101
|
Buza T, Arick M, Wang H, Peterson DG. Computational prediction of disease microRNAs in domestic animals. BMC Res Notes 2014; 7:403. [PMID: 24970281 PMCID: PMC4091757 DOI: 10.1186/1756-0500-7-403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 06/20/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The most important means of identifying diseases before symptoms appear is through the discovery of disease-associated biomarkers. Recently, microRNAs (miRNAs) have become highly useful biomarkers of infectious, genetic and metabolic diseases in human but they have not been well studied in domestic animals. It is probable that many of the animal homologs of human disease-associated miRNAs may be involved in domestic animal diseases. Here we describe a computational biology study in which human disease miRNAs were utilized to predict orthologous miRNAs in cow, chicken, pig, horse, and dog. RESULTS We identified 287 human disease-associated miRNAs which had at least one 100% identical animal homolog. The 287 miRNAs were associated with 359 human diseases referenced in 2,863 Pubmed articles. Multiple sequence analysis indicated that over 60% of known horse mature miRNAs found perfect matches in human disease-associated miRNAs, followed by dog (50%). As expected, chicken had the least number of perfect matches (5%). Phylogenetic analysis of miRNA precursors indicated that 85% of human disease pre-miRNAs were highly conserved in animals, showing less than 5% nucleotide substitution rates over evolutionary time. As an example we demonstrated conservation of human hsa-miR-143-3p which is associated with type 2 diabetes and targets AKT1 gene which is highly conserved in pig, horse and dog. Functional analysis of AKT1 gene using Gene Ontology (GO) showed that it is involved in glucose homeostasis, positive regulation of glucose import, positive regulation of glycogen biosynthetic process, glucose transport and response to food. CONCLUSIONS This data provides the animal and veterinary research community with a resource to assist in generating hypothesis-driven research for discovering animal disease-related miRNA from their datasets and expedite development of prophylactic and disease-treatment strategies and also influence research efforts to identify novel disease models in large animals. Integrated data is available for download at http://agbase.hpc.msstate.edu/cgi-bin/animal_mirna.cgi.
Collapse
Affiliation(s)
- Teresia Buza
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P. O. Box 6100, Mississippi State 39762, USA
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, P. O. Box 9627, Mississippi State 39762, USA
| | - Mark Arick
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, P. O. Box 9627, Mississippi State 39762, USA
| | - Hui Wang
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, P. O. Box 9627, Mississippi State 39762, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, P. O. Box 9627, Mississippi State 39762, USA
| |
Collapse
|
102
|
Zheng XH, Cui C, Ruan HL, Xue WQ, Zhang SD, Hu YZ, Zhou XX, Jia WH. Plasma microRNA profiling in nasopharyngeal carcinoma patients reveals miR-548q and miR-483-5p as potential biomarkers. CHINESE JOURNAL OF CANCER 2014; 33:330-8. [PMID: 24874644 PMCID: PMC4110465 DOI: 10.5732/cjc.013.10246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
MicroRNAs (miRNAs), which play a role in tumorigenesis, may also serve as diagnostic or prognostic biomarkers. However, studies on human miRNA profiles in plasma from nasopharyngeal carcinoma (NPC) patients are in their infancy. Here, we used microarrays to perform systematic profiling of human miRNAs in plasma from NPC patients. We subsequently used real-time quantitative polymerase chain reaction (Q-PCR) to validate miRNAs with aberrant expression that could serve as potential biomarkers. By comparing the plasma miRNA profiles of 31 NPC patients and 19 controls, 39 of 887 human miRNAs were found to be aberrantly expressed. Considering the fold change and P value, miR-548q and miR-483-5p were validated in 132 samples from 82 NPC patients and 50 controls. Moreover, high expression of miR-548q and miR-483-5p was further found in 3 NPC cell lines and clinical biopsy tissues from 54 NPC patients and 22 controls. Our results revealed that miR-548q and miR-483-5p are potential biomarkers of NPC. Combining the receiver operating characteristic (ROC) analyses of these 2 miRNAs, an area under the ROC curve (AUC) of 0.737 with 67.1% sensitivity and 68.0% specificity were obtained, showing the preliminary diagnostic value of plasma miRNAs. Moreover, most NPC patients with a poor outcome exhibited high expression (> median) of miR-548q (70.6%) and miR-483-5p (64.7%) in tissue samples, indicating their prognostic value. The high expression levels of miR-548q and miR-483-5p in plasma, cell lines, and clinical tissues of NPC patients indicate that their roles in NPC should be explored in the future.
Collapse
Affiliation(s)
- Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Ovarian tumor-associated microRNA-20a decreases natural killer cell cytotoxicity by downregulating MICA/B expression. Cell Mol Immunol 2014; 11:495-502. [PMID: 24813230 DOI: 10.1038/cmi.2014.30] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/28/2014] [Accepted: 03/28/2014] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding regulatory RNAs, and changes in miRNAs are involved in tumor origin and progression. Studies have shown that miR-20a is overexpressed in human ovarian cancer tissues and that this miRNA enhances long-term cellular proliferation and invasion capabilities. In this study, a positive correlation between serum miR-20a expression and ovarian cancer stage was observed. We found that miR-20a binds directly to the 3'-untranslated region of MICA/B mRNA, resulting in its degradation and reducing its protein levels on the plasma membrane. Reduction of membrane-bound MICA/B proteins, which are ligands of the natural killer group 2 member D (NKG2D) receptor found on natural killer (NK) cells, γδ(+) T cells and CD8(+) T cells, allows tumor cells to evade immune-mediated killing. Notably, antagonizing miR-20a action enhanced the NKG2D-mediated killing of tumor cells in both in vitro and in vivo models of tumors. Taken together, our data indicate that increased levels of miR-20a in tumor cells may indirectly suppress NK cell cytotoxicity by downregulating MICA/B expression. These data provide a potential link between metastasis capability and immune escape of tumor cells from NK cells.
Collapse
|
104
|
Xiao L, Xiao T, Wang ZM, Cho WCS, Xiao ZQ. Biomarker discovery of nasopharyngeal carcinoma by proteomics. Expert Rev Proteomics 2014; 11:215-25. [PMID: 24611579 DOI: 10.1586/14789450.2014.897613] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors in southern China and southern Asia, and poses one of the most serious public health problems in these areas. Early diagnosis, predicting metastasis, recurrence, prognosis and therapeutic response of NPC remain a challenge. Discovery of diagnostic and predictive biomarkers is an ideal way to achieve these objectives. Proteomics has great potential in identifying cancer biomarkers. Comparative proteomics has identified a large number of potential biomarkers associated with NPC, although the clinical performance of such biomarkers needs to be further validated. In this article, we review the latest discovery and progress of biomarkers for early diagnosis, predicting metastasis, recurrence, prognosis and therapeutic response of NPC, inform the readers of the current status of proteomics-based NPC biomarker findings and suggest avenues for future work.
Collapse
Affiliation(s)
- Liang Xiao
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | | | | | | | | |
Collapse
|
105
|
Jiang H, Zhang G, Wu JH, Jiang CP. Diverse roles of miR-29 in cancer (review). Oncol Rep 2014; 31:1509-16. [PMID: 24573597 DOI: 10.3892/or.2014.3036] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/17/2014] [Indexed: 01/10/2023] Open
Abstract
microRNAs (miRNAs) are non-coding RNAs which have the capacity to regulate gene expression at the post-transcriptional level, and have emerging as key factors involved in cancer at all stages ranging from initiation to metastasis. In the present review, we summmarize the diverse roles of the microRNA-29 (miR-29) family in cancer. First, we present a concise introduction to the miR-29 family and the expression profile of miR-29 in various cancer types. We next highlight the upstream regulatory pathway of miR-29 and describe the relationship between miR-29 and cancer in detail. As a tumor suppressor, miR-29 restrains cancer progression by promoting tumor cell apoptosis, by suppressing DNA methylation of tumor-suppressor genes, by reducing proliferation of tumors and by increasing chemosensitivity. However, as a tumor promoter, miR-29 mediates epithelial-mesenchymal transition (EMT) and promotes metastasis in breast cancer and colon cancer. Finally, we suggest that miR-29 represents a novel diagnostic and prognostic biomarker or a therapeutic target for cancer. Our review highlights the diverse relationship between miR-29 and cancer (particularly digestive system neoplasms). Further research of miR-29 in cancer is warranted.
Collapse
Affiliation(s)
- Hesong Jiang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Guang Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Jun-Hua Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Chun-Ping Jiang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
106
|
McDermott AM, Miller N, Wall D, Martyn LM, Ball G, Sweeney KJ, Kerin MJ. Identification and validation of oncologic miRNA biomarkers for luminal A-like breast cancer. PLoS One 2014; 9:e87032. [PMID: 24498016 PMCID: PMC3909065 DOI: 10.1371/journal.pone.0087032] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 12/04/2013] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION Breast cancer is a common disease with distinct tumor subtypes phenotypically characterized by ER and HER2/neu receptor status. MiRNAs play regulatory roles in tumor initiation and progression, and altered miRNA expression has been demonstrated in a variety of cancer states presenting the potential for exploitation as cancer biomarkers. Blood provides an excellent medium for biomarker discovery. This study investigated systemic miRNAs differentially expressed in Luminal A-like (ER+PR+HER2/neu-) breast cancer and their effectiveness as oncologic biomarkers in the clinical setting. METHODS Blood samples were prospectively collected from patients with Luminal A-like breast cancer (n = 54) and controls (n = 56). RNA was extracted, reverse transcribed and subjected to microarray analysis (n = 10 Luminal A-like; n = 10 Control). Differentially expressed miRNAs were identified by artificial neural network (ANN) data-mining algorithms. Expression of specific miRNAs was validated by RQ-PCR (n = 44 Luminal A; n = 46 Control) and potential relationships between circulating miRNA levels and clinicopathological features of breast cancer were investigated. RESULTS Microarray analysis identified 76 differentially expressed miRNAs. ANN revealed 10 miRNAs for further analysis (miR-19b, miR-29a, miR-93, miR-181a, miR-182, miR-223, miR-301a, miR-423-5p, miR-486-5 and miR-652). The biomarker potential of 4 miRNAs (miR-29a, miR-181a, miR-223 and miR-652) was confirmed by RQ-PCR, with significantly reduced expression in blood of women with Luminal A-like breast tumors compared to healthy controls (p = 0.001, 0.004, 0.009 and 0.004 respectively). Binary logistic regression confirmed that combination of 3 of these miRNAs (miR-29a, miR-181a and miR-652) could reliably differentiate between cancers and controls with an AUC of 0.80. CONCLUSION This study provides insight into the underlying molecular portrait of Luminal A-like breast cancer subtype. From an initial 76 miRNAs, 4 were validated with altered expression in the blood of women with Luminal A-like breast cancer. The expression profiles of these 3 miRNAs, in combination with mammography, has potential to facilitate accurate subtype-specific breast tumor detection.
Collapse
Affiliation(s)
- Ailbhe M. McDermott
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Nicola Miller
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Deirdre Wall
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - Lorcan M. Martyn
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Karl J. Sweeney
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Michael J. Kerin
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| |
Collapse
|
107
|
Integrated analysis of differential miRNA and mRNA expression profiles in human radioresistant and radiosensitive nasopharyngeal carcinoma cells. PLoS One 2014; 9:e87767. [PMID: 24498188 PMCID: PMC3909230 DOI: 10.1371/journal.pone.0087767] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/31/2013] [Indexed: 02/07/2023] Open
Abstract
Background The purpose of this study was to identify miRNAs and genes involved in nasopharyngeal carcinoma (NPC) radioresistance, and explore the underlying mechanisms in the development of radioresistance. Methods We used microarrays to compare the differences of both miRNA and mRNA expression profiles in the radioresistant NPC CNE2-IR and radiosensitive NPC CNE2 cells, applied qRT-PCR to confirm the reliability of microarray data, adopted databases prediction and anticorrelated analysis of miRNA and mRNA expression to identify the miRNA target genes, and employed bioinformatics tools to examine the functions and pathways in which miRNA target genes are involved, and construct a miRNA-target gene regulatory network. We further investigated the roles of miRNA-23a and its target gene IL-8 in the NPC radioresistance. Results The main findings were fourfold: (1) fifteen differential miRNAs and 372 differential mRNAs were identified, and the reliability of microarray data was validated for randomly selected eight miRNAs and nine genes; (2) 174 miRNA target were identified, and most of their functions and regulating pathways were related to tumor therapeutic resistance; (3) a posttranscriptional regulatory network including 375 miRNA-target gene pairs was constructed, in which the ten genes were coregulated by the six miRNAs; (4) IL-8 was a direct target of miRNA-23a, the expression levels of IL-8 were elevated in the radioresistant NPC tissues and showed inverse correlation with miRNA-23a expression, and genetic upregulation of miRNA-23a and antibody neutralization of secretory IL-8 could reduce NPC cells radioresistance. Conclusions We identified fifteen differential miRNAs and 372 differential mRNAs in the radioresistant NPC cells, constructed a posttranscriptional regulatory network including 375 miRNA-target gene pairs, discovered the ten target genes coregulated by the six miRNAs, and validated that downregulated miRNA-23a was involved in NPC radioresistance through directly targeting IL-8. Our data form a basis for further investigating the mechanisms of NPC radioresistance.
Collapse
|
108
|
Sawada S, Akimoto T, Takahashi M, Sakurai R, Shinkai S, Ushida T, Fujiwara Y, Suzuki K. Effect of Aging and Sex on Circulating MicroRNAs in Humans. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aar.2014.32023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
109
|
Lu J, Xu X, Liu X, Peng Y, Zhang B, Wang L, Luo H, Peng X, Li G, Tian W, He M, Li X. Predictive value of miR-9 as a potential biomarker for nasopharyngeal carcinoma metastasis. Br J Cancer 2013; 110:392-8. [PMID: 24327016 PMCID: PMC3899774 DOI: 10.1038/bjc.2013.751] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/30/2013] [Accepted: 11/05/2013] [Indexed: 01/05/2023] Open
Abstract
Background: Nasopharyngeal carcinoma (NPC) has a distinctive geographic distribution and is characterised by its strong tendency of metastasis. We aimed to examine the microRNA (miRNA) expression profiles in plasma samples of NPC patients to explore their clinical significance in disease development and progression. Methods: This study was divided into four steps: (1) confirmation of differentially expressed miRNAs using microarray analysis and quantitative PCR validation; (2) comparison of plasma miR-9 levels during NPC progression; (3) evaluation of the predictive performance of plasma miR-9 as a biomarker for NPC metastasis; and (4) comparison of plasma miR-9 levels between pre- and post-treatment samples. Results: Plasma microarray profiling identified 33 differentially expressed miRNAs between NPC patients and healthy volunteers. The significantly declined level of miR-9 in NPC patients was confirmed through two-stage validation. The low level of plasma miR-9 was significantly correlated with worse lymphatic invasion and advanced TNM stage. The plasma miR-9 could distinguish locoregional from metastatic NPC cases with a high sensitivity and specificity. Furthermore, the plasma miR-9 level was significantly elevated in post-treatment plasma compared with those pre-treatment samples. Conclusion: Our study reports that plasma miR-9 may serve as a useful biomarker to predict NPC metastasis and to monitor tumour dynamics.
Collapse
Affiliation(s)
- J Lu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - X Xu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - X Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Y Peng
- Department of Neurology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - B Zhang
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - L Wang
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - H Luo
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - X Peng
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - G Li
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - W Tian
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - M He
- 1] Stanley Ho Center for Emerging Infectious Diseases, School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China [2] Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - X Li
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
110
|
Wessels JM, Edwards AK, Khalaj K, Kridli RT, Bidarimath M, Tayade C. The microRNAome of pregnancy: deciphering miRNA networks at the maternal-fetal interface. PLoS One 2013; 8:e72264. [PMID: 24278102 PMCID: PMC3838410 DOI: 10.1371/journal.pone.0072264] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/12/2013] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) post-transcriptionally regulate a vast network of genes by inhibiting mRNA translation. Aberrant miRNA expression profiles have been implicated in pathologies and physiological processes including pregnancy and angiogenesis. Using our established model of implantation failure and spontaneous fetal loss in pigs (Sus scrofa), 236 miRNAs were profiled and compared between 1) non-pregnant and pregnant endometrium, 2) maternal and fetal tissues, and 3) viable and growth-arrested conceptus attachment sites by microarray and Real-Time PCR. Many significant differences in miRNA expression were observed between each of the aforementioned comparisons, and several were validated by PCR. Results indicated which miRNAs were important during pregnancy, which were elevated on the maternal or fetal side of the maternal-fetal interface, and they implicated the maternal expression of miR-10a, 27a, 29c, 323, 331-5p, 339-3p, 374b-5p, and 935 in the spontaneous loss observed in pigs. Several putative mRNA targets of the miRNAs (elevated in endometrium associated with arresting conceptuses) were assessed by quantitative Real-Time PCR and were depressed, supporting their regulation by miRNAs. Finally, targets were clustered by function to obtain ranked lists of gene networks that indicated which pathways/physiological processes might be important in non-pregnant (extracellular matrix factors) versus pregnant endometrium (nuclear transcription factor regulation), maternal (blood vessel development) versus fetal (neuronal differentiation) tissue, and healthy (extracellular matrix factors) versus arresting (GRAM domain) conceptus attachment sites. Overall, we demonstrate the presence of miRNAs on both sides of the maternal-fetal interface, implicate them in spontaneous fetal loss, and present a unique glimpse into the vast microRNAome of pregnancy.
Collapse
Affiliation(s)
- Jocelyn M. Wessels
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Andrew K. Edwards
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kasra Khalaj
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Rami T. Kridli
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Department of Animal Production, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Mallikarjun Bidarimath
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Chandrakant Tayade
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
111
|
Liu N, Cui RX, Sun Y, Guo R, Mao YP, Tang LL, Jiang W, Liu X, Cheng YK, He QM, Cho WCS, Liu LZ, Li L, Ma J. A four-miRNA signature identified from genome-wide serum miRNA profiling predicts survival in patients with nasopharyngeal carcinoma. Int J Cancer 2013; 134:1359-68. [PMID: 23999999 DOI: 10.1002/ijc.28468] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/27/2013] [Indexed: 01/02/2023]
Abstract
Recent findings have reported that human serum microRNAs (miRNAs) can be used as prognostic biomarkers in various cancers. We aimed to explore the prognostic value of serum miRNAs in nasopharyngeal carcinoma (NPC) patients. The level of serum miRNA was retrospectively analyzed in 512 NPC patients recruited between January 2001 and December 2006. In the discovery stage, a microarray followed by reverse transcription-quantitative polymerase chain reaction was used to identify differentially altered miRNAs in eight patients with shorter survival and eight patients with longer survival who were well matched by age, sex and clinical stage. The identified serum miRNAs were then validated in all 512 samples, which were randomly divided into a training set and a validation set. Four serum miRNAs (miR-22, miR-572, miR-638 and miR-1234) were found to be differentially altered and were used to construct a miRNA signature. Risk scores were calculated to classify the patients into high- or low-risk groups. Patients with high-risk scores had poorer overall survival [hazard ratio (HR), 2.54; 95% confidence interval (CI), 1.57-4.12; p < 0.001] and distant metastasis-free survival (HR, 3.28; 95% CI, 1.82-5.94; p < 0.001) than those with low-risk scores in the training set; these results were confirmed in the validation and combined sets. The miRNA signature and TNM stage were independent prognostic factors. The combination of the miRNA signature and TNM stage had a better prognostic value than the TNM stage or miRNA signature alone. The four-serum miRNA signature may add prognostic value to the TNM staging system and provide information for personalized therapy in NPC.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Wang JL, Hu Y, Kong X, Wang ZH, Chen HY, Xu J, Fang JY. Candidate microRNA biomarkers in human gastric cancer: a systematic review and validation study. PLoS One 2013; 8:e73683. [PMID: 24040025 PMCID: PMC3767766 DOI: 10.1371/journal.pone.0073683] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/19/2013] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer (GC) remains a major cause of morbidity and mortality worldwide and there is therefore a clear need to search for more sensitive early diagnostic biomarkers. We performed a systematic review of eight published miRNA profiling studies that compared GC tissues with adjacent noncancerous tissues. A miRNA ranking system was used that took the frequency of comparisons, direction of differential expression and total sample size into consideration. We identified five miRNAs that were most consistently reported to be upregulated (miR-21, miR-106b, miR-17, miR-18a and miR-20a) and two miRNAs that were downregulated (miR-378 and miR-638). Six of these were further validated in 32 paired sets of GC and adjacent noncancerous tissue samples using real-time PCR. MiR-21, miR-106b, miR-17, miR-18a and miR-20a were confirmed to be upregulatedin GC tissues, while the expression of miR-378 was decreased. Moreover, we found a significant association between expression levels of miR-21, miR-106b, miR-17, miR-18a and miR-20a and clinicopathological features of GC. These miRNAs may be used for diagnostic and/or prognostic biomarkers for GC and therefore warrant further investigation.
Collapse
Affiliation(s)
- Ji-Lin Wang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Institution of Digestive Disease, Shanghai, China
| | - Ye Hu
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Institution of Digestive Disease, Shanghai, China
| | - Xuan Kong
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Institution of Digestive Disease, Shanghai, China
| | - Zhen-Hua Wang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Institution of Digestive Disease, Shanghai, China
| | - Hao-Yan Chen
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Institution of Digestive Disease, Shanghai, China
| | - Jie Xu
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Institution of Digestive Disease, Shanghai, China
- * E-mail: (JX); (JF)
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Institution of Digestive Disease, Shanghai, China
- Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Shanghai, China
- State Key Laboratory of Oncogene and Related Genes, Shanghai, China
- * E-mail: (JX); (JF)
| |
Collapse
|
113
|
Kosaka N, Yoshioka Y, Hagiwara K, Tominaga N, Katsuda T, Ochiya T. Trash or Treasure: extracellular microRNAs and cell-to-cell communication. Front Genet 2013; 4:173. [PMID: 24046777 PMCID: PMC3763217 DOI: 10.3389/fgene.2013.00173] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/19/2013] [Indexed: 12/30/2022] Open
Abstract
Circulating RNAs in human body fluids are promising candidates for diagnostic purposes. However, the biological significance of circulating RNAs remains elusive. Recently, small non-coding RNAs, microRNAs (miRNAs), were isolated from multiple human body fluids, and these “circulating miRNAs” have been implicated as novel disease biomarkers. Concurrently, miRNAs were also identified in the extracellular space associated with extracellular vesicles (EVs), which are small membrane vesicles secreted from various types of cells. The function of these secreted miRNAs has been revealed in several papers. Circulating miRNAs have been experimentally found to be associated with EVs; however, other types of extracellular miRNAs were also described. This review discusses studies related to extracellular miRNAs, including circulating miRNAs and secreted miRNAs, to highlight the importance of studying not only secreted miRNAs, but also circulating miRNAs to determine the contribution of extracellular miRNAs especially in cancer development.
Collapse
Affiliation(s)
- Nobuyoshi Kosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
114
|
Zhu S, Cao L, Zhu J, Kong L, Jin J, Qian L, Zhu C, Hu X, Li M, Guo X, Han S, Yu Z. Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Clin Chim Acta 2013; 424:66-72. [DOI: 10.1016/j.cca.2013.05.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
|
115
|
Yan B, Broek RV, Saleh AD, Mehta A, Van Waes C, Chen Z. Signaling Networks of Activated Oncogenic and Altered Tumor Suppressor Genes in Head and Neck Cancer. JOURNAL OF CARCINOGENESIS & MUTAGENESIS 2013; Suppl 7:4. [PMID: 25587491 PMCID: PMC4289631 DOI: 10.4172/2157-2518.s7-004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) arises from the upper aerodigestive tract and is the six most common cancers worldwide. HNSCC is associated with high morbidity and mortality, as standard surgery, radiation, and chemotherapy can cause significant disfigurement and only provide 5-year survival rates of ~50-60%. The heterogeneity of HNSCC subsets with different potentials for recurrence and metastasis challenges the traditional pathological classification system, thereby increasing demand for the development of new diagnostic, prognostic, and therapeutic tools based on global molecular signatures of HNSCC. Historically, using classical biological techniques, it has been extremely difficult and time-consuming to survey hundreds or thousands of genes in a given disease. However, the development of high throughput technologies and high-powered computation throughout the last two decades has enabled us to investigate hundreds or thousands of genes simultaneously. Using high throughput technologies, our laboratory has identified the gene signatures and protein networks, which significantly affect HNSCC malignant phenotypes, including TP53/p63/p73 family members, IL-1/TNF-β/NF-κB, PI3K/AKT/mTOR, IL-6/IL-6R/JAK/STAT3, EGFR/MAPK/AP1, HGF/cMET/EGR1, and TGFβ/TGFβR/TAK1/SMAD pathways. This review summarizes the results from high-throughput technological assays conducted on HNSCC samples, including microarray, DNA methylation, miRNA profiling, and protein array, using primarily experimental data and conclusions generated in our own laboratory. The use of bioinformatics and integrated analyses of data sets from different platforms, as well as meta-analysis of large datasets pulled from multiple publicly available studies, provided significantly higher statistical power to extract biologically relevant information. The data suggested that the heterogeneity of HNSCC genotype and phenotype are much more complex than we previously thought. Understanding of global molecular signatures and disease classification for specific subsets of HNSCC will be essential to provide accurate diagnoses for targeted therapy and personalized treatment, which is an important effort toward improving patient outcomes.
Collapse
Affiliation(s)
- Bin Yan
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Robert Vander Broek
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD USA
- NIH Medical Research Scholars Program, Bethesda, MD USA
| | - Anthony D Saleh
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD USA
| | - Arpita Mehta
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD USA
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD USA
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD USA
| |
Collapse
|
116
|
Zhao S, Yao D, Chen J, Ding N. Circulating miRNA-20a and miRNA-203 for screening lymph node metastasis in early stage cervical cancer. Genet Test Mol Biomarkers 2013; 17:631-6. [PMID: 23819812 DOI: 10.1089/gtmb.2013.0085] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small, noncoding RNAs that are critical regulators of various diseases, including cancer, which may represent a novel class of cancer biomarkers. AIMS We hypothesized that microRNA-20a (miR-20a) and microRNA-203 (miR-203), which were altered in lymphatic metastatic tissues, could be directly assayed in the serum and used to detect the lymph node status of cervical cancer patients. METHODS We analyzed serum levels of miR-20a and miR-203 in 80 patients with stage I-IIA of cervical cancer by quantitative real-time polymerase chain reaction assay. Blood samples were collected before surgery and therapy. Logistic regression was used to measure the influence of different variables. Receiver operating characteristic analysis could evaluate the sensitivity and specificity in separating lymph node metastasis (LNM) (+) patients from LNM (-) patients by serum miR-20a and miR-203. RESULTS We found that the expression level of miR-20a was significantly higher in cervical cancer patients compared to healthy controls (p=0.004), patients with LNM tended to have overexpression of miR-20a (p=0.000), the odds ratio was 1.552. The expression level of miR-203 in cervical cancer patients was also significantly increased in comparison to the healthy patients (p=0.000), while downregulated miR-203 was correlated with LNM (p=0.001), the odds ratio was 0.849. When miR-20a was used for differentiation of LNM (+) patients from LNM (-) patients, the value of the area under the receiver-operating curve (AUC) was 0.734±0.058, the sensitivity and specificity of serum miR-20a were 75% and 72.5%, respectively, the cut-off point was 3.0. But the AUC of miR-203 was only 0.658±0.061, which showed low accuracy, the sensitivity and specificity were 65% and 62.5%, respectively, the cut-off point was 0.13. CONCLUSION Our results suggested that the circulating miR-20a may be a potential biomarker for detecting the lymph node status of cervical cancer patients.
Collapse
Affiliation(s)
- Shan Zhao
- Department of Gynecologic Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | | | | | | |
Collapse
|
117
|
Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One 2013; 8:e64795. [PMID: 23762257 PMCID: PMC3676411 DOI: 10.1371/journal.pone.0064795] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/18/2013] [Indexed: 01/05/2023] Open
Abstract
Circulating, cell-free microRNAs (miRNAs) are promising candidate biomarkers, but optimal conditions for processing blood specimens for miRNA measurement remain to be established. Our previous work showed that the majority of plasma miRNAs are likely blood cell-derived. In the course of profiling lung cancer cases versus healthy controls, we observed a broad increase in circulating miRNA levels in cases compared to controls and that higher miRNA expression correlated with higher platelet and particle counts. We therefore hypothesized that the quantity of residual platelets and microparticles remaining after plasma processing might impact miRNA measurements. To systematically investigate this, we subjected matched plasma from healthy individuals to stepwise processing with differential centrifugation and 0.22 µm filtration and performed miRNA profiling. We found a major effect on circulating miRNAs, with the majority (72%) of detectable miRNAs substantially affected by processing alone. Specifically, 10% of miRNAs showed 4–30x variation, 46% showed 30-1,000x variation, and 15% showed >1,000x variation in expression solely from processing. This was predominantly due to platelet contamination, which persisted despite using standard laboratory protocols. Importantly, we show that platelet contamination in archived samples could largely be eliminated by additional centrifugation, even in frozen samples stored for six years. To minimize confounding effects in microRNA biomarker studies, additional steps to limit platelet contamination for circulating miRNA biomarker studies are necessary. We provide specific practical recommendations to help minimize confounding variation attributable to plasma processing and platelet contamination.
Collapse
|
118
|
Takahashi K, Yokota SI, Tatsumi N, Fukami T, Yokoi T, Nakajima M. Cigarette smoking substantially alters plasma microRNA profiles in healthy subjects. Toxicol Appl Pharmacol 2013; 272:154-60. [PMID: 23726802 DOI: 10.1016/j.taap.2013.05.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 05/16/2013] [Accepted: 05/18/2013] [Indexed: 02/06/2023]
Abstract
Circulating microRNAs (miRNAs) are receiving attention as potential biomarkers of various diseases, including cancers, chronic obstructive pulmonary disease, and cardiovascular disease. However, it is unknown whether the levels of circulating miRNAs in a healthy subject might vary with external factors in daily life. In this study, we investigated whether cigarette smoking, a habit that has spread throughout the world and is a risk factor for various diseases, affects plasma miRNA profiles. We determined the profiles of 11 smokers and 7 non-smokers by TaqMan MicroRNA array analysis. A larger number of miRNAs were detected in smokers than in non-smokers, and the plasma levels of two-thirds of the detected miRNAs (43 miRNAs) were significantly higher in smokers than in non-smokers. A principal component analysis of the plasma miRNA profiles clearly separated smokers and non-smokers. Twenty-four of the miRNAs were previously reported to be potential biomarkers of disease, suggesting the possibility that smoking status might interfere with the diagnosis of disease. Interestingly, we found that quitting smoking altered the plasma miRNA profiles to resemble those of non-smokers. These results suggested that the differences in the plasma miRNA profiles between smokers and non-smokers could be attributed to cigarette smoking. In addition, we found that an acute exposure of ex-smokers to cigarette smoke (smoking one cigarette) did not cause a dramatic change in the plasma miRNA profile. In conclusion, we found that repeated cigarette smoking substantially alters the plasma miRNA profile, interfering with the diagnosis of disease or signaling potential smoking-related diseases.
Collapse
Affiliation(s)
- Kei Takahashi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
119
|
Wang L, Jia XJ, Jiang HJ, Du Y, Yang F, Si SY, Hong B. MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition. Mol Cell Biol 2013; 33:1956-64. [PMID: 23459944 PMCID: PMC3647964 DOI: 10.1128/mcb.01580-12] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/25/2013] [Indexed: 01/05/2023] Open
Abstract
Hepatic scavenger receptor class B type I (SR-BI) plays an important role in selective high-density lipoprotein cholesterol (HDL-C) uptake, which is a pivotal step of reverse cholesterol transport. In this study, the potential involvement of microRNAs (miRNAs) in posttranscriptional regulation of hepatic SR-BI and selective HDL-C uptake was investigated. The level of SR-BI expression was repressed by miRNA 185 (miR-185), miR-96, and miR-223, while the uptake of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-HDL was decreased by 31.9% (P < 0.001), 23.9% (P < 0.05), and 15.4% (P < 0.05), respectively, in HepG2 cells. The inhibition of these miRNAs by their anti-miRNAs had opposite effects in these hepatic cells. The critical effect of miR-185 was further validated by the loss of regulation in constructs with mutated miR-185 target sites. In addition, these miRNAs directly targeted the 3' untranslated region (UTR) of SR-BI with a coordinated effect. Interestingly, the decrease of miR-96 and miR-185 coincided with the increase of SR-BI in the livers of ApoE KO mice on a high-fat diet. These data suggest that miR-185, miR-96, and miR-223 may repress selective HDL-C uptake through the inhibition of SR-BI in human hepatic cells, implying a novel mode of regulation of hepatic SR-BI and an important role of miRNAs in modulating cholesterol metabolism.
Collapse
Affiliation(s)
- Li Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
120
|
Zheng XH, Cui C, Zhou XX, Zeng YX, Jia WH. Centrifugation: an important pre-analytic procedure that influences plasma microRNA quantification during blood processing. CHINESE JOURNAL OF CANCER 2013; 32:667-72. [PMID: 23601242 PMCID: PMC3870851 DOI: 10.5732/cjc.012.10271] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Circulating microRNAs are robustly present in plasma or serum and have become a research focus as biomarkers for tumor diagnosis and prognosis. Centrifugation is a necessary procedure for obtaining high-quality blood supernatant. Herein, we investigated one-step and two-step centrifugations, two centrifugal methods routinely used in microRNA study, to explore their effects on plasma microRNA quantification. The microRNAs obtained from one-step and two-step centrifugations were quantified by microarray and TaqMan-based real-time quantitative polymerase chain reaction (Q-PCR). Dynamic light scattering was performed to explore the difference underlying the two centrifugal methods. The results from the microarray containing 1,347 microRNAs showed that the signal detection rate was greatly decreased in the plasma sample prepared by two-step centrifugation. More importantly, the microRNAs missing in this plasma sample could be recovered and detected in the precipitate generated from the second centrifugation. Consistent with the results from microarray, a marked decrease of three representative microRNAs in two-step centrifugal plasma was validated by Q-PCR. According to the size distribution of all nanoparticles in plasma, there were fewer nanoparticles with size >1,000 nm in two-step centrifugal plasma. Our experiments directly demonstrated that different centrifugation methods produced distinct quantities of plasma microRNAs. Thus, exosomes or protein complexes containing microRNAs may be involved in large nanoparticle formation and may be precipitated after two-step centrifugation. Our results remind us that sample processing methods should be first considered in conducting research.
Collapse
Affiliation(s)
- Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Bank of Tumor Resource, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China.
| | | | | | | | | |
Collapse
|
121
|
Chen P, Guo X, Zhou H, Zhang W, Zeng Z, Liao Q, Li X, Xiang B, Yang J, Ma J, Zhou M, Peng S, Xiang J, Li X, LE CW, Xiong W, McCarthy JB, Li G. SPLUNC1 regulates cell progression and apoptosis through the miR-141-PTEN/p27 pathway, but is hindered by LMP1. PLoS One 2013; 8:e56929. [PMID: 23472073 PMCID: PMC3589440 DOI: 10.1371/journal.pone.0056929] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/16/2013] [Indexed: 12/12/2022] Open
Abstract
Little is known about the role of the host defensive protein short palate, lung and nasal epithelium clone 1 (SPLUNC1) in the carcinogenesis of nasopharyngeal carcinoma (NPC). Here we report that SPLUNC1 plays a role at a very early stage of NPC carcinogenesis. SPLUNC1 regulates NPC cell proliferation, differentiation and apoptosis through miR-141, which in turn regulates PTEN and p27 expression. This signaling axis is negatively regulated by the EBV-coded gene LMP1. Therefore we propose that SPLUNC1 suppresses NPC tumor formation and its inhibition by LMP1 provides a route for NPC tumorigenesis.
Collapse
Affiliation(s)
- Pan Chen
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Xiaofang Guo
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Houde Zhou
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Wenling Zhang
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Zhaoyang Zeng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Qianjin Liao
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Bo Xiang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jianbo Yang
- Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jian Ma
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Ming Zhou
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Juanjuan Xiang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xiaoling Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Colvin Wanshura LE
- Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei Xiong
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - James B. McCarthy
- Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (JBM); (GL)
| | - Guiyuan Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, P.R. China
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P.R. China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer and Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- * E-mail: (JBM); (GL)
| |
Collapse
|
122
|
Redova M, Sana J, Slaby O. Circulating miRNAs as new blood-based biomarkers for solid cancers. Future Oncol 2013; 9:387-402. [DOI: 10.2217/fon.12.192] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|