101
|
Zhang L, He S, Guo S, Xie W, Xin R, Yu H, Yang F, Qiu J, Zhang D, Zhou S, Zhang K. Down-regulation of miR-34a alleviates mesangial proliferation in vitro and glomerular hypertrophy in early diabetic nephropathy mice by targeting GAS1. J Diabetes Complications 2014; 28:259-64. [PMID: 24560136 PMCID: PMC4087162 DOI: 10.1016/j.jdiacomp.2014.01.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/19/2013] [Accepted: 01/03/2014] [Indexed: 01/07/2023]
Abstract
AIMS Diabetic nephropathy (DN) is a major diabetic complication characterized by mesangial proliferation and glomerular hypertrophy. MicroRNAs might play an important role in these pathological processes. The aim of this study is to examine the possible association of miR-34a as one of the microRNAs with DN and underlying mechanisms in vitro and in vivo. METHODS According to previous results of microarray which compared the different microRNAs between diabetic and normal control mice, miR-34a was chosen and its expression was detected by qRT-PCR. Cell viability was then assessed using Cell Counting Kit-8 (CCK8) and 5-ethynyl-20-deoxyuridine (EDU) incorporation. Antagomir was injected in db/db mice to down regulate miR-34a. Average diameter of glomeruli was analyzed by periodic acid-Schiff (PAS) stain of kidney. Luciferase gene report assay was then performed to identify the target gene of miR-34a. Additional immunoblotting and immunohistochemical analyses were implemented to verify the expression level of growth arrest-specific 1 (GAS1). RESULTS MiR-34a expression level was increased under high glucose condition in vitro and in vivo. Down-regulation of miR-34a inhibits mice mesangial cells (MMCs) proliferation in vitro and alleviates glomerular hypertrophy in vivo. GAS1 was proved to be the target of miR-34a through luciferase report. Moreover, up-regulation of GAS1 expression was observed in the presence of miR-34a antagomir as compared with miR-34a antagomir-NC in high-glucose-treated MMCs and db/db mice, respectively. CONCLUSIONS MiR-34a regulated mesangial proliferation and glomerular hypertrophy by directly inhibiting GAS1 in early DN.
Collapse
Affiliation(s)
- Le Zhang
- Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Siyi He
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Shaodong Guo
- Division of Molecular Cardiology, Cardiovascular Research Institute, College of Medicine, Texas A&M Health Science Center, Central Texas Veterans Health Care System, Temple, TX 76504, USA
| | - Wei Xie
- Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Rong Xin
- Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Hua Yu
- Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Fan Yang
- Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jing Qiu
- Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Di Zhang
- Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Shiwen Zhou
- Clinical Drug Trials Agency, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Kebin Zhang
- Center of Medical Experiment & Technology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
102
|
Overexpression of DcR3 and its significance on tumor cell differentiation and proliferation in glioma. ScientificWorldJournal 2014; 2014:605236. [PMID: 24741354 PMCID: PMC3972858 DOI: 10.1155/2014/605236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 01/29/2014] [Indexed: 11/24/2022] Open
Abstract
Background. Overexpression of decoy receptor 3 (DcR3) have been reported in various classes of malignancies. However, its expression and clinicopathological contribution in gliomas has not been fully elucidated. Objective. To explore the expression and clinical significance of DcR3 protein in relation to tumor cell differentiation and proliferation in glioma cell lines and tissues. Methods. One hundred and twenty-five samples of glioma patients and 18 cases of normal brain tissues were recruited. The expression of DcR3 protein was detected using immunohistochemistry. Tumor differentiation was assessed by histologic characters and the status of glial fibrillary acidic protein (GFAP). Tumor cell labeling indexes (LIs) of Ki-67 and PCNA were also obtained. The relationship between the DcR3 level and clinicopathological features was investigated, including tumor differentiation, LIs, and survival. Meanwhile, the expression of DcR3 protein was also measured in the supernatants of 8 glioma cell lines and glioma cells freshly prepared from 8 human glioblastoma specimens by using western blot. Results. The level of DcR3 protein in gliomas was significantly higher than that in normal brain tissues (P < 0.01). DcR3 expression showed positive correlations with tumor pathological grade (r = 0.621, P < 0.01) and negative with GFAP expression (r = −0.489, P < 0.01). Furthermore, there were positive correlations between DcR3 expression and Ki-67, PCNA LIs (r = 0.529, P < 0.01; r = 0.556, P < 0.01). The survival in the DcR3 negative group was 50 ± 1.79 months, longer than that of the DcR3 positive group (48.36 ± 2.90), however, without significance (P = 0.149). Different levels of DcR3 could also be detected in the culturing supernatants of all the 8 glioma cell lines and glioma cells freshly obtained from 8 human glioblastoma specimens. Conclusions. The overexpression of DcR3 might play a crucial role in the tumorigenesis, differentiation, and proliferation of glioma.
Collapse
|
103
|
Abstract
BACKGROUND Aberrant expression of microRNA-146a (miR-146a) has been found in several classes of cancers. However, its expression and clinicopathological contribution in hepatocellular carcinoma (HCC) has not been fully elucidated. OBJECTIVE To explore the clinicopathological significance of the miR-146a level in HCC formalin-fixed paraffin-embedded (FFPE) tissue. METHODS Eighty-five HCC samples and their para-cancerous normal liver tissues were collected. Total mRNA including miRNA was extracted, and miR-146a expression was determined using real-time RT-PCR. Furthermore, the correlation between the miR-146a expression and clinicopathological parameters was investigated. RESULTS MicroRNA-146a expression in HCC tissues was lower compared with that in adjacent non-cancerous hepatic tissues. MicroRNA-146a expression was also related to clinical TNM stage, metastasis, portal vein tumor embolus, and number of tumor nodes. CONCLUSIONS Down-regulation of miR-146a is related to HCC carcinogenesis and deterioration of HCC. MicroRNA-146a may act as a suppressor miRNA of HCC, and it is therefore a potential prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Minhua Rong
- Research Department, Affiliated Cancer Hospital, Guangxi Medical University, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Rongquan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Yiwu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| |
Collapse
|
104
|
microRNA-34a is associated with expression of key hepatic transcription factors and cytochromes P450. Biochem Biophys Res Commun 2014; 445:404-11. [PMID: 24530915 DOI: 10.1016/j.bbrc.2014.02.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/05/2014] [Indexed: 01/10/2023]
Abstract
microRNA (miRNA) mediated regulation of gene expression has emerged as a significant mechanism contributing to variation in gene expression. In this study, we evaluated the potential role of miRNAs in regulating expression of hepatic cytochromes P450 and their transcriptional regulatory genes. We screened the Targetscan database for high scoring miRNA binding site predictions in selected hepatic DMEs and transcription factors. Expression profiling for candidate miRNAs (n=22) and their target genes (n=20) was performed in 50 human liver samples (25 female, 25 male). Significant negative correlations were observed between expression levels of several CYPs/hepatic transcription factors and the hepatic miRNAs studied. Interestingly, hepatic miR-34a demonstrated significant negative correlation with expression levels of multiple hepatic transcription factors (including NR1I2 and HNF4α) and DMEs (CYP3A4, CYP2C19). miR-34a expression was also significantly higher in males than in females in congruence with previous observations of higher CYP3A4 expression in females versus males. A mediation analysis revealed that miR-34a was involved in significant mediation of the association observed between CYP2C19 and several hepatic transcription factors (HNF4α, NR1I2). miR-34a may thus play a key regulatory role and be a key contributory factor to the inter-individual variability observed in expression of key drug metabolizing genes in humans.
Collapse
|
105
|
Zheng Q, Sheng Q, Jiang C, Shu J, Chen J, Nie Z, Lv Z, Zhang Y. MicroRNA-452 promotes tumorigenesis in hepatocellular carcinoma by targeting cyclin-dependent kinase inhibitor 1B. Mol Cell Biochem 2014; 389:187-95. [PMID: 24381057 DOI: 10.1007/s11010-013-1940-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/18/2013] [Indexed: 12/25/2022]
Abstract
Dysregulation of miR-452 has been observed in many tumors, but its biological function in hepatocellular carcinoma (HCC) is still unknown. Our results showed that miR-452 expression is significantly increased in HCC tissues and HCC cell lines. We also found that overexpression of miR-452 dramatically accelerated proliferation, induced cell cycle from G1 to S transition, and blocked apoptosis of HCC cells. Migration and matrigel invasion assays indicated that miR-452 significantly promotes HepG2 and QGY-7703 cells migration and invasion in vitro. Further studies showed that miR-452 directly targets the 3'-untranslated region of cyclin-dependent kinase inhibitor 1B (CDKN1B), ectopic miR-452 expression suppressed CDKN1B expression on mRNA and protein level. Silencing CDKN1B by small interfering RNA resembled the phenotype resulting from ectopic miR-452 expression. This study provides new insights into the potential molecular mechanisms that miRNA-452 contributed to HCC.
Collapse
Affiliation(s)
- Qingliang Zheng
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, 310018, China,
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Sethi S, Ali S, Kong D, Philip PA, Sarkar FH. Clinical Implication of MicroRNAs in Molecular Pathology. Clin Lab Med 2013; 33:773-86. [DOI: 10.1016/j.cll.2013.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
107
|
Gomez GG, Wykosky J, Zanca C, Furnari FB, Cavenee WK. Therapeutic resistance in cancer: microRNA regulation of EGFR signaling networks. Cancer Biol Med 2013; 10:192-205. [PMID: 24349829 PMCID: PMC3860350 DOI: 10.7497/j.issn.2095-3941.2013.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/18/2013] [Indexed: 02/06/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) such as the epidermal growth factor receptor (EGFR) regulate cellular homeostatic processes. EGFR activates downstream signaling cascades that promote tumor cell survival, proliferation and migration. Dysregulation of EGFR signaling as a consequence of overexpression, amplification and mutation of the EGFR gene occurs frequently in several types of cancers and many become dependent on EGFR signaling to maintain their malignant phenotypes. Consequently, concerted efforts have been mounted to develop therapeutic agents and strategies to effectively inhibit EGFR. However, limited therapeutic benefits to cancer patients have been derived from EGFR-targeted therapies. A well-documented obstacle to improved patient survival is the presence of EGFR-inhibitor resistant tumor cell variants within heterogeneous tumor cell masses. Here, we summarize the mechanisms by which tumors resist EGFR-targeted therapies and highlight the emerging role of microRNAs (miRs) as downstream effector molecules utilized by EGFR to promote tumor initiation, progression and that play a role in resistance to EGFR inhibitors. We also examine evidence supporting the utility of miRs as predictors of response to targeted therapies and novel therapeutic agents to circumvent EGFR-inhibitor resistance mechanisms.
Collapse
Affiliation(s)
- German G Gomez
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Jill Wykosky
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Ciro Zanca
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Frank B Furnari
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
108
|
MiR-34a targets GAS1 to promote cell proliferation and inhibit apoptosis in papillary thyroid carcinoma via PI3K/Akt/Bad pathway. Biochem Biophys Res Commun 2013; 441:958-63. [PMID: 24220341 DOI: 10.1016/j.bbrc.2013.11.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/01/2013] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are fundamental regulators of cell proliferation, differentiation, and apoptosis, and are implicated in tumorigenesis of many cancers. MiR-34a is best known as a tumor suppressor through repression of growth factors and oncogenes. Growth arrest specific1 (GAS1) protein is a tumor suppressor that inhibits cancer cell proliferation and induces apoptosis through inhibition of RET receptor tyrosine kinase. Both miR-34a and GAS1 are frequently down-regulated in various tumors. However, it has been reported that while GAS1 is down-regulated in papillary thyroid carcinoma (PTC), miR-34a is up-regulated in this specific type of cancer, although their potential roles in PTC tumorigenesis have not been examined to date. A computational search revealed that miR-34a putatively binds to the 3'-UTR of GAS1 gene. In the present study, we confirmed previous findings that miR-34a is up-regulated and GAS1 down-regulated in PTC tissues. Further studies indicated that GAS1 is directly targeted by miR-34a. Overexpression of miR-34a promoted PTC cell proliferation and colony formation and inhibited apoptosis, whereas knockdown of miR-34a showed the opposite effects. Silencing of GAS1 had similar growth-promoting effects as overexpression of miR-34a. Furthermore, miR-34a overexpression led to activation of PI3K/Akt/Bad signaling pathway in PTC cells, and depletion of Akt reversed the pro-growth, anti-apoptotic effects of miR-34a. Taken together, our results demonstrate that miR-34a regulates GAS1 expression to promote proliferation and suppress apoptosis in PTC cells via PI3K/Akt/Bad pathway. MiR-34a functions as an oncogene in PTC.
Collapse
|
109
|
Gao B, Gao K, Li L, Huang Z, Lin L. miR-184 functions as an oncogenic regulator in hepatocellular carcinoma (HCC). Biomed Pharmacother 2013; 68:143-8. [PMID: 24183204 DOI: 10.1016/j.biopha.2013.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 09/24/2013] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of miRNAs has been proved to play a key role in carcinogenesis or tumor progression. In hepatocellular carcinoma (HCC), a number of miRNAs was reported to be related to the occurrence and development of HCC. Especially, miRNA-122, a liver-specific miRNA, has been elaborated its role in HCC. However, these studies was not involved in the effect of miRNA-184 on HCC. In the present study, we aimed to detect the miRNA-184 expression in HCC tissues and further evaluate the in vitro effect of miR-184 inhibition in HCC cells HepG2. We found that miR-184 expression was significantly high in HCC tissues, but INPPL1 expression was obviously low. Subsequently, INPPL1 was identified as a target of miRNA-184 by bioinformatics and dual luciferase assay. Moreover, after transfected with anti-miR-184 in HepG2 cells, INPPL1 expression was significantly decreased both at mRNA and protein levels. Additionally, we also proved that miR-184 silencing inhibited cellular proliferation by over expressing INPPL1 and induced HepG2 apoptosis by caspase 3/7. Together, our result was shown that miR-184 might play a part in proliferation of HCC cells by INPPL1 loss and act as antiapoptotic factor in the development of HCC by inhibiting the activities of caspases 3/7. Therefore, further elucidation of miRNA-184 silencing is helpful for understanding the pathogenesis of HCC and devising new strategies for its prevention and therapy.
Collapse
Affiliation(s)
- Bo Gao
- Jining Medical University, Jining 272067, PR China
| | | | - Li Li
- Jining Medical University, Jining 272067, PR China
| | | | - Li Lin
- Jining Medical University, Jining 272067, PR China.
| |
Collapse
|