101
|
Mendes SJ, Sousa FI, Pereira DM, Ferro TA, Pereira IC, Silva BL, Pinheiro AJ, Mouchrek AQ, Monteiro-Neto V, Costa SK, Nascimento JL, Grisotto MA, da Costa R, Fernandes ES. Cinnamaldehyde modulates LPS-induced systemic inflammatory response syndrome through TRPA1-dependent and independent mechanisms. Int Immunopharmacol 2016; 34:60-70. [DOI: 10.1016/j.intimp.2016.02.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 12/30/2022]
|
102
|
Sandor Z, Dekany A, Kelemen D, Bencsik T, Papp R, Bartho L. The TRPA1 Activator Allyl Isothiocyanate (AITC) Contracts Human Jejunal Muscle: Pharmacological Analysis. Basic Clin Pharmacol Toxicol 2016; 119:341-2. [DOI: 10.1111/bcpt.12574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/23/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Zsolt Sandor
- Department of Pharmacology and Pharmacotherapy; University Medical School of Pecs; Pecs Hungary
| | - Andras Dekany
- Department of Pharmacology and Pharmacotherapy; University Medical School of Pecs; Pecs Hungary
| | - Dezsö Kelemen
- Department of Surgery; University Medical School of Pecs; Pecs Hungary
| | - Timea Bencsik
- Department of Pharmacology and Pharmacotherapy; University Medical School of Pecs; Pecs Hungary
- Department of Pharmacognosy; University Medical School of Pecs; Pecs Hungary
| | - Robert Papp
- Department of Surgery; University Medical School of Pecs; Pecs Hungary
| | - Lorand Bartho
- Department of Pharmacology and Pharmacotherapy; University Medical School of Pecs; Pecs Hungary
| |
Collapse
|
103
|
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel is an irritant sensor highly expressed on nociceptive neurons. The clinical use of TRPA1 antagonists is based on the concept that TRPA1 is active during disease states like neuropathic pain. Indeed, in Phase 2a proof-of-concept studies the TRPA1 antagonist GRC17536 has shown efficacy in patients with painful diabetic neuropathy. Moreover, animal studies suggest that the therapeutic value of TRPA1 antagonists extends beyond pain to pruritus, asthma and cough with limited safety concerns. This review provides a comprehensive overview of the patent literature (since 2007) on small-molecule inhibitors of the TRPA1 channel. Despite the clear progress, many unanswered questions remain. Future advancement to Phase 3 studies will assess the real translational potential of this research field.
Collapse
|
104
|
Payrits M, Sághy É, Mátyus P, Czompa A, Ludmerczki R, Deme R, Sándor Z, Helyes Z, Szőke É. A novel 3-(4,5-diphenyl-1,3-oxazol-2-yl)propanal oxime compound is a potent Transient Receptor Potential Ankyrin 1 and Vanilloid 1 (TRPA1 and V1) receptor antagonist. Neuroscience 2016; 324:151-62. [PMID: 26930003 DOI: 10.1016/j.neuroscience.2016.02.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/20/2016] [Accepted: 02/22/2016] [Indexed: 12/20/2022]
Abstract
Transient Receptor Potential Ankyrin 1 and Vanilloid 1 (TRPA1, TRPV1) ion channels expressed on nociceptive primary sensory neurons are important regulators of pain and inflammation. TRPA1 is activated by several inflammatory mediators including formaldehyde and methylglyoxal that are products of the semicarbazide-sensitive amine-oxidase enzyme (SSAO). SZV-1287 is a new 3-(4,5-diphenyl-1,3-oxazol-2-yl)propanal oxime SSAO inhibitor, its chemical structure is similar to other oxime derivatives described as TRPA1 antagonists. Therefore, we investigated its effects on TRPA1 and TRPV1 receptor activation on the cell bodies and peripheral terminals of primary sensory neurons and TRPA1 or TRPV1 receptor-expressing cell lines. Calcium influx in response to the TRPA1 agonist allyl-isothiocyanate (AITC) (200 μM) and the TRPV1 stimulator capsaicin (330 nM) in rat trigeminal neurons or TRPA1 and TRPV1 receptor-expressing cell lines was measured by microfluorimetry or radioactive (45)Ca(2+) uptake experiments. Calcitonin gene-related peptide (CGRP) release as the indicator of 100 μM AITC - or 100 nM capsaicin-induced peripheral sensory nerve terminal activation was measured by radioimmunoassay. SZV-1287 (100, 500 and 1000 nM) exerted a concentration-dependent significant inhibition on both AITC- and capsaicin-evoked calcium influx in trigeminal neurons and TRPA1 or TRPV1 receptor-expressing cell lines. It also significantly inhibited the TRPA1, but not the TRPV1 activation-induced CGRP release from the peripheral sensory nerve endings in a concentration-dependent manner. In contrast, the reference SSAO inhibitor LJP 1207 with a different structure had no effect on TRPA1 or TRPV1 activation in either model system. This is the first evidence that our novel oxime compound SZV-1287 originally developed as a SSAO inhibitor has a potent dual antagonistic action on TRPA1 and TRPV1 ion channels on primary sensory neurons.
Collapse
Affiliation(s)
- M Payrits
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs-7624, Szigeti str. 12., Hungary; Szentágothai Research Centre, University of Pécs, Pécs-7624, Ifjúság str. 20., Hungary.
| | - É Sághy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs-7624, Szigeti str. 12., Hungary; Szentágothai Research Centre, University of Pécs, Pécs-7624, Ifjúság str. 20., Hungary.
| | - P Mátyus
- Department of Organic Chemistry, University of Semmelweis, Budapest-1092, Hőgyes Endre str. 7., Hungary.
| | - A Czompa
- Department of Organic Chemistry, University of Semmelweis, Budapest-1092, Hőgyes Endre str. 7., Hungary.
| | - R Ludmerczki
- Department of Organic Chemistry, University of Semmelweis, Budapest-1092, Hőgyes Endre str. 7., Hungary.
| | - R Deme
- Department of Organic Chemistry, University of Semmelweis, Budapest-1092, Hőgyes Endre str. 7., Hungary.
| | - Z Sándor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs-7624, Szigeti str. 12., Hungary.
| | - Zs Helyes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs-7624, Szigeti str. 12., Hungary; Szentágothai Research Centre, University of Pécs, Pécs-7624, Ifjúság str. 20., Hungary; MTA-PTE Chronic Pain Research Group, Pécs-7624, Szigeti str. 12., Hungary.
| | - É Szőke
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs-7624, Szigeti str. 12., Hungary; Szentágothai Research Centre, University of Pécs, Pécs-7624, Ifjúság str. 20., Hungary; MTA-PTE Chronic Pain Research Group, Pécs-7624, Szigeti str. 12., Hungary.
| |
Collapse
|
105
|
Parenti A, De Logu F, Geppetti P, Benemei S. What is the evidence for the role of TRP channels in inflammatory and immune cells? Br J Pharmacol 2016; 173:953-69. [PMID: 26603538 DOI: 10.1111/bph.13392] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/25/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022] Open
Abstract
A complex network of many interacting mechanisms orchestrates immune and inflammatory responses. Among these, the cation channels of the transient receptor potential (TRP) family expressed by resident tissue cells, inflammatory and immune cells and distinct subsets of primary sensory neurons, have emerged as a novel and interrelated system to detect and respond to harmful agents. TRP channels, by means of their direct effect on the intracellular levels of cations and/or through the indirect modulation of a large series of intracellular pathways, orchestrate a range of cellular processes, such as cytokine production, cell differentiation and cytotoxicity. The contribution of TRP channels to the transition of inflammation and immune responses from a defensive early response to a chronic and pathological condition is also emerging as a possible underlying mechanism in various diseases. This review discusses the roles of TRP channels in inflammatory and immune cell function and provides an overview of the effects of inflammatory and immune TRP channels on the pathogenesis of human diseases.
Collapse
Affiliation(s)
- A Parenti
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - F De Logu
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - P Geppetti
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - S Benemei
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
106
|
RamaKrishnan AM, Sankaranarayanan K. Understanding autoimmunity: The ion channel perspective. Autoimmun Rev 2016; 15:585-620. [PMID: 26854401 DOI: 10.1016/j.autrev.2016.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Ion channels are integral membrane proteins that orchestrate the passage of ions across the cell membrane and thus regulate various key physiological processes of the living system. The stringently regulated expression and function of these channels hold a pivotal role in the development and execution of various cellular functions. Malfunction of these channels results in debilitating diseases collectively termed channelopathies. In this review, we highlight the role of these proteins in the immune system with special emphasis on the development of autoimmunity. The role of ion channels in various autoimmune diseases is also listed out. This comprehensive review summarizes the ion channels that could be used as molecular targets in the development of new therapeutics against autoimmune disorders.
Collapse
Affiliation(s)
| | - Kavitha Sankaranarayanan
- AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chrompet, Chennai 600 044, India.
| |
Collapse
|
107
|
Nakakura S, Matsui M, Sato A, Ishii M, Endo K, Muragishi S, Murase M, Kito H, Niguma H, Kurokawa N, Fujii M, Araki M, Araki K, Ohya S. Pathophysiological significance of the two-pore domain K(+) channel K2P5.1 in splenic CD4(+)CD25(-) T cell subset from a chemically-induced murine inflammatory bowel disease model. Front Physiol 2015; 6:299. [PMID: 26578971 PMCID: PMC4621418 DOI: 10.3389/fphys.2015.00299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/09/2015] [Indexed: 01/17/2023] Open
Abstract
The alkaline pH-activated, two-pore domain K(+) channel K2P5.1 (also known as TASK2/KCNK5) plays an important role in maintaining the resting membrane potential, and contributes to the control of Ca(2+) signaling in several types of cells. Recent studies highlighted the potential role of the K2P5.1 K(+) channel in the pathogenesis of autoimmune diseases such as rheumatoid arthritis and multiple sclerosis. The aim of the present study was to elucidate the pathological significance of the K2P5.1 K(+) channel in inflammatory bowel disease (IBD). The degrees of colitis, colonic epithelial damage, and colonic inflammation were quantified in the dextran sulfate sodium-induced mouse IBD model by macroscopic and histological scoring systems. The expression and functional activity of K2P5.1 in splenic CD4(+) T cells were measured using real-time PCR, Western blot, and fluorescence imaging assays. A significant increase was observed in the expression of K2P5.1 in the splenic CD4(+) T cells of the IBD model. Concomitant with this increase, the hyperpolarization response induced by extracellular alkaline pH was significantly larger in the IBD model with the corresponding intracellular Ca(2+) rises. The expression of K2P5.1 was higher in CD4(+)CD25(-) T cells than in CD4(+)CD25(+) regulatory T cells. The knockout of K2P5.1 in mice significantly suppressed the disease responses implicated in the IBD model. Alternations in intracellular Ca(2+) signaling following the dysregulated expression of K2P5.1 were associated with the disease pathogenesis of IBD. The results of the present study suggest that the K2P5.1 K(+) channel in CD4(+)CD25(-) T cell subset is a potential therapeutic target and biomarker for IBD.
Collapse
Affiliation(s)
- Sawa Nakakura
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University Kyoto, Japan
| | - Miki Matsui
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University Kyoto, Japan
| | - Aya Sato
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University Kyoto, Japan
| | - Mizuki Ishii
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University Kyoto, Japan
| | - Kyoko Endo
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University Kyoto, Japan
| | - Sayaka Muragishi
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University Kyoto, Japan
| | - Miki Murase
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University Kyoto, Japan
| | - Hiroaki Kito
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University Kyoto, Japan
| | - Hiroki Niguma
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University Kyoto, Japan
| | - Natsumi Kurokawa
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University Kyoto, Japan
| | - Masanori Fujii
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University Kyoto, Japan
| | - Masatake Araki
- Institute of Resource Development and Analysis, Kumamoto University Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University Kumamoto, Japan
| | - Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University Kyoto, Japan
| |
Collapse
|
108
|
Ujike A, Otsuguro KI, Miyamoto R, Yamaguchi S, Ito S. Bidirectional effects of hydrogen sulfide via ATP-sensitive K+ channels and transient receptor potential A1 channels in RIN14B cells. Eur J Pharmacol 2015; 764:463-470. [DOI: 10.1016/j.ejphar.2015.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 12/22/2022]
|