisms of action, particularly its effects on CD4(+)foxp3(+) regulatory T cells (Treg), have not been fully elucidated. We have previously demonstrated that GITR ligation in vivo by agonist antibody DTA-1 causes a >50% reduction of intra-tumor Treg with down modulation of Foxp3 expression. Here we show that the loss of Foxp3 is tumor-dependent. Adoptively-transferred Foxp3(+)Treg from tumor-bearing animals lose Foxp3 expression in the host when treated with DTA-1, whereas Treg from naïve mice maintain Foxp3 expression. GITR ligation also alters the expression of various transcription factors and cytokines important for Treg function. Complete Foxp3 loss in intra-tumor Treg correlates with a dramatic decrease in Helios expression and is associated with the upregulation of transcription factors T-Bet and Eomes. Changes in Helios correspond with a reduction in IL-10 and an increase in IFNγ expression in DTA-1-treated Treg. Together, these data show that GITR agonist antibody alters Treg lineage stability inducing an inflammatory effector T cell phenotype. The resultant loss of lineage stability causes Treg to lose their intra-tumor immune suppressive function, making the tumor susceptible to killing by tumor-specific effector CD8(+) T cells.
Collapse
Affiliation(s)
- David A Schaer
- Swim Across America & Ludwig Collaborative Lab Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Sadna Budhu
- Swim Across America & Ludwig Collaborative Lab Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Cailian Liu
- Swim Across America & Ludwig Collaborative Lab Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Campbell Bryson
- Weill Cornell Medical College, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Nicole Malandro
- Swim Across America & Ludwig Collaborative Lab Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY ; Weill Cornell Medical College, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Adam Cohen
- Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hong Zhong
- Swim Across America & Ludwig Collaborative Lab Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Xia Yang
- Swim Across America & Ludwig Collaborative Lab Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Alan N Houghton
- Swim Across America & Ludwig Collaborative Lab Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Taha Merghoub
- Swim Across America & Ludwig Collaborative Lab Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jedd D Wolchok
- Swim Across America & Ludwig Collaborative Lab Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY ; Weill Cornell Medical College, Memorial Sloan-Kettering Cancer Center, New York, NY ; Ludwig Center for Cancer Immunotherapy at Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
136
|
Chester C, Marabelle A, Houot R, Kohrt HE. Dual antibody therapy to harness the innate anti-tumor immune response to enhance antibody targeting of tumors. Curr Opin Immunol 2015; 33:1-8. [PMID: 25576932 DOI: 10.1016/j.coi.2014.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/19/2014] [Accepted: 12/24/2014] [Indexed: 01/05/2023]
Abstract
Cancer immunotherapy is a rapidly evolving field that offers a novel paradigm for cancer treatment: therapies focus on enhancing the immune system's innate and adaptive anti-tumor response. Early immunotherapeutics have achieved impressive clinical outcomes and monoclonal antibodies are now integral to therapeutic strategies in a variety of cancers. However, only recently have antibodies targeting innate immune cells entered clinical development. Innate immune effector cells play important roles in generating and maintaining antitumor immunity. Antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) are important innate immune mechanisms for tumor eradication. These cytolytic processes are initiated by the detection of a tumor-targeting antibody and can be augmented by activating co-stimulatory pathways or blocking inhibitory signals on innate immune cells. The combination of FDA-approved monoclonal antibodies with innate effector-targeting antibodies has demonstrated potent preclinical therapeutic synergy and early-phase combinatorial clinical trials are ongoing.
Collapse
Affiliation(s)
- Cariad Chester
- Department of Medicine, Division of Oncology, Stanford University, Stanford, CA 94305, USA
| | | | - Roch Houot
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France; CHU Rennes, Service Hématologie Clinique, F-35033 Rennes, France; INSERM, U917, F-35043 Rennes, France
| | - Holbrook E Kohrt
- Department of Medicine, Division of Oncology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
137
|
Abstract
Using the immune system to control cancer has been investigated for over a century. Yet it is only over the last several years that therapeutic agents acting directly on the immune system have demonstrated improved overall survival for cancer patients in phase III clinical trials. Furthermore, it appears that some patients treated with such agents have been cured of metastatic cancer. This has led to increased interest and acceleration in the rate of progress in cancer immunotherapy. Most of the current immunotherapeutic success in cancer treatment is based on the use of immune-modulating antibodies targeting critical checkpoints (CTLA-4 and PD-1/PD-L1). Several other immune-modulating molecules targeting inhibitory or stimulatory pathways are being developed. The combined use of these medicines is the subject of intense investigation and holds important promise. Combination regimens include those that incorporate targeted therapies that act on growth signaling pathways, as well as standard chemotherapy and radiation therapy. In fact, these standard therapies have intrinsic immune-modulating properties that can support antitumor immunity. In the years ahead, adoptive T-cell therapy will also be an important part of treatment for some cancer patients. Other areas which are regaining interest are the use of oncolytic viruses that immunize patients against their own tumors and the use of vaccines against tumor antigens. Immunotherapy has demonstrated unprecedented durability in controlling multiple types of cancer and we expect its use to continue expanding rapidly.
Collapse
|
138
|
Barbi J, Pardoll D, Pan F. Treg functional stability and its responsiveness to the microenvironment. Immunol Rev 2014; 259:115-39. [PMID: 24712463 DOI: 10.1111/imr.12172] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Tregs) prevent autoimmunity and tissue damage resulting from excessive or unnecessary immune activation through their suppressive function. While their importance for proper immune control is undeniable, the stability of the Treg lineage has recently become a controversial topic. Many reports have shown dramatic loss of the signature Treg transcription factor Forkhead box protein 3 (Foxp3) and Treg function under various inflammatory conditions. Other recent studies demonstrate that most Tregs are extremely resilient in their expression of Foxp3 and the retention of suppressive function. While this debate is unlikely to be settled in the immediate future, improved understanding of the considerable heterogeneity within the Foxp3(+) Treg population and how Treg subsets respond to ranging environmental cues may be keys to reconciliation. In this review, we discuss the diverse mechanisms responsible for the observed stability or instability of Foxp3(+) Treg identity and function. These include transcriptional and epigenetic programs, transcript targeting, and posttranslational modifications that appear responsive to numerous elements of the microenvironment. These mechanisms for Treg functional modulation add to the discussion of Treg stability.
Collapse
Affiliation(s)
- Joseph Barbi
- Department of Oncology, Immunology and Hematopoiesis Division, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
139
|
Wainwright DA, Chang AL, Dey M, Balyasnikova IV, Kim CK, Tobias A, Cheng Y, Kim JW, Qiao J, Zhang L, Han Y, Lesniak MS. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res 2014; 20:5290-301. [PMID: 24691018 PMCID: PMC4182350 DOI: 10.1158/1078-0432.ccr-14-0514] [Citation(s) in RCA: 444] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE Glioblastoma (GBM) is the most common form of malignant glioma in adults. Although protected by both the blood-brain and blood-tumor barriers, GBMs are actively infiltrated by T cells. Previous work has shown that IDO, CTLA-4, and PD-L1 are dominant molecular participants in the suppression of GBM immunity. This includes IDO-mediated regulatory T-cell (Treg; CD4(+)CD25(+)FoxP3(+)) accumulation, the interaction of T-cell-expressed, CTLA-4, with dendritic cell-expressed, CD80, as well as the interaction of tumor- and/or macrophage-expressed, PD-L1, with T-cell-expressed, PD-1. The individual inhibition of each pathway has been shown to increase survival in the context of experimental GBM. However, the impact of simultaneously targeting all three pathways in brain tumors has been left unanswered. EXPERIMENTAL DESIGN AND RESULTS In this report, we demonstrate that, when dually challenged, IDO-deficient tumors provide a selectively competitive survival advantage against IDO-competent tumors. Next, we provide novel observations regarding tryptophan catabolic enzyme expression, before showing that the therapeutic inhibition of IDO, CTLA-4, and PD-L1 in a mouse model of well-established glioma maximally decreases tumor-infiltrating Tregs, coincident with a significant increase in T-cell-mediated long-term survival. In fact, 100% of mice bearing intracranial tumors were long-term survivors following triple combination therapy. The expression and/or frequency of T cell expressed CD44, CTLA-4, PD-1, and IFN-γ depended on timing after immunotherapeutic administration. CONCLUSIONS Collectively, these data provide strong preclinical evidence that combinatorially targeting immunosuppression in malignant glioma is a strategy that has high potential value for future clinical trials in patients with GBM.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/pharmacology
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacology
- B7-H1 Antigen/antagonists & inhibitors
- Brain Neoplasms/drug therapy
- Brain Neoplasms/genetics
- Brain Neoplasms/immunology
- Brain Neoplasms/metabolism
- Brain Neoplasms/mortality
- Brain Neoplasms/pathology
- CTLA-4 Antigen/antagonists & inhibitors
- Cell Line, Tumor
- Dacarbazine/administration & dosage
- Dacarbazine/analogs & derivatives
- Dacarbazine/pharmacology
- Disease Models, Animal
- Drug Therapy, Combination
- Glioma/drug therapy
- Glioma/genetics
- Glioma/immunology
- Glioma/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Mice
- Mice, Knockout
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Temozolomide
Collapse
Affiliation(s)
- Derek A Wainwright
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Alan L Chang
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Mahua Dey
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Irina V Balyasnikova
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Chung Kwon Kim
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Alex Tobias
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Yu Cheng
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Julius W Kim
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Jian Qiao
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Lingjiao Zhang
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Yu Han
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Maciej S Lesniak
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| |
Collapse
|
140
|
Nocentini G, Alunno A, Petrillo MG, Bistoni O, Bartoloni E, Caterbi S, Ronchetti S, Migliorati G, Riccardi C, Gerli R. Expansion of regulatory GITR+CD25 low/-CD4+ T cells in systemic lupus erythematosus patients. Arthritis Res Ther 2014; 16:444. [PMID: 25256257 PMCID: PMC4209023 DOI: 10.1186/s13075-014-0444-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 08/28/2014] [Indexed: 12/20/2022] Open
Abstract
Introduction CD4+CD25low/-GITR+ T lymphocytes expressing forkhead box protein P3 (FoxP3) and showing regulatory activity have been recently described in healthy donors. The objective of the study was to evaluate the proportion of CD4+CD25low/-GITR+ T lymphocytes within CD4+ T cells and compare their phenotypic and functional profile with that of CD4+CD25highGITR− T lymphocytes in systemic lupus erythematosus (SLE) patients. Methods The percentage of CD4+CD25low/-GITR+ cells circulating in the peripheral blood (PB) of 32 patients with SLE and 25 healthy controls was evaluated with flow cytometry. CD4+CD25low/-GITR+ cells were isolated with magnetic separation, and their phenotype was compared with that of CD4+CD25highGITR− cells. Regulatory activity of both cell subsets was tested in autologous and heterologous co-cultures after purification through a negative sorting strategy. Results Results indicated that CD4+CD25low/-GITR+ cells are expanded in the PB of 50% of SLE patients. Expansion was observed only in patients with inactive disease. Phenotypic analysis demonstrated that CD4+CD25low/-GITR+ cells display regulatory T-cell (Treg) markers, including FoxP3, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), transforming growth factor-beta (TGF-β), and interleukin (IL)-10. In contrast, CD4+CD25highGITR− cells appear to be activated and express low levels of Treg markers. Functional experiments demonstrated that CD4+CD25low/-GITR+ cells exert a higher inhibitory activity against both autologous and heterologous cells as compared with CD4+CD25highGITR− cells. Suppression is independent of cell contact and is mediated by IL-10 and TGF-β. Conclusions Phenotypic and functional data demonstrate that in SLE patients, CD4+CD25low/-GITR+ cells are fully active Treg cells, possibly representing peripheral Treg (pTreg) that are expanded in patients with inactive disease. These data may suggest a key role of this T-cell subset in the modulation of the abnormal immune response in SLE. Strategies aimed at expanding this Treg subset for therapeutic purpose deserve to be investigated.
Collapse
|
141
|
Ishihara M, Seo N, Mitsui J, Muraoka D, Tanaka M, Mineno J, Ikeda H, Shiku H. Systemic CD8+ T cell-mediated tumoricidal effects by intratumoral treatment of oncolytic herpes simplex virus with the agonistic monoclonal antibody for murine glucocorticoid-induced tumor necrosis factor receptor. PLoS One 2014; 9:e104669. [PMID: 25105508 PMCID: PMC4126744 DOI: 10.1371/journal.pone.0104669] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/11/2014] [Indexed: 02/07/2023] Open
Abstract
Oncolytic virotherapy combined with immunomodulators is a novel noninvasive strategy for cancer treatment. In this study, we examined the tumoricidal effects of oncolytic HF10, a naturally occurring mutant of herpes simplex virus type-1, combined with an agonistic DTA-1 monoclonal antibody specific for the glucocorticoid-induced tumor necrosis factor receptor. Two murine tumor models were used to evaluate the therapeutic efficacies of HF10 virotherapy combined with DTA-1. The kinetics and immunological mechanisms of DTA-1 in HF10 infection were examined using flow cytometry and immunohistochemistry. Intratumoral administration of HF10 in combination with DTA-1 at a low dose resulted in a more vigorous attenuation of growth of the untreated contralateral as well as the treated tumors than treatment with either HF10 or DTA-1 alone. An accumulation of CD8+ T cells, including tumor- and herpes simplex virus type-1-specific populations, and a decrease in the number of CD4+ Foxp3+ T regulatory cells were seen in both HF10- and DTA-1-treated tumors. Studies using Fc-digested DTA-1 and Fcγ receptor knockout mice demonstrated the direct participation of DTA-1 in regulatory T cell depletion by antibody-dependent cellular cytotoxicity primarily via macrophages. These results indicated the potential therapeutic efficacy of a glucocorticoid-induced tumor necrosis factor receptor-specific monoclonal antibody in oncolytic virotherapy at local tumor sites.
Collapse
Affiliation(s)
- Mikiya Ishihara
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| | - Naohiro Seo
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
- * E-mail: (NS); (HS)
| | - Jun Mitsui
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Daisuke Muraoka
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| | - Maki Tanaka
- Gene Medicine Business Unit, Takara Bio Inc., Shiga, Japan
| | - Junichi Mineno
- Gene Medicine Business Unit, Takara Bio Inc., Shiga, Japan
| | - Hiroaki Ikeda
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
- * E-mail: (NS); (HS)
| |
Collapse
|
142
|
The "Trojan Horse" approach to tumor immunotherapy: targeting the tumor microenvironment. J Immunol Res 2014; 2014:789069. [PMID: 24955376 PMCID: PMC4052171 DOI: 10.1155/2014/789069] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/09/2014] [Indexed: 01/29/2023] Open
Abstract
Most anticancer therapies including immunotherapies are given systemically; yet therapies given directly into tumors may be more effective, particularly those that overcome natural suppressive factors in the tumor microenvironment. The “Trojan Horse” approach of intratumoural delivery aims to promote immune-mediated destruction by inducing microenvironmental changes within the tumour at the same time as avoiding the systemic toxicity that is often associated with more “full frontal” treatments such as transfer of large numbers of laboratory-expanded tumor-specific cytotoxic T lymphocytes or large intravenous doses of cytokine. Numerous studies have demonstrated that intratumoural therapy has the capacity to minimizing local suppression, inducing sufficient “dangerous” tumor cell death to cross-prime strong immune responses, and rending tumor blood vessels amenable to immune cell traffic to induce effector cell changes in secondary lymphoid organs. However, the key to its success is the design of a sound rational approach based on evidence. There is compelling preclinical data for local immunotherapy approaches in tumor immunology. This review summarises how immune events within a tumour can be modified by local approaches, how this can affect systemic antitumor immunity such that distal sites are attacked, and what approaches have been proven most successful so far in animals and patients.
Collapse
|
143
|
Schaer DA, Hirschhorn-Cymerman D, Wolchok JD. Targeting tumor-necrosis factor receptor pathways for tumor immunotherapy. J Immunother Cancer 2014; 2:7. [PMID: 24855562 PMCID: PMC4030310 DOI: 10.1186/2051-1426-2-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/13/2014] [Indexed: 02/08/2023] Open
Abstract
With the success of ipilimumab and promise of programmed death-1 pathway-targeted agents, the field of tumor immunotherapy is expanding rapidly. Newer targets for clinical development include select members of the tumor necrosis factor receptor (TNFR) family. Agonist antibodies to these co-stimulatory molecules target both T and B cells, modulating T-cell activation and enhancing immune responses. In vitro and in vivo preclinical data have provided the basis for continued development of 4-1BB, OX40, glucocorticoid-induced TNFR-related gene, herpes virus entry mediator, and CD27 as potential therapies for patients with cancer. In this review, we summarize the immune response to tumors, consider preclinical and early clinical data on select TNFR family members, discuss potential translational challenges and suggest possible combination therapies with the aim of inducing durable antitumor responses.
Collapse
Affiliation(s)
- David A Schaer
- Swim Across America Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA.,Current address: Department of Cancer Immunobiology, ImClone Systems, a wholly-owned subsidiary of Eli Lilly & Co, New York, NY 10016, USA
| | - Daniel Hirschhorn-Cymerman
- Swim Across America Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Jedd D Wolchok
- Swim Across America Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA.,Weill Cornell Medical College, New York, NY 10065, USA.,Ludwig Collaborative Lab, New York, NY 10065, USA.,Ludwig Center for Cancer Immunotherapy at Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
144
|
Clouthier DL, Watts TH. Cell-specific and context-dependent effects of GITR in cancer, autoimmunity, and infection. Cytokine Growth Factor Rev 2014; 25:91-106. [DOI: 10.1016/j.cytogfr.2013.12.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 12/19/2022]
|
145
|
Avogadri F, Zappasodi R, Yang A, Budhu S, Malandro N, Hirschhorn-Cymerman D, Tiwari S, Maughan MF, Olmsted R, Wolchok JD, Merghoub T. Combination of alphavirus replicon particle-based vaccination with immunomodulatory antibodies: therapeutic activity in the B16 melanoma mouse model and immune correlates. Cancer Immunol Res 2014; 2:448-58. [PMID: 24795357 DOI: 10.1158/2326-6066.cir-13-0220] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Induction of potent immune responses to self-antigens remains a major challenge in tumor immunology. We have shown that a vaccine based on alphavirus replicon particles (VRP) activates strong cellular and humoral immunity to tyrosinase-related protein-2 (TRP2) melanoma antigen, providing prophylactic and therapeutic effects in stringent mouse models. Here, we report that the immunogenicity and efficacy of this vaccine is increased in combination with either antagonist anti-CTL antigen-4 (CTLA-4) or agonist anti-glucocorticoid-induced TNF family-related gene (GITR) immunomodulatory monoclonal antibodies (mAb). In the challenging therapeutic setting, VRP-TRP2 plus anti-GITR or anti-CTLA-4 mAb induced complete tumor regression in 90% and 50% of mice, respectively. These mAbs had similar adjuvant effects in priming an adaptive immune response against the vaccine-encoded antigen, augmenting, respectively, approximately 4- and 2-fold the TRP2-specific CD8(+) T-cell response and circulating Abs, compared with the vaccine alone. Furthermore, while both mAbs increased the frequency of tumor-infiltrating CD8(+) T cells, anti-CTLA-4 mAb also increased the quantity of intratumor CD4(+)Foxp3(-) T cells expressing the negative costimulatory molecule programmed death-1 (PD-1). Concurrent GITR expression on these cells suggests that they might be controlled by anti-GITR mAbs, thus potentially explaining their differential accumulation under the two treatment conditions. These findings indicate that combining immunomodulatory mAbs with alphavirus-based anticancer vaccines can provide therapeutic antitumor immune responses in a stringent mouse model, suggesting potential utility in clinical trials. They also indicate that tumor-infiltrating CD4(+)Foxp3(-)PD-1(+) T cells may affect the outcome of immunomodulatory treatments.
Collapse
Affiliation(s)
- Francesca Avogadri
- Authors' Affiliations: AlphaVax, Inc., Research Triangle Park, North Carolina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Abstract
Immunotherapy for cancer using antibodies to enhance T-cell function has been successful in recent clinical trials. Many molecules that improve activation and effector function of T cells have been investigated as potential new targets for immunomodulatory antibodies, including the tumor necrosis factor receptor superfamily members GITR and OX40. Antibodies engaging GITR or OX40 result in significant tumor protection in preclinical models. In this study, we observed that the GITR agonist antibody DTA-1 causes anaphylaxis in mice upon repeated intraperitoneal dosing. DTA-1-induced anaphylaxis requires GITR, CD4(+) T cells, B cells, and interleukin-4. Transfer of serum antibodies from DTA-1-treated mice, which contain high levels of DTA-1-specific immunoglobulin G1 (IgG1), can induce anaphylaxis in naive mice upon administration of an additional dose of DTA-1, suggesting that anaphylaxis results from anti-DTA-1 antibodies. Depletion of basophils and blockade of platelet-activating factor, the key components of the IgG1 pathway of anaphylaxis, rescues the mice from DTA-1-induced anaphylaxis. These results demonstrate a previously undescribed lethal side effect of repetitive doses of an agonist immunomodulatory antibody as well as insight into the mechanism of toxicity, which may offer a means of preventing adverse effects in future clinical trials using anti-GITR or other agonist antibodies as immunotherapies.
Collapse
|
147
|
Lu L, Xu X, Zhang B, Zhang R, Ji H, Wang X. Combined PD-1 blockade and GITR triggering induce a potent antitumor immunity in murine cancer models and synergizes with chemotherapeutic drugs. J Transl Med 2014; 12:36. [PMID: 24502656 PMCID: PMC4104995 DOI: 10.1186/1479-5876-12-36] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/04/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The coinhibitory receptor Programmed Death-1 (PD-1) inhibits effector functions of activated T cells and prevents autoimmunity, however, cancer hijack this pathway to escape from immune attack. The costimulatory receptor glucocorticoid-induced TNFR related protein (GITR) is up-regulated on activated T cells and increases their proliferation, activation and cytokine production. We hypothesize that concomitant PD-1 blockade and GITR triggering would synergistically improve the effector functions of tumor-infiltrating T cells and increase the antitumor immunity. In present study, we evaluated the antitumor effects and mechanisms of combined PD-1 blockade and GITR triggering in a clinically highly relevant murine ID8 ovarian cancer model. METHODS Mice with 7 days-established peritoneal ID8 ovarian cancer were treated intraperitoneally (i.p.) with either control, anti-PD-1, anti-GITR or anti-PD-1/GITR monoclonal antibody (mAb) and their survival was evaluated; the phenotype and function of tumor-associated immune cells in peritoneal cavity of treated mice was analyzed by flow cytometry, and systemic antigen-specific immune response was evaluated by ELISA and cytotoxicity assay. RESULTS Combined anti-PD-1/GITR mAb treatment remarkably inhibited peritoneal ID8 tumor growth with 20% of mice tumor free 90 days after tumor challenge while treatment with either anti-PD-1 or anti-GITR mAb alone exhibited little antitumor effect. The durable antitumor effect was associated with a memory immune response and conferred by CD4⁺ cells and CD8⁺ T cells. The treatment of anti-PD-1/GITR mAb increased the frequencies of interferon-γ-producing effector T cells and decreased immunosuppressive regulatory T cells and myeloid-derived suppressor cells, shifting an immunosuppressive tumor milieu to an immunostimulatory state in peritoneal cavity. In addition, combined treatment of anti-PD-1/GITR mAb mounted an antigen-specific immune response as evidenced by antigen-specific IFN-γ production and cytolytic activity of spleen cells from treated mice. More importantly, combined treatment of anti-PD-1/GITR mAb and chemotherapeutic drugs (cisplatin or paclitaxel) further increased the antitumor efficacy with 80% of mice obtaining tumor-free long-term survival in murine ID8 ovarian cancer and 4 T1 breast cancer models. CONCLUSIONS Combined anti-PD-1/GITR mAb treatment induces a potent antitumor immunity, which can be further promoted by chemotherapeutic drugs. A combined strategy of anti-PD-1/GITR mAb plus cisplatin or paclitaxel should be considered translation into clinic.
Collapse
Affiliation(s)
| | | | | | | | - Hongzan Ji
- Department of Surgical Oncology, Jindu Hospital, Nanjing 210002, China.
| | | |
Collapse
|
148
|
Aida K, Miyakawa R, Suzuki K, Narumi K, Udagawa T, Yamamoto Y, Chikaraishi T, Yoshida T, Aoki K. Suppression of Tregs by anti-glucocorticoid induced TNF receptor antibody enhances the antitumor immunity of interferon-α gene therapy for pancreatic cancer. Cancer Sci 2014; 105:159-67. [PMID: 24289533 PMCID: PMC4317823 DOI: 10.1111/cas.12332] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/25/2013] [Accepted: 11/27/2013] [Indexed: 12/29/2022] Open
Abstract
We have reported that interferon (IFN)-α can attack cancer cells by multiple antitumor mechanisms including the induction of direct cancer cell death and the enhancement of an immune response in several pancreatic cancer models. However, an immunotolerant microenvironment in the tumors is often responsible for the failure of the cancer immunotherapy. Here we examined whether the suppression of regulatory T cells (Tregs) within tumors can enhance an antitumor immunity induced by an intratumoral IFN-α gene transfer. First we showed that an intraperitoneal administration of an agonistic anti-glucocorticoid induced TNF receptor (GITR) monoclonal antibody (mAb), which is reported to suppress the function of Tregs, significantly inhibited subcutaneous tumor growth in a murine pancreatic cancer model. The anti-GITR mAb was then combined with the intratumoral injection of the IFN-α-adenovirus vector. The treatment with the antibody synergistically augmented the antitumor effect of IFN-α gene therapy not only in the vector-injected tumors but also in the vector-uninjected tumors. Immunostaining showed that the anti-GITR mAb decreased Foxp3+ cells infiltrating in the tumors, while the intratumoral IFN-α gene transfer increased CD4+ and CD8+ T cells in the tumors. Therefore, the combination therapy strongly inclined the immune balance of the tumor microenvironment in an antitumor direction, leading to a marked systemic antitumor effect. The CCR5 expression on Tregs was downregulated in the antibody-treated mice, which may explain the decrease of tumor-infiltrating Tregs. The combination of Treg-suppression by GITR mAb and the tumor immunity induction by IFN-α gene therapy could be a promising therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Kouichirou Aida
- Division of Gene and Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan; Department of Urology, St. Marianna University, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Ooi YC, Tran P, Ung N, Thill K, Trang A, Fong BM, Nagasawa DT, Lim M, Yang I. The role of regulatory T-cells in glioma immunology. Clin Neurol Neurosurg 2014; 119:125-32. [PMID: 24582432 DOI: 10.1016/j.clineuro.2013.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/03/2013] [Accepted: 12/08/2013] [Indexed: 12/14/2022]
Abstract
Despite recent advances in treatment, the prognosis for glioblastoma multiforme (GBM) remains poor. The lack of response to treatment in GBM patients may be attributed to the immunosuppressed microenvironment that is characteristic of invasive glioma. Regulatory T-cells (Tregs) are immunosuppressive T-cells that normally prevent autoimmunity when the human immune response is evoked; however, there have been strong correlations between glioma-induced immunosuppression and Tregs. In fact, induction of Treg activity has been correlated with glioma development in both murine models and patients. While the exact mechanisms by which regulatory T-cells function require further elucidation, various cytokines such as interleukin-10 (IL-10) and transforming growth factor-β (TFG-β) have been implicated in these processes and are currently under investigation. In addition, hypoxia is characteristic of tumor development and is also correlated with downstream induction of Tregs. Due to the poor prognosis associated with immunosuppression in glioma patients, Tregs remain a promising area for immunotherapeutic research.
Collapse
Affiliation(s)
- Yinn Cher Ooi
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, USA
| | - Patrick Tran
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, USA
| | - Nolan Ung
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, USA
| | - Kimberly Thill
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, USA
| | - Andy Trang
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, USA
| | - Brendan M Fong
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, USA
| | - Daniel T Nagasawa
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, USA
| | - Michael Lim
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Isaac Yang
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, USA.
| |
Collapse
|
150
|
Mentlik James A, Cohen AD, Campbell KS. Combination immune therapies to enhance anti-tumor responses by NK cells. Front Immunol 2013; 4:481. [PMID: 24391651 PMCID: PMC3870292 DOI: 10.3389/fimmu.2013.00481] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/09/2013] [Indexed: 01/22/2023] Open
Abstract
Natural killer (NK) cells are critical innate immune lymphocytes capable of destroying virally infected or cancerous cells through targeted cytotoxicity and further assisting in the immune response by releasing inflammatory cytokines. NK cells are thought to contribute to the process of tumor killing by certain therapeutic monoclonal antibodies (mAb) by directing antibody-dependent cellular cytotoxicity (ADCC) through FcγRIIIA (CD16). Numerous therapeutic mAb have been developed that target distinct cancer-specific cell markers and may direct NK cell-mediated ADCC. Recent therapeutic approaches have combined some of these cancer-specific mAb with additional strategies to optimize NK cell cytotoxicity. These include agonistic mAb targeting NK cell activating receptors and mAbs blocking NK cell inhibitory receptors to enhance NK cell functions. Furthermore, several drugs that can potentiate NK cell cytotoxicity through other mechanisms are being used in combination with therapeutic mAb. In this review, we examine the mechanisms employed by several promising agents used in combination therapies that enhance natural or Ab-dependent cytotoxicity of cancer cells by NK cells, with a focus on treatments for leukemia and multiple myeloma.
Collapse
Affiliation(s)
- Ashley Mentlik James
- Immune Cell Development and Host Defense Program, The Research Institute at Fox Chase Cancer Center , Philadelphia, PA , USA
| | - Adam D Cohen
- Abramson Cancer Center at the University of Pennsylvania , Philadelphia, PA , USA
| | - Kerry S Campbell
- Immune Cell Development and Host Defense Program, The Research Institute at Fox Chase Cancer Center , Philadelphia, PA , USA
| |
Collapse
|