101
|
Jiang L, Greenwood TR, Amstalden van Hove ER, Chughtai K, Raman V, Winnard PT, Heeren R, Artemov D, Glunde K. Combined MR, fluorescence and histology imaging strategy in a human breast tumor xenograft model. NMR IN BIOMEDICINE 2013; 26:285-298. [PMID: 22945331 PMCID: PMC4162316 DOI: 10.1002/nbm.2846] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 05/29/2023]
Abstract
Applications of molecular imaging in cancer and other diseases frequently require the combination of in vivo imaging modalities, such as MR and optical imaging, with ex vivo optical, fluorescence, histology and immunohistochemical imaging to investigate and relate molecular and biological processes to imaging parameters within the same region of interest. We have developed a multimodal image reconstruction and fusion framework that accurately combines in vivo MRI and MRSI, ex vivo brightfield and fluorescence microscopic imaging and ex vivo histology imaging. Ex vivo brightfield microscopic imaging was used as an intermediate modality to facilitate the ultimate link between ex vivo histology and in vivo MRI/MRSI. Tissue sectioning necessary for optical and histology imaging required the generation of a three-dimensional reconstruction module for two-dimensional ex vivo optical and histology imaging data. We developed an external fiducial marker-based three-dimensional reconstruction method, which was able to fuse optical brightfield and fluorescence with histology imaging data. The registration of the three-dimensional tumor shape was pursued to combine in vivo MRI/MRSI and ex vivo optical brightfield and fluorescence imaging data. This registration strategy was applied to in vivo MRI/MRSI, ex vivo optical brightfield/fluorescence and histology imaging datasets obtained from human breast tumor models. Three-dimensional human breast tumor datasets were successfully reconstructed and fused with this platform.
Collapse
Affiliation(s)
- Lu Jiang
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tiffany R. Greenwood
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Kamila Chughtai
- FOM-Institute for Atomic and Molecular Physics, Amsterdam, The Netherlands
| | - Venu Raman
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul T. Winnard
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ron Heeren
- FOM-Institute for Atomic and Molecular Physics, Amsterdam, The Netherlands
| | - Dmitri Artemov
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristine Glunde
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
102
|
Localized hypoxia results in spatially heterogeneous metabolic signatures in breast tumor models. Neoplasia 2013; 14:732-41. [PMID: 22952426 DOI: 10.1593/neo.12858] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/26/2012] [Accepted: 06/28/2012] [Indexed: 02/03/2023] Open
Abstract
Tumor hypoxia triggers signaling cascades that significantly affect biologic outcomes such as resistance to radiotherapy and chemotherapy in breast cancer. Hypoxic regions in solid tumor are spatially heterogeneous. Therefore, delineating the origin and extent of hypoxia in tumors is critical. In this study, we have investigated the effect of hypoxia on different metabolic pathways, such as lipid and choline metabolism, in a human breast cancer model. Human MDA-MB-231 breast cancer cells and tumors, which were genetically engineered to express red fluorescent tdTomato protein under hypoxic conditions, were used to investigate hypoxia. Our data were obtained with a novel three-dimensional multimodal molecular imaging platform that combines magnetic resonance (MR) imaging, MR spectroscopic imaging (MRSI), and optical imaging of hypoxia and necrosis. A higher concentration of noninvasively detected total choline-containing metabolites (tCho) and lipid CH3 localized in the tdTomato-fluorescing hypoxic regions indicated that hypoxia can upregulate tCho and lipid CH3 levels in this breast tumor model. The increase in tCho under hypoxia was primarily due to elevated phosphocholine levels as shown by in vitro MR spectroscopy. Elevated lipid CH3 levels detected under hypoxia were caused by an increase in mobile MR-detectable lipid droplets, as demonstrated by Nile Red staining. Our findings demonstrate that noninvasive MRSI can help delineate hypoxic regions in solid tumors by means of detecting the metabolic outcome of tumor hypoxia, which is characterized by elevated tCho and lipid CH3.
Collapse
|
103
|
Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene 2013; 33:679-89. [PMID: 23353819 PMCID: PMC3925335 DOI: 10.1038/onc.2012.636] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/15/2012] [Accepted: 11/16/2012] [Indexed: 12/17/2022]
Abstract
MicroRNA-155 (miR-155) is frequently up-regulated in various types of human cancer; however, its role in cancer angiogenesis remains unknown. Here, we demonstrate the role of miR-155 in angiogenesis through targeting von Hippel-Lindau tumour suppressor (VHL) in breast cancer. Ectopic expression of miR-155 induced whereas knockdown of miR-155 inhibited HUVEC network formation, proliferation, invasion, and migration. Furthermore, mammary fat pad xenotransplantation of ectopically expressed miR-155 resulted in extensive angiogenesis, proliferation, tumour necrosis, and recruitment of pro-inflammatory cells such as tumour associated macrophages. Expression of VHL abrogated these miR-155 effects. Moreover, miR-155 expression inversely correlates with VHL expression level and is associated with late stage, lymph node metastasis, and poor prognosis as well as triple-negative tumour in breast cancer. These findings indicate that miR-155 plays a pivotal role in tumour angiogenesis by downregulation of VHL, and provide a basis for miR-155-expressing tumours to embody an aggressive malignant phenotype, and therefore, miR-155 is an important therapeutic target in breast cancer.
Collapse
|
104
|
Nagano O, Okazaki S, Saya H. Redox regulation in stem-like cancer cells by CD44 variant isoforms. Oncogene 2013; 32:5191-8. [PMID: 23334333 DOI: 10.1038/onc.2012.638] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/02/2012] [Accepted: 12/03/2012] [Indexed: 12/18/2022]
Abstract
Increasing evidence indicates that several types of solid tumor are hierarchically organized and sustained by a distinct population of cancer stem cells (CSCs). CSCs possess enhanced mechanisms of protection from stress induced by reactive oxygen species (ROS) that render them resistant to chemo- and radiotherapy. Expression of CD44, especially variant isoforms (CD44v) of this major CSC marker, contributes to ROS defense through upregulation of the synthesis of reduced glutathione (GSH), the primary intracellular antioxidant. CD44v interacts with and stabilizes xCT, a subunit of the cystine-glutamate transporter xc(-), and thereby promotes cystine uptake for GSH synthesis. Given that cancer cells are often exposed to high levels of ROS during tumor progression, the ability to avoid the consequences of such exposure is required for cancer cell survival and propagation in vivo. CSCs, in which defense against ROS is enhanced by CD44v are thus thought to drive tumor growth, chemoresistance and metastasis. Therapy targeted to the CD44v-xCT system may therefore impair the ROS defense ability of CSCs and thereby sensitize them to currently available treatments.
Collapse
Affiliation(s)
- O Nagano
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | | | | |
Collapse
|
105
|
Wang KL, Hsia SM, Chan CJ, Chang FY, Huang CY, Bau DT, Wang PS. Inhibitory effects of isoliquiritigenin on the migration and invasion of human breast cancer cells. Expert Opin Ther Targets 2013; 17:337-49. [DOI: 10.1517/14728222.2013.756869] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
106
|
Semenza GL. Cancer-stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis. Oncogene 2012; 32:4057-63. [PMID: 23222717 DOI: 10.1038/onc.2012.578] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/09/2012] [Indexed: 12/13/2022]
Abstract
Interactions between cancer cells and stromal cells, including blood vessel endothelial cells (BECs), lymphatic vessel endothelial cells (LECs), bone marrow-derived angiogenic cells (BMDACs) and other bone marrow-derived cells (BMDCs) play important roles in cancer progression. Intratumoral hypoxia, which affects both cancer and stromal cells, is associated with a significantly increased risk of metastasis and mortality in many human cancers. Recent studies have begun to delineate the molecular mechanisms underlying the effect of intratumoral hypoxia on cancer progression. Reduced O2 availability induces the activity of hypoxia-inducible factors (HIFs), which activate the transcription of target genes encoding proteins that play important roles in many critical aspects of cancer biology. Included among these are secreted factors, including angiopoietin 2, angiopoietin-like 4, placental growth factor, platelet-derived growth factor B, stem cell factor (kit ligand), stromal-derived factor 1, and vascular endothelial growth factor. These factors are produced by hypoxic cancer cells and directly mediate functional interactions with BECs, LECs, BMDACs and other BMDCs that promote angiogenesis, lymphangiogenesis, and metastasis. In addition, lysyl oxidase (LOX) and LOX-like proteins, which are secreted by hypoxic breast cancer cells, remodel extracellular matrix in the lungs, which leads to BMDC recruitment and metastatic niche formation.
Collapse
Affiliation(s)
- G L Semenza
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
107
|
Chughtai K, Jiang L, Greenwood TR, Glunde K, Heeren RMA. Mass spectrometry images acylcarnitines, phosphatidylcholines, and sphingomyelin in MDA-MB-231 breast tumor models. J Lipid Res 2012; 54:333-44. [PMID: 22930811 DOI: 10.1194/jlr.m027961] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The lipid compositions of different breast tumor microenvironments are largely unknown due to limitations in lipid imaging techniques. Imaging lipid distributions would enhance our understanding of processes occurring inside growing tumors, such as cancer cell proliferation, invasion, and metastasis. Recent developments in MALDI mass spectrometry imaging (MSI) enable rapid and specific detection of lipids directly from thin tissue sections. In this study, we performed multimodal imaging of acylcarnitines, phosphatidylcholines (PC), a lysophosphatidylcholine (LPC), and a sphingomyelin (SM) from different microenvironments of breast tumor xenograft models, which carried tdTomato red fluorescent protein as a hypoxia-response element-driven reporter gene. The MSI molecular lipid images revealed spatially heterogeneous lipid distributions within tumor tissue. Four of the most-abundant lipid species, namely PC(16:0/16:0), PC(16:0/18:1), PC(18:1/18:1), and PC(18:0/18:1), were localized in viable tumor regions, whereas LPC(16:0/0:0) was detected in necrotic tumor regions. We identified a heterogeneous distribution of palmitoylcarnitine, stearoylcarnitine, PC(16:0/22:1), and SM(d18:1/16:0) sodium adduct, which colocalized primarily with hypoxic tumor regions. For the first time, we have applied a multimodal imaging approach that has combined optical imaging and MALDI-MSI with ion mobility separation to spatially localize and structurally identify acylcarnitines and a variety of lipid species present in breast tumor xenograft models.
Collapse
Affiliation(s)
- Kamila Chughtai
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|