101
|
Hilbi H, Rothmeier E, Hoffmann C, Harrison CF. Beyond Rab GTPases Legionella activates the small GTPase Ran to promote microtubule polymerization, pathogen vacuole motility, and infection. Small GTPases 2015; 5:1-6. [PMID: 25496424 DOI: 10.4161/21541248.2014.972859] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Legionella spp. are amoebae-resistant environmental bacteria that replicate in free-living protozoa in a distinct compartment, the Legionella-containing vacuole (LCV). Upon transmission of Legionella pneumophila to the lung, the pathogens employ an evolutionarily conserved mechanism to grow in LCVs within alveolar macrophages, thus triggering a severe pneumonia termed Legionnaires' disease. LCV formation is a complex and robust process, which requires the bacterial Icm/Dot type IV secretion system and involves the amazing number of 300 different translocated effector proteins. LCVs interact with the host cell's endosomal and secretory vesicle trafficking pathway. Accordingly, in a proteomics approach as many as 12 small Rab GTPases implicated in endosomal and secretory vesicle trafficking were identified and validated as LCV components. Moreover, the small GTPase Ran and its effector protein RanBP1 have been found to decorate the pathogen vacuole. Ran regulates nucleo-cytoplasmic transport, spindle assembly, and cytokinesis, as well as the organization of non-centrosomal microtubules. In L. pneumophila-infected amoebae or macrophages, Ran and RanBP1 localize to LCVs, and the small GTPase is activated by the Icm/Dot substrate LegG1. Ran activation by LegG1 leads to microtubule stabilization and promotes intracellular pathogen vacuole motility and bacterial growth, as well as chemotaxis and migration of Legionella-infected cells.
Collapse
Affiliation(s)
- Hubert Hilbi
- a Max von Pettenkofer Institute; Department of Medicine ; Ludwig-Maximilians University Munich ; Munich , Germany
| | | | | | | |
Collapse
|
102
|
Harrison CF, Chiriano G, Finsel I, Manske C, Hoffmann C, Steiner B, Kranjc A, Patthey-Vuadens O, Kicka S, Trofimov V, Ouertatani-Sakouhi H, Soldati T, Scapozza L, Hilbi H. Amoebae-Based Screening Reveals a Novel Family of Compounds Restricting Intracellular Legionella pneumophila. ACS Infect Dis 2015; 1:327-38. [PMID: 27622823 DOI: 10.1021/acsinfecdis.5b00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The causative agent of Legionnaires' disease, Legionella pneumophila, grows in environmental amoebae and mammalian macrophages within a distinct compartment, the 'Legionella-containing vacuole' (LCV). Intracellular bacteria are protected from many antibiotics, and thus are notoriously difficult to eradicate. To identify novel compounds that restrict intracellular bacterial replication, we previously developed an assay based on a coculture of amoebae and GFP-producing L. pneumophila. This assay was used to screen a pathway-based, highly diverse chemical library, referred to as the Sinergia library. In this work, we chose to focus on a group of 11 hit compounds, the majority of which originated from the query molecule CN585, a compound that targets the protein phosphatase calcineurin. Further studies on 78 related compound variants revealed crucial structural attributes, namely a triple-ring scaffold with a central triazine moiety, substituted in positions 3 and 5 by two piperidine or pyrrolidine rings, and in position 1 by an amine group bearing a single aliphatic chain moiety. The most effective compound, ZINC00615682, inhibited intracellular replication of L. pneumophila with an IC50 of approximately 20 nM in Acanthamoeba castellanii and slightly less efficiently in Dictyostelium discoideum or macrophages. Pharmacological and genetic attempts to implicate calcineurin in the intracellular replication of L. pneumophila failed. Taken together, these results show that the amoebae-based screen and structure-activity relationship analysis is suitable for the identification of novel inhibitors of the intracellular replication of L. pneumophila. The most potent compound identified in this study targets (an) as yet unidentified host factor(s).
Collapse
Affiliation(s)
- Christopher F. Harrison
- Max von Pettenkofer Institute, Department
of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | - Gianpaolo Chiriano
- School of Pharmaceutical
Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Ivo Finsel
- Max von Pettenkofer Institute, Department
of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | - Christian Manske
- Max von Pettenkofer Institute, Department
of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | - Christine Hoffmann
- Max von Pettenkofer Institute, Department
of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | - Bernhard Steiner
- Institute of Medical Microbiology, Department of Medicine, University of Zurich, Gloriastrasse 30/32, 8006 Zurich, Switzerland
| | - Agata Kranjc
- School of Pharmaceutical
Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Ophelie Patthey-Vuadens
- School of Pharmaceutical
Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | | | | | | | | | - Leonardo Scapozza
- School of Pharmaceutical
Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 1211 Geneva, Switzerland
| | - Hubert Hilbi
- Max von Pettenkofer Institute, Department
of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
- Institute of Medical Microbiology, Department of Medicine, University of Zurich, Gloriastrasse 30/32, 8006 Zurich, Switzerland
| |
Collapse
|
103
|
Klima M, Baumlova A, Chalupska D, Hřebabecký H, Dejmek M, Nencka R, Boura E. The high-resolution crystal structure of phosphatidylinositol 4-kinase IIβ and the crystal structure of phosphatidylinositol 4-kinase IIα containing a nucleoside analogue provide a structural basis for isoform-specific inhibitor design. ACTA ACUST UNITED AC 2015; 71:1555-63. [PMID: 26143926 DOI: 10.1107/s1399004715009505] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/18/2015] [Indexed: 11/10/2022]
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is the most abundant monophosphoinositide in eukaryotic cells. Humans have four phosphatidylinositol 4-kinases (PI4Ks) that synthesize PI4P, among which are PI4K IIβ and PI4K IIα. In this study, two crystal structures are presented: the structure of human PI4K IIβ and the structure of PI4K IIα containing a nucleoside analogue. The former, a complex with ATP, is the first high-resolution (1.9 Å) structure of a PI4K. These structures reveal new details such as high conformational heterogeneity of the lateral hydrophobic pocket of the C-lobe and together provide a structural basis for isoform-specific inhibitor design.
Collapse
Affiliation(s)
- Martin Klima
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Adriana Baumlova
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Dominika Chalupska
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Hubert Hřebabecký
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Milan Dejmek
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Radim Nencka
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Evzen Boura
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| |
Collapse
|
104
|
Luo X, Wasilko DJ, Liu Y, Sun J, Wu X, Luo ZQ, Mao Y. Structure of the Legionella Virulence Factor, SidC Reveals a Unique PI(4)P-Specific Binding Domain Essential for Its Targeting to the Bacterial Phagosome. PLoS Pathog 2015; 11:e1004965. [PMID: 26067986 PMCID: PMC4467491 DOI: 10.1371/journal.ppat.1004965] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/20/2015] [Indexed: 11/23/2022] Open
Abstract
The opportunistic intracellular pathogen Legionella pneumophila is the causative agent of Legionnaires’ disease. L. pneumophila delivers nearly 300 effector proteins into host cells for the establishment of a replication-permissive compartment known as the Legionella-containing vacuole (LCV). SidC and its paralog SdcA are two effectors that have been shown to anchor on the LCV via binding to phosphatidylinositol-4-phosphate [PI(4)P] to facilitate the recruitment of ER proteins to the LCV. We recently reported that the N-terminal SNL (SidC N-terminal E3 Ligase) domain of SidC is a ubiquitin E3 ligase, and its activity is required for the recruitment of ER proteins to the LCV. Here we report the crystal structure of SidC (1-871). The structure reveals that SidC contains four domains that are packed into an arch-like shape. The P4C domain (PI(4)P binding of SidC) comprises a four α-helix bundle and covers the ubiquitin ligase catalytic site of the SNL domain. Strikingly, a pocket with characteristic positive electrostatic potentials is formed at one end of this bundle. Liposome binding assays of the P4C domain further identified the determinants of phosphoinositide recognition and membrane interaction. Interestingly, we also found that binding with PI(4)P stimulates the E3 ligase activity, presumably due to a conformational switch induced by PI(4)P from a closed form to an open active form. Mutations of key residues involved in PI(4)P binding significantly reduced the association of SidC with the LCV and abolished its activity in the recruitment of ER proteins and ubiquitin signals, highlighting that PI(4)P-mediated targeting of SidC is critical to its function in the remodeling of the bacterial phagosome membrane. Finally, a GFP-fusion with the P4C domain was demonstrated to be specifically localized to PI(4)P-enriched compartments in mammalian cells. This domain shows the potential to be developed into a sensitive and accurate PI(4)P probe in living cells. Legionnaires’ disease is caused by the intracellular bacterial pathogen Legionella pneumophila. Successful infection by this bacterium requires a special secretion system that injects nearly 300 effector proteins into the cytoplasm of host cells. The effector SidC and its paralog SdcA anchor on the Legionella-containing vacuole (LCV) and are important for the recruitment of ER proteins to the LCV. Recent data demonstrated that SidC and SdcA are ubiquitin E3 ligases and that their activity is required for the enrichment of ER proteins and ubiquitin conjugates on the LCV. Here we present the crystal structure of SidC revealing the architecture of a novel PI(4)P-binding module. Our biochemical and cell biological studies highlight key determinants involved in PI(4)P-binding and membrane insertion. Characterization of this novel PI(4)P binding module opens a potential avenue for the development of an accurate in vivo PI(4)P probe. Our data also reveals a distinct regulatory mechanism of the ubiquitin E3 ligase activity of SidC, which is activated by the lipid molecule, PI(4)P. Furthermore, our results suggest that proper spatial localization of SidC to the cytoplasmic surface of the bacterial phagosome through the binding with PI(4)P is crucial to its function.
Collapse
Affiliation(s)
- Xi Luo
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - David J. Wasilko
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Yao Liu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Jiayi Sun
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Xiaochun Wu
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
105
|
Herweg JA, Hansmeier N, Otto A, Geffken AC, Subbarayal P, Prusty BK, Becher D, Hensel M, Schaible UE, Rudel T, Hilbi H. Purification and proteomics of pathogen-modified vacuoles and membranes. Front Cell Infect Microbiol 2015; 5:48. [PMID: 26082896 PMCID: PMC4451638 DOI: 10.3389/fcimb.2015.00048] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/14/2015] [Indexed: 01/08/2023] Open
Abstract
Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e., the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania, and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation.
Collapse
Affiliation(s)
- Jo-Ana Herweg
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Nicole Hansmeier
- Division of Microbiology, University of Osnabrück Osnabrück, Germany
| | - Andreas Otto
- Institute of Microbiology, Ernst-Moritz-Arndt University Greifswald Greifswald, Germany
| | - Anna C Geffken
- Priority Area Infections, Cellular Microbiology, Research Center Borstel, Leibniz Center for Medicine and Biosciences Borstel, Germany
| | - Prema Subbarayal
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Bhupesh K Prusty
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Dörte Becher
- Institute of Microbiology, Ernst-Moritz-Arndt University Greifswald Greifswald, Germany
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück Osnabrück, Germany
| | - Ulrich E Schaible
- Priority Area Infections, Cellular Microbiology, Research Center Borstel, Leibniz Center for Medicine and Biosciences Borstel, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Hubert Hilbi
- Department of Medicine, Max von Pettenkofer Institute, Ludwig-Maximilians University Munich Munich, Germany ; Department of Medicine, Institute of Medical Microbiology, University of Zürich Zürich, Switzerland
| |
Collapse
|
106
|
Finsel I, Hilbi H. Formation of a pathogen vacuole according to Legionella pneumophila: how to kill one bird with many stones. Cell Microbiol 2015; 17:935-50. [PMID: 25903720 DOI: 10.1111/cmi.12450] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 12/12/2022]
Abstract
Legionella species are ubiquitous, waterborne bacteria that thrive in numerous ecological niches. Yet, in contrast to many other environmental bacteria, Legionella spp. are also able to grow intracellularly in predatory protozoa. This feature mainly accounts for the pathogenicity of Legionella pneumophila, which causes the majority of clinical cases of a severe pneumonia termed Legionnaires' disease. The pathomechanism underlying L. pneumophila infection is based on macrophage resistance, which in turn is largely defined by the opportunistic pathogen's resistance towards amoebae. L. pneumophila replicates in macrophages or amoebae in a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). LCV formation requires the bacterial intracellular multiplication/defective for organelle trafficking (Icm/Dot) type IV secretion system and involves a plethora of translocated effector proteins, which subvert pivotal processes in the host cell. Of the ca. 300 different experimentally validated Icm/Dot substrates, about 50 have been studied and attributed a cellular function to date. The versatility and ingenuity of these effectors' mode of actions is striking. In this review, we summarize insight into the cellular functions and biochemical activities of well-characterized L. pneumophila effector proteins and the host pathways they target. Recent studies not only substantially increased our knowledge about pathogen-host interactions, but also shed light on novel biological mechanisms.
Collapse
Affiliation(s)
- Ivo Finsel
- Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany
| | - Hubert Hilbi
- Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany.,Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
107
|
So EC, Mattheis C, Tate EW, Frankel G, Schroeder GN. Creating a customized intracellular niche: subversion of host cell signaling by Legionella type IV secretion system effectors. Can J Microbiol 2015; 61:617-35. [PMID: 26059316 DOI: 10.1139/cjm-2015-0166] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Gram-negative facultative intracellular pathogen Legionella pneumophila infects a wide range of different protozoa in the environment and also human alveolar macrophages upon inhalation of contaminated aerosols. Inside its hosts, it creates a defined and unique compartment, termed the Legionella-containing vacuole (LCV), for survival and replication. To establish the LCV, L. pneumophila uses its Dot/Icm type IV secretion system (T4SS) to translocate more than 300 effector proteins into the host cell. Although it has become apparent in the past years that these effectors subvert a multitude of cellular processes and allow Legionella to take control of host cell vesicle trafficking, transcription, and translation, the exact function of the vast majority of effectors still remains unknown. This is partly due to high functional redundancy among the effectors, which renders conventional genetic approaches to elucidate their role ineffective. Here, we review the current knowledge about Legionella T4SS effectors, highlight open questions, and discuss new methods that promise to facilitate the characterization of T4SS effector functions in the future.
Collapse
Affiliation(s)
- Ernest C So
- a MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK.,b Department of Chemistry, South Kensington Campus, Imperial College, London, SW7 2AZ, UK
| | - Corinna Mattheis
- a MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Edward W Tate
- b Department of Chemistry, South Kensington Campus, Imperial College, London, SW7 2AZ, UK
| | - Gad Frankel
- a MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Gunnar N Schroeder
- a MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| |
Collapse
|
108
|
Microbial peptidyl-prolyl cis/trans isomerases (PPIases): virulence factors and potential alternative drug targets. Microbiol Mol Biol Rev 2015; 78:544-71. [PMID: 25184565 DOI: 10.1128/mmbr.00015-14] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Initially discovered in the context of immunomodulation, peptidyl-prolyl cis/trans isomerases (PPIases) were soon identified as enzymes catalyzing the rate-limiting protein folding step at peptidyl bonds preceding proline residues. Intense searches revealed that PPIases are a superfamily of proteins consisting of three structurally distinguishable families with representatives in every described species of prokaryote and eukaryote and, recently, even in some giant viruses. Despite the clear-cut enzymatic activity and ubiquitous distribution of PPIases, reports on solely PPIase-dependent biological roles remain scarce. Nevertheless, they have been found to be involved in a plethora of biological processes, such as gene expression, signal transduction, protein secretion, development, and tissue regeneration, underscoring their general importance. Hence, it is not surprising that PPIases have also been identified as virulence-associated proteins. The extent of contribution to virulence is highly variable and dependent on the pleiotropic roles of a single PPIase in the respective pathogen. The main objective of this review is to discuss this variety in virulence-related bacterial and protozoan PPIases as well as the involvement of host PPIases in infectious processes. Moreover, a special focus is given to Legionella pneumophila macrophage infectivity potentiator (Mip) and Mip-like PPIases of other pathogens, as the best-characterized virulence-related representatives of this family. Finally, the potential of PPIases as alternative drug targets and first tangible results are highlighted.
Collapse
|
109
|
Hammond GRV, Balla T. Polyphosphoinositide binding domains: Key to inositol lipid biology. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:746-58. [PMID: 25732852 DOI: 10.1016/j.bbalip.2015.02.013] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 01/29/2015] [Accepted: 02/17/2015] [Indexed: 01/01/2023]
Abstract
Polyphosphoinositides (PPIn) are an important family of phospholipids located on the cytoplasmic leaflet of eukaryotic cell membranes. Collectively, they are critical for the regulation of many aspects of membrane homeostasis and signaling, with notable relevance to human physiology and disease. This regulation is achieved through the selective interaction of these lipids with hundreds of cellular proteins, and thus the capability to study these localized interactions is crucial to understanding their functions. In this review, we discuss current knowledge of the principle types of PPIn-protein interactions, focusing on specific lipid-binding domains. We then discuss how these domains have been re-tasked by biologists as molecular probes for these lipids in living cells. Finally, we describe how the knowledge gained with these probes, when combined with other techniques, has led to the current view of the lipids' localization and function in eukaryotes, focusing mainly on animal cells. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Shriver Kennedy National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
110
|
Isaac DT, Isberg R. Master manipulators: an update on Legionella pneumophila Icm/Dot translocated substrates and their host targets. Future Microbiol 2015; 9:343-59. [PMID: 24762308 DOI: 10.2217/fmb.13.162] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Macrophages are the front line of immune defense against invading microbes. Microbes, however, have evolved numerous and diverse mechanisms to thwart these host immune defenses and thrive intracellularly. Legionella pneumophila, a Gram-negative pathogen of amoebal and mammalian phagocytes, is one such microbe. In humans, it causes a potentially fatal pneumonia referred to as Legionnaires' disease. Armed with the Icm/Dot type IV secretion system, which is required for virulence, and approximately 300 translocated proteins, Legionella is able to enter host cells, direct the biogenesis of its own vacuolar compartment, and establish a replicative niche, where it grows to high levels before lysing the host cell. Efforts to understand the pathogenesis of this bacterium have focused on characterizing the molecular activities of its many effectors. In this article, we highlight recent strides that have been made in understanding how Legionella effectors mediate host-pathogen interactions.
Collapse
Affiliation(s)
- Dervla T Isaac
- Department of Microbiology & Molecular Biology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
111
|
Bruckert WM, Abu Kwaik Y. Complete and ubiquitinated proteome of the Legionella-containing vacuole within human macrophages. J Proteome Res 2014; 14:236-48. [PMID: 25369898 PMCID: PMC4286187 DOI: 10.1021/pr500765x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Within protozoa or human macrophages Legionella pneumophila evades the endosomal pathway and
replicates within an ER-derived
vacuole termed the Legionella-containing vacuole
(LCV). The LCV membrane-localized AnkB effector of L. pneumophila is an F-box protein that mediates decoration of the LCV with lysine48-linked polyubiquitinated proteins, which is essential for
intravacuolar replication. Using high-throughput LC–MS analysis,
we have identified the total and ubiquitinated host-derived proteome
of LCVs purified from human U937 macrophages. The LCVs harboring the
AA100/130b WT strain contain 1193 proteins including 24 ubiquitinated
proteins, while the ankB mutant LCVs contain 1546
proteins with 29 ubiquitinated proteins. Pathway analyses reveal the
enrichment of proteins involved in signaling, protein transport, phosphatidylinositol,
and carbohydrate metabolism on both WT and ankB mutant
LCVs. The ankB mutant LCVs are preferentially enriched
for proteins involved in transcription/translation and immune responses.
Ubiquitinated proteins on the WT strain LCVs are enriched for immune
response, signaling, regulation, intracellular trafficking, and amino
acid transport pathways, while ubiquitinated proteins on the ankB mutant LCVs are enriched for vesicle trafficking, signaling,
and ubiquitination pathways. The complete and ubiquitinated LCV proteome
within human macrophages illustrates complex and dynamic biogenesis
of the LCV and provides a rich resource for future studies.
Collapse
Affiliation(s)
- William M Bruckert
- Department of Microbiology and Immunology, University of Louisville , 319 Abraham Flexner Way 55A, Louisville, Kentucky 40202, United States
| | | |
Collapse
|
112
|
Weber S, Stirnimann CU, Wieser M, Frey D, Meier R, Engelhardt S, Li X, Capitani G, Kammerer RA, Hilbi H. A type IV translocated Legionella cysteine phytase counteracts intracellular growth restriction by phytate. J Biol Chem 2014; 289:34175-88. [PMID: 25339170 DOI: 10.1074/jbc.m114.592568] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The causative agent of Legionnaires' pneumonia, Legionella pneumophila, colonizes diverse environmental niches, including biofilms, plant material, and protozoa. In these habitats, myo-inositol hexakisphosphate (phytate) is prevalent and used as a phosphate storage compound or as a siderophore. L. pneumophila replicates in protozoa and mammalian phagocytes within a unique "Legionella-containing vacuole." The bacteria govern host cell interactions through the Icm/Dot type IV secretion system (T4SS) and ∼300 different "effector" proteins. Here we characterize a hitherto unrecognized Icm/Dot substrate, LppA, as a phytate phosphatase (phytase). Phytase activity of recombinant LppA required catalytically essential cysteine (Cys(231)) and arginine (Arg(237)) residues. The structure of LppA at 1.4 Å resolution revealed a mainly α-helical globular protein stabilized by four antiparallel β-sheets that binds two phosphate moieties. The phosphates localize to a P-loop active site characteristic of dual specificity phosphatases or to a non-catalytic site, respectively. Phytate reversibly abolished growth of L. pneumophila in broth, and growth inhibition was relieved by overproduction of LppA or by metal ion titration. L. pneumophila lacking lppA replicated less efficiently in phytate-loaded Acanthamoeba castellanii or Dictyostelium discoideum, and the intracellular growth defect was complemented by the phytase gene. These findings identify the chelator phytate as an intracellular bacteriostatic component of cell-autonomous host immunity and reveal a T4SS-translocated L. pneumophila phytase that counteracts intracellular bacterial growth restriction by phytate. Thus, bacterial phytases might represent therapeutic targets to combat intracellular pathogens.
Collapse
Affiliation(s)
- Stephen Weber
- From the Max von Pettenkofer Institute, Department of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | - Christian U Stirnimann
- the Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Mara Wieser
- the Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Daniel Frey
- the Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Roger Meier
- the Scientific Center for Optical and Electron Microscopy, ETH Zurich, 8093 Zurich, Switzerland
| | - Sabrina Engelhardt
- the Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology (ZIHP), Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland, and
| | - Xiaodan Li
- the Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Guido Capitani
- the Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Richard A Kammerer
- the Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Hubert Hilbi
- From the Max von Pettenkofer Institute, Department of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany, the Institute of Medical Microbiology, Department of Medicine, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
113
|
Pizarro-Cerdá J, Kühbacher A, Cossart P. Phosphoinositides and host-pathogen interactions. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:911-8. [PMID: 25241942 DOI: 10.1016/j.bbalip.2014.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 01/08/2023]
Abstract
Phosphoinositides control key cellular processes including vesicular trafficking and actin polymerization. Intracellular bacterial pathogens manipulate phosphoinositide metabolism in order to promote their uptake by target cells and to direct in some cases the biogenesis of their replication compartments. In this chapter, we review the molecular strategies that major pathogens including Listeria, Mycobacterium, Shigella, Salmonella, Legionella and Yersinia use to hijack phosphoinositides during infection. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Javier Pizarro-Cerdá
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015 Paris, France; INSERM, U604, F-75015 Paris, France; INRA, USC2020, F-75015 Paris, France
| | - Andreas Kühbacher
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Department of Molecular Biotechnology, Stuttgart G-70569, Germany
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015 Paris, France; INSERM, U604, F-75015 Paris, France; INRA, USC2020, F-75015 Paris, France
| |
Collapse
|
114
|
Baïlo N, Cosson P, Charette SJ, Paquet VE, Doublet P, Letourneur F. Defective lysosome maturation and Legionella pneumophila replication in Dictyostelium cells mutant for the Arf GAP ACAP-A. J Cell Sci 2014; 127:4702-13. [PMID: 25189617 DOI: 10.1242/jcs.154559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Dictyostelium discoideum ACAP-A is an Arf GTPase-activating protein (GAP) involved in cytokinesis, cell migration and actin cytoskeleton dynamics. In mammalian cells, ACAP family members regulate endocytic protein trafficking. Here, we explored the function of ACAP-A in the endocytic pathway of D. discoideum. In the absence of ACAP-A, the efficiency of fusion between post-lysosomes and the plasma membrane was reduced, resulting in the accumulation of post-lysosomes. Moreover, internalized fluid-phase markers showed extended intracellular transit times, and the transfer kinetics of phagocyted particles from lysosomes to post-lysosomes was reduced. Neutralization of lysosomal pH, one essential step in lysosome maturation, was also delayed. Whereas expression of ACAP-A-GFP in acapA(-) cells restored normal particle transport kinetics, a mutant ACAP-A protein with no GAP activity towards the small GTPase ArfA failed to complement this defect. Taken together, these data support a role for ACAP-A in maturation of lysosomes into post-lysosomes through an ArfA-dependent mechanism. In addition, we reveal that ACAP-A is required for efficient intracellular growth of Legionella pneumophila, a pathogen known to subvert the endocytic host cell machinery for replication. This further emphasizes the role of ACAP-A in the endocytic pathway.
Collapse
Affiliation(s)
- Nathalie Baïlo
- CIRI, International Centre for Infectiology Research, Legionella pathogenesis group, Université de Lyon, 69364 Lyon Cedex 07, France Inserm, U1111, 69342 Lyon Cedex 07, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon Cedex 07, France CNRS, UMR5308, 69007 Lyon, France
| | - Pierre Cosson
- Département de Physiologie Cellulaire et Métabolisme, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, G1V 0A6, Canada Centre de Recherche de L'institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada
| | - Valérie E Paquet
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, G1V 0A6, Canada Centre de Recherche de L'institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada
| | - Patricia Doublet
- CIRI, International Centre for Infectiology Research, Legionella pathogenesis group, Université de Lyon, 69364 Lyon Cedex 07, France Inserm, U1111, 69342 Lyon Cedex 07, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon Cedex 07, France CNRS, UMR5308, 69007 Lyon, France
| | - François Letourneur
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier II et I, CNRS, UMR 5235, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
115
|
The Legionella longbeachae Icm/Dot substrate SidC selectively binds phosphatidylinositol 4-phosphate with nanomolar affinity and promotes pathogen vacuole-endoplasmic reticulum interactions. Infect Immun 2014; 82:4021-33. [PMID: 25024371 DOI: 10.1128/iai.01685-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Legionella spp. cause the severe pneumonia Legionnaires' disease. The environmental bacteria replicate intracellularly in free-living amoebae and human alveolar macrophages within a distinct, endoplasmic reticulum (ER)-derived compartment termed the Legionella-containing vacuole (LCV). LCV formation requires the bacterial Icm/Dot type IV secretion system (T4SS) that translocates into host cells a plethora of different "effector" proteins, some of which anchor to the pathogen vacuole by binding to phosphoinositide (PI) lipids. Here, we identified by unbiased pulldown assays in Legionella longbeachae lysates a 111-kDa SidC homologue as the major phosphatidylinositol 4-phosphate [PtdIns(4)P]-binding protein. The PI-binding domain was mapped to a 20-kDa P4C [PtdIns(4)P binding of SidC] fragment. Isothermal titration calorimetry revealed that SidC of L. longbeachae (SidC(Llo)) binds PtdIns(4)P with a K(d) (dissociation constant) of 71 nM, which is 3 to 4 times lower than that of the SidC orthologue of Legionella pneumophila (SidC(Lpn)). Upon infection of RAW 264.7 macrophages with L. longbeachae, endogenous SidC(Llo) or ectopically produced SidC(Lpn) localized in an Icm/Dot-dependent manner to the PtdIns(4)P-positive LCVs. An L. longbeachae ΔsidC deletion mutant was impaired for calnexin recruitment to LCVs in Dictyostelium discoideum amoebae and outcompeted by wild-type bacteria in Acanthamoeba castellanii. Calnexin recruitment was restored by SidC(Llo) or its orthologues SidC(Lpn) and SdcA(Lpn). Conversely, calnexin recruitment was restored by SidC(Llo) in L. pneumophila lacking sidC and sdcA. Together, biochemical, genetic, and cell biological data indicate that SidC(Llo) is an L. longbeachae effector that binds through a P4C domain with high affinity to PtdIns(4)P on LCVs, promotes ER recruitment to the LCV, and thus plays a role in pathogen-host interactions.
Collapse
|
116
|
Legionella pneumophila type IV effectors hijack the transcription and translation machinery of the host cell. Trends Cell Biol 2014; 24:771-8. [PMID: 25012125 DOI: 10.1016/j.tcb.2014.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 01/26/2023]
Abstract
Intracellular bacterial pathogens modulate the host response to persist and replicate inside a eukaryotic cell and cause disease. Legionella pneumophila, the causative agent of Legionnaires' disease, is present in freshwater environments and represents one of these pathogens. During coevolution with protozoan cells, L. pneumophila has acquired highly sophisticated and diverse strategies to hijack host cell processes. It secretes hundreds of effectors into the host cell, and these manipulate host signaling pathways and key cellular processes. Recently it has been shown that L. pneumophila is also able to alter the transcription and translation machinery of the host and to exploit epigenetic mechanisms in the cells it resides in to counteract host responses.
Collapse
|
117
|
The Legionella effector SidC defines a unique family of ubiquitin ligases important for bacterial phagosomal remodeling. Proc Natl Acad Sci U S A 2014; 111:10538-43. [PMID: 25006264 DOI: 10.1073/pnas.1402605111] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The activity of proteins delivered into host cells by the Dot/Icm injection apparatus allows Legionella pneumophila to establish a niche called the Legionella-containing vacuole (LCV), which is permissive for intracellular bacterial propagation. Among these proteins, substrate of Icm/Dot transporter (SidC) anchors to the cytoplasmic surface of the LCV and is important for the recruitment of host endoplasmic reticulum (ER) proteins to this organelle. However, the biochemical function underlying this activity is unknown. Here, we determined the structure of the N-terminal domain of SidC, which has no structural homology to any protein. Sequence homology analysis revealed a potential canonical catalytic triad formed by Cys46, His444, and Asp446 on the surface of SidC. Unexpectedly, we found that SidC is an E3 ubiquitin ligase that uses the C-H-D triad to catalyze the formation of high-molecular-weight polyubiquitin chains through multiple ubiquitin lysine residues. A C46A mutation completely abolished the E3 ligase activity and the ability of the protein to recruit host ER proteins as well as polyubiquitin conjugates to the LCV. Thus, SidC represents a unique E3 ubiquitin ligase family important for phagosomal membrane remodeling by L. pneumophila.
Collapse
|
118
|
Hubber A, Arasaki K, Nakatsu F, Hardiman C, Lambright D, De Camilli P, Nagai H, Roy CR. The machinery at endoplasmic reticulum-plasma membrane contact sites contributes to spatial regulation of multiple Legionella effector proteins. PLoS Pathog 2014; 10:e1004222. [PMID: 24992562 PMCID: PMC4081824 DOI: 10.1371/journal.ppat.1004222] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/16/2014] [Indexed: 11/18/2022] Open
Abstract
The Dot/Icm system of the intracellular pathogen Legionella pneumophila has the capacity to deliver over 270 effector proteins into host cells during infection. Important questions remain as to spatial and temporal mechanisms used to regulate such a large array of virulence determinants after they have been delivered into host cells. Here we investigated several L. pneumophila effector proteins that contain a conserved phosphatidylinositol-4-phosphate (PI4P)-binding domain first described in the effector DrrA (SidM). This PI4P binding domain was essential for the localization of effectors to the early L. pneumophila-containing vacuole (LCV), and DrrA-mediated recruitment of Rab1 to the LCV required PI4P-binding activity. It was found that the host cell machinery that regulates sites of contact between the plasma membrane (PM) and the endoplasmic reticulum (ER) modulates PI4P dynamics on the LCV to control localization of these effectors. Specifically, phosphatidylinositol-4-kinase IIIα (PI4KIIIα) was important for generating a PI4P signature that enabled L. pneumophila effectors to localize to the PM-derived vacuole, and the ER-associated phosphatase Sac1 was involved in metabolizing the PI4P on the vacuole to promote the dissociation of effectors. A defect in L. pneumophila replication in macrophages deficient in PI4KIIIα was observed, highlighting that a PM-derived PI4P signature is critical for biogenesis of a vacuole that supports intracellular multiplication of L. pneumophila. These data indicate that PI4P metabolism by enzymes controlling PM-ER contact sites regulate the association of L. pneumophila effectors to coordinate early stages of vacuole biogenesis. The intracellular pathogen Legionella pneumophila encodes at least 270 effectors that modulate trafficking of the pathogen-occupied vacuole. The mechanisms by which effectors are controlled in host cells are of key interest. Spatial and temporal regulation of effector function has been proposed to involve effector binding to host phosphoinositides. We present results showing that L. pneumophila utilizes the host kinase PI4KIIIα to generate PI4P on the bacterial vacuole and this signature mediates the localization of DrrA and subsequent recruitment of the GTPase Rab1. Additionally, it was found that the host PI4P phosphatase Sac1 was involved in consuming PI4P on the vacuole, which reduced DrrA-mediated recruitment of Rab1 to the LCV. Our data supports the recent concept that PI4KIIIα is important for generation of the plasma-membrane pool of PI4P in host cells, and demonstrates a functional consequence for PI4P-binding by an L. pneumophila effector protein.
Collapse
Affiliation(s)
- Andree Hubber
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
- * E-mail: (AH); (CRR)
| | - Kohei Arasaki
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, Japan
| | - Fubito Nakatsu
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Camille Hardiman
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - David Lambright
- Program in Molecular Medicine and Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Pietro De Camilli
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Hiroki Nagai
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Craig R. Roy
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail: (AH); (CRR)
| |
Collapse
|
119
|
Kuhle K, Krausze J, Curth U, Rössle M, Heuner K, Lang C, Flieger A. Oligomerization inhibits Legionella pneumophila PlaB phospholipase A activity. J Biol Chem 2014; 289:18657-66. [PMID: 24811180 DOI: 10.1074/jbc.m114.573196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intracellularly replicating lung pathogen Legionella pneumophila consists of an extraordinary variety of phospholipases, including at least 15 different phospholipases A (PLA). Among them, PlaB, the first characterized member of a novel lipase family, is a hemolytic virulence factor that exhibits the most prominent PLA activity in L. pneumophila. We analyzed here protein oligomerization, the importance of oligomerization for activity, addressed further essential regions for activity within the PlaB C terminus, and the significance of PlaB-derived lipolytic activity for L. pneumophila intracellular replication. We determined by means of analytical ultracentrifugation and small angle x-ray scattering analysis that PlaB forms homodimers and homotetramers. The C-terminal 5, 10, or 15 amino acids, although the individual regions contributed to PLA activity, were not essential for protein tetramerization. Infection of mouse macrophages with L. pneumophila wild type, plaB knock-out mutant, and plaB complementing or various mutated plaB-harboring strains showed that catalytic activity of PlaB promotes intracellular replication. We observed that PlaB was most active in the lower nanomolar concentration range but not at or only at a low level at concentration above 0.1 μm where it exists in a dimer/tetramer equilibrium. We therefore conclude that PlaB is a virulence factor that, on the one hand, assembles in inactive tetramers at micromolar concentrations. On the other hand, oligomer dissociation at nanomolar concentrations activates PLA activity. Our data highlight the first example of concentration-dependent phospholipase inactivation by tetramerization, which may protect the bacterium from internal PLA activity, but enzyme dissociation may allow its activation after export.
Collapse
Affiliation(s)
- Katja Kuhle
- From the Robert Koch-Institut, 38855 Wernigerode
| | - Joern Krausze
- the Helmholtz Center for Infection Research, 38124 Braunschweig
| | - Ute Curth
- the Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover
| | - Manfred Rössle
- the European Molecular Biology Laboratory, 22603 Hamburg Branch, c/o DESY, Hamburg, and the Lübeck University of Applied Sciences, 23562 Lübeck, Germany
| | - Klaus Heuner
- From the Robert Koch-Institut, 38855 Wernigerode
| | | | | |
Collapse
|
120
|
Schell U, Kessler A, Hilbi H. Phosphorylation signalling through theLegionellaquorum sensing histidine kinases LqsS and LqsT converges on the response regulator LqsR. Mol Microbiol 2014; 92:1039-55. [DOI: 10.1111/mmi.12612] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Ursula Schell
- Max von Pettenkofer Institute; Ludwig-Maximilians University; Pettenkoferstraße 9a 80336 Munich Germany
| | - Aline Kessler
- Max von Pettenkofer Institute; Ludwig-Maximilians University; Pettenkoferstraße 9a 80336 Munich Germany
| | - Hubert Hilbi
- Max von Pettenkofer Institute; Ludwig-Maximilians University; Pettenkoferstraße 9a 80336 Munich Germany
- Institute of Medical Microbiology; University of Zürich; Gloriastrasse 30/32 8006 Zürich Switzerland
| |
Collapse
|
121
|
The structure of the N-terminal domain of the Legionella protein SidC. J Struct Biol 2014; 186:188-94. [PMID: 24556577 DOI: 10.1016/j.jsb.2014.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 01/15/2023]
Abstract
The Gram-negative bacterium Legionella pneumophila is the causative agent of Legionnaires' disease. During infection of eukaryotic cells, the bacterium releases about 300 different bacterial effector molecules that aid in the establishment of the Legionella-containing vacuole (LCV) among which SidC is one of these secreted proteins. However, apart from membrane lipid binding the function of SidC remains elusive. In order to characterize SidC further, we have determined the crystal structure of the N-terminal domain of SidC (amino acids 1-609, referred to as SidC-N) at 2.4Å resolution. SidC-N reveals a novel fold in which 4 potential subdomains (A-D) are arranged in a crescent-like structure. None of these subdomains currently has any known structural homologues, raising the question of how this fold has evolved. These domains are highly interconnected, with a low degree of flexibility towards each other. Due to the extended arrangement of the subdomains, SidC-N may contain multiple binding sites for potential interaction partners.
Collapse
|
122
|
Live-cell imaging of phosphoinositide dynamics and membrane architecture during Legionella infection. mBio 2014; 5:e00839-13. [PMID: 24473127 PMCID: PMC3903275 DOI: 10.1128/mbio.00839-13] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The causative agent of Legionnaires’ disease, Legionella pneumophila, replicates in amoebae and macrophages in a distinct membrane-bound compartment, the Legionella-containing vacuole (LCV). LCV formation is governed by the bacterial Icm/Dot type IV secretion system that translocates ~300 different “effector” proteins into host cells. Some of the translocated effectors anchor to the LCV membrane via phosphoinositide (PI) lipids. Here, we use the soil amoeba Dictyostelium discoideum, producing fluorescent PI probes, to analyze the LCV PI dynamics by live-cell imaging. Upon uptake of wild-type or Icm/Dot-deficient L. pneumophila, PtdIns(3,4,5)P3 transiently accumulated for an average of 40 s on early phagosomes, which acquired PtdIns(3)P within 1 min after uptake. Whereas phagosomes containing ΔicmT mutant bacteria remained decorated with PtdIns(3)P, more than 80% of wild-type LCVs gradually lost this PI within 2 h. The process was accompanied by a major rearrangement of PtdIns(3)P-positive membranes condensing to the cell center. PtdIns(4)P transiently localized to early phagosomes harboring wild-type or ΔicmT L. pneumophila and was cleared within minutes after uptake. During the following 2 h, PtdIns(4)P steadily accumulated only on wild-type LCVs, which maintained a discrete PtdIns(4)P identity spatially separated from calnexin-positive endoplasmic reticulum (ER) for at least 8 h. The separation of PtdIns(4)P-positive and ER membranes was even more pronounced for LCVs harboring ΔsidC-sdcA mutant bacteria defective for ER recruitment, without affecting initial bacterial replication in the pathogen vacuole. These findings elucidate the temporal and spatial dynamics of PI lipids implicated in LCV formation and provide insight into host cell membrane and effector protein interactions. The environmental bacterium Legionella pneumophila is the causative agent of Legionnaires’ pneumonia. The bacteria form in free-living amoebae and mammalian immune cells a replication-permissive compartment, the Legionella-containing vacuole (LCV). To subvert host cell processes, the bacteria secrete the amazing number of ~300 different proteins into host cells. Some of these proteins bind phosphoinositide (PI) lipids to decorate the LCV. PI lipids are crucial factors involved in host cell membrane dynamics and LCV formation. Using Dictyostelium amoebae producing one or two distinct fluorescent probes, we elucidated the dynamic LCV PI pattern in high temporal and spatial resolution. Notably, the endocytic PI lipid PtdIns(3)P was slowly cleared from LCVs, thus incapacitating the host cell’s digestive machinery, while PtdIns(4)P gradually accumulated on the LCV, enabling critical interactions with host organelles. The LCV PI pattern underlies the spatiotemporal configuration of bacterial effector proteins and therefore represents a crucial aspect of LCV formation.
Collapse
|
123
|
Hoffmann C, Finsel I, Otto A, Pfaffinger G, Rothmeier E, Hecker M, Becher D, Hilbi H. Functional analysis of novel Rab GTPases identified in the proteome of purified Legionella-containing vacuoles from macrophages. Cell Microbiol 2014; 16:1034-52. [PMID: 24373249 DOI: 10.1111/cmi.12256] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 12/22/2022]
Abstract
The opportunistic pathogen Legionella pneumophila employs the Icm/Dot type IV secretion system and ∼300 different effector proteins to replicate in macrophages and amoebae in a distinct 'Legionella-containing vacuole' (LCV). LCVs from infected RAW 264.7 macrophages were enriched by immuno-affinity separation and density gradient centrifugation, using an antibody against the L. pneumophila effector SidC, which specifically binds to the phosphoinositide PtdIns(4)P on the pathogen vacuole membrane. The proteome of purified LCVs was determined by mass spectro-metry (data are available via ProteomeXchange with identifier PXD000647). The proteomics analysis revealed more than 1150 host proteins, including 13 small GTPases of the Rab family. Using fluorescence microscopy, 6 novel Rab proteins were confirmed to localize on pathogen vacuoles harbouring wild-type but not ΔicmT mutant L. pneumophila. Individual depletion of 20 GTPases by RNA interference indicated that endocytic GTPases (Rab5a, Rab14 and Rab21) restrict intracellular growth of L. pneumophila, whereas secretory GTPases (Rab8a, Rab10 and Rab32) implicated in Golgi-endosome trafficking promote bacterial replication. Upon silencing of Rab21 or Rab32, fewer LCVs stained positive for Rab4 or Rab9, implicated in secretory or retrograde trafficking respectively. Moreover, depletion of Rab8a, Rab14 or Rab21 significantly decreased the number of SidC-positive LCVs, suggesting that PtdIns(4)P is reduced under these conditions. L. pneumophila proteins identified in purified LCVs included proteins putatively implicated in phosphorus metabolism and as many as 60 Icm/Dot-translocated effectors, which are likely required early during infection. Taken together, the phagocyte and Legionella proteomes of purified LCVs lay the foundation for further hypothesis-driven investigations of the complex process of pathogen vacuole formation.
Collapse
Affiliation(s)
- Christine Hoffmann
- Department of Medicine, Max von Pettenkofer Institute, Ludwig-Maximilians University Munich, Munich, 80336, Germany
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Simon S, Wagner MA, Rothmeier E, Müller-Taubenberger A, Hilbi H. Icm/Dot-dependent inhibition of phagocyte migration by Legionella is antagonized by a translocated Ran GTPase activator. Cell Microbiol 2014; 16:977-92. [PMID: 24397557 DOI: 10.1111/cmi.12258] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 12/15/2013] [Accepted: 12/27/2013] [Indexed: 02/01/2023]
Abstract
The environmental bacterium Legionella pneumophila causes a severe pneumonia termed Legionnaires' disease. L. pneumophila employs a conserved mechanism to replicate within a specific vacuole in macrophages or protozoa such as the social soil amoeba Dictyostelium discoideum. Pathogen-host interactions depend on the Icm/Dot type IV secretion system (T4SS), which translocates approximately 300 different effector proteins into host cells. Here we analyse the effects of L. pneumophila on migration and chemotaxis of amoebae, macrophages or polymorphonuclear neutrophils (PMN). Using under-agarose assays, L. pneumophila inhibited in a dose- and T4SS-dependent manner the migration of D. discoideum towards folate as well as starvation-induced aggregation of the social amoebae. Similarly, L. pneumophila impaired migration of murine RAW 264.7 macrophages towards the cytokines CCL5 and TNFα, or of primary human PMN towards the peptide fMLP respectively. L. pneumophila lacking the T4SS-translocated activator of the small eukaryotic GTPase Ran, Lpg1976/LegG1, hyper-inhibited the migration of D. discoideum, macrophages or PMN. The phenotype was reverted by plasmid-encoded LegG1 to an extent observed for mutant bacteria lacking a functional Icm/Dot T4SS.Similarly, LegG1 promoted random migration of L. pneumophila-infected macrophages and A549 epithelial cells in a Ran-dependent manner, or upon 'microbial microinjection' into HeLa cells by a Yersinia strain lacking endogenous effectors. Single-cell tracking and real-time analysis of L. pneumophila-infected phagocytes revealed that the velocity and directionality of the cells were decreased, and cell motility as well as microtubule dynamics was impaired. Taken together, these findings indicate that the L. pneumophila Ran activator LegG1 and consequent microtubule polymerization are implicated in Icm/Dot-dependent inhibition of phagocyte migration.
Collapse
Affiliation(s)
- Sylvia Simon
- Department of Medicine, Max von Pettenkofer-Institute, Ludwig-Maximilians University Munich, Munich, 80336, Germany
| | | | | | | | | |
Collapse
|
125
|
Hilbi H, Rothmeier E, Hoffmann C, Harrison CF. Beyond Rab GTPases: Legionella activates the small GTPase Ran to promote microtubule polymerization, pathogen vacuole motility, and infection. Small GTPases 2014. [DOI: 10.4161/sgtp.28651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
126
|
Abstract
The "accidental" pathogen Legionella pneumophila replicates intracellularly in a distinct compartment, the Legionella-containing vacuole (LCV). To form this specific pathogen vacuole, the bacteria translocate via the Icm/Dot type IV secretion system approximately 300 different effector proteins into the host cell. Several of these secreted effectors anchor to the cytoplasmic face of the LCV membrane by binding to phosphoinositide (PI) lipids. L. pneumophila thus largely controls the localization of secreted bacterial effectors and the recruitment of host factors to the LCV through the modulation of the vacuole membrane PI pattern. The LCV PI pattern and its dynamics can be studied in real-time using fluorescently labeled protein probes stably produced by the soil amoeba Dictyostelium discoideum. In this chapter, we describe a protocol to (1) construct and handle amoeba model systems as a tool for observing PIs in live cell imaging, (2) capture rapid changes in membrane PI patterning during uptake events, and (3) observe the dynamics of LCV PIs over the course of a Legionella infection.
Collapse
|
127
|
Hoffmann C, Harrison CF, Hilbi H. The natural alternative: protozoa as cellular models forLegionellainfection. Cell Microbiol 2013; 16:15-26. [DOI: 10.1111/cmi.12235] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Christine Hoffmann
- Max von Pettenkofer Institute; Department of Medicine; Ludwig-Maximilians University Munich; 80336 Munich Germany
| | - Christopher F. Harrison
- Max von Pettenkofer Institute; Department of Medicine; Ludwig-Maximilians University Munich; 80336 Munich Germany
| | - Hubert Hilbi
- Max von Pettenkofer Institute; Department of Medicine; Ludwig-Maximilians University Munich; 80336 Munich Germany
| |
Collapse
|
128
|
The Legionella pneumophila collagen-like protein mediates sedimentation, autoaggregation, and pathogen-phagocyte interactions. Appl Environ Microbiol 2013; 80:1441-54. [PMID: 24334670 DOI: 10.1128/aem.03254-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although only partially understood, multicellular behavior is relatively common in bacterial pathogens. Bacterial aggregates can resist various host defenses and colonize their environment more efficiently than planktonic cells. For the waterborne pathogen Legionella pneumophila, little is known about the roles of autoaggregation or the parameters which allow cell-cell interactions to occur. Here, we determined the endogenous and exogenous factors sufficient to allow autoaggregation to take place in L. pneumophila. We show that isolates from Legionella species which do not produce the Legionella collagen-like protein (Lcl) are deficient in autoaggregation. Targeted deletion of the Lcl-encoding gene (lpg2644) and the addition of Lcl ligands impair the autoaggregation of L. pneumophila. In addition, Lcl-induced autoaggregation requires divalent cations. Escherichia coli producing surface-exposed Lcl is able to autoaggregate and shows increased biofilm production. We also demonstrate that L. pneumophila infection of Acanthamoeba castellanii and Hartmanella vermiformis is potentiated under conditions which promote Lcl dependent autoaggregation. Overall, this study shows that L. pneumophila is capable of autoaggregating in a process that is mediated by Lcl in a divalent-cation-dependent manner. It also reveals that Lcl potentiates the ability of L. pneumophila to come in contact, attach, and infect amoebae.
Collapse
|
129
|
Exploitation of host lipids by bacteria. Curr Opin Microbiol 2013; 17:38-45. [PMID: 24581691 DOI: 10.1016/j.mib.2013.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/27/2013] [Accepted: 11/09/2013] [Indexed: 11/21/2022]
Abstract
Bacteria that interact with eukaryotic cells have developed a variety of strategies to divert host lipids, or cellular processes driven by lipids, to their benefit. Host lipids serve as building blocks for bacterial membrane formation and as energy source. They promote the formation of specific microdomains, facilitating interactions with the host. Host lipids are also critical players in the entry of bacteria or toxins into cells, and, for bacteria growing inside parasitophorous vacuoles, in building a secure shelter. Bacterial dissemination is often dependent on enzymatic activities targeting host lipids. Finally, on a larger scale, long lasting parasitic association can disturb host lipid metabolism so deeply as to 'reprogram' it, as proposed in the case of Mycobacterium infection.
Collapse
|
130
|
Harding CR, Schroeder GN, Collins JW, Frankel G. Use of Galleria mellonella as a model organism to study Legionella pneumophila infection. J Vis Exp 2013:e50964. [PMID: 24299965 PMCID: PMC3923569 DOI: 10.3791/50964] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Legionella pneumophila, the causative agent of a severe pneumonia named Legionnaires' disease, is an important human pathogen that infects and replicates within alveolar macrophages. Its virulence depends on the Dot/Icm type IV secretion system (T4SS), which is essential to establish a replication permissive vacuole known as the Legionella containing vacuole (LCV). L. pneumophila infection can be modeled in mice however most mouse strains are not permissive, leading to the search for novel infection models. We have recently shown that the larvae of the wax moth Galleria mellonella are suitable for investigation of L. pneumophila infection. G. mellonella is increasingly used as an infection model for human pathogens and a good correlation exists between virulence of several bacterial species in the insect and in mammalian models. A key component of the larvae's immune defenses are hemocytes, professional phagocytes, which take up and destroy invaders. L. pneumophila is able to infect, form a LCV and replicate within these cells. Here we demonstrate protocols for analyzing L. pneumophila virulence in the G. mellonella model, including how to grow infectious L. pneumophila, pretreat the larvae with inhibitors, infect the larvae and how to extract infected cells for quantification and immunofluorescence microscopy. We also describe how to quantify bacterial replication and fitness in competition assays. These approaches allow for the rapid screening of mutants to determine factors important in L. pneumophila virulence, describing a new tool to aid our understanding of this complex pathogen.
Collapse
Affiliation(s)
- Clare R Harding
- Center for Molecular Bacteriology and Infection, Imperial College London
| | | | | | | |
Collapse
|
131
|
PtdIns(4)P signalling and recognition systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:59-83. [PMID: 23775691 DOI: 10.1007/978-94-007-6331-9_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Golgi apparatus is a sorting platform that exchanges extensively with the endoplasmic reticulum (ER), endosomes (Es) and plasma membrane (PM) compartments. The last compartment of the Golgi, the trans-Golgi Network (TGN) is a large complex of highly deformed membranes from which vesicles depart to their targeted organelles but also are harbored from retrograde pathways. The phosphoinositide (PI) composition of the TGN is marked by an important contingent of phosphatidylinositol-4-phosphate (PtdIns(4)P). Although this PI is present throughout the Golgi, its proportion grows along the successive cisternae and peaks at the TGN. The levels of this phospholipid are controlled by a set of kinases and phosphatases that regulate its concentrations in the Golgi and maintain a dynamic gradient that determines the cellular localization of several interacting proteins. Though not exclusive to the Golgi, the synthesis of PtdIns(4)P in other membranes is relatively marginal and has unclear consequences. The significance of PtdIns(4)P within the TGN has been demonstrated for numerous cellular events such as vesicle formation, lipid metabolism, and membrane trafficking.
Collapse
|
132
|
Harada T, Miyake M, Imai Y. Evasion ofLegionella pneumophilafrom the Bactericidal System by Reactive Oxygen Species (ROS) in Macrophages. Microbiol Immunol 2013; 51:1161-70. [DOI: 10.1111/j.1348-0421.2007.tb04011.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Toshihiko Harada
- Laboratory of Microbiology and Immunology and the Global COE Program, School of Pharmaceutical Sciences; University of Shizuoka; Shizuoka-shi Shizuoka 422-8526 Japan
| | - Masaki Miyake
- Laboratory of Microbiology and Immunology and the Global COE Program, School of Pharmaceutical Sciences; University of Shizuoka; Shizuoka-shi Shizuoka 422-8526 Japan
| | - Yasuyuki Imai
- Laboratory of Microbiology and Immunology and the Global COE Program, School of Pharmaceutical Sciences; University of Shizuoka; Shizuoka-shi Shizuoka 422-8526 Japan
| |
Collapse
|
133
|
Rothmeier E, Pfaffinger G, Hoffmann C, Harrison CF, Grabmayr H, Repnik U, Hannemann M, Wölke S, Bausch A, Griffiths G, Müller-Taubenberger A, Itzen A, Hilbi H. Activation of Ran GTPase by a Legionella effector promotes microtubule polymerization, pathogen vacuole motility and infection. PLoS Pathog 2013; 9:e1003598. [PMID: 24068924 PMCID: PMC3777869 DOI: 10.1371/journal.ppat.1003598] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 07/22/2013] [Indexed: 11/19/2022] Open
Abstract
The causative agent of Legionnaires' disease, Legionella pneumophila, uses the Icm/Dot type IV secretion system (T4SS) to form in phagocytes a distinct "Legionella-containing vacuole" (LCV), which intercepts endosomal and secretory vesicle trafficking. Proteomics revealed the presence of the small GTPase Ran and its effector RanBP1 on purified LCVs. Here we validate that Ran and RanBP1 localize to LCVs and promote intracellular growth of L. pneumophila. Moreover, the L. pneumophila protein LegG1, which contains putative RCC1 Ran guanine nucleotide exchange factor (GEF) domains, accumulates on LCVs in an Icm/Dot-dependent manner. L. pneumophila wild-type bacteria, but not strains lacking LegG1 or a functional Icm/Dot T4SS, activate Ran on LCVs, while purified LegG1 produces active Ran(GTP) in cell lysates. L. pneumophila lacking legG1 is compromised for intracellular growth in macrophages and amoebae, yet is as cytotoxic as the wild-type strain. A downstream effect of LegG1 is to stabilize microtubules, as revealed by conventional and stimulated emission depletion (STED) fluorescence microscopy, subcellular fractionation and Western blot, or by microbial microinjection through the T3SS of a Yersinia strain lacking endogenous effectors. Real-time fluorescence imaging indicates that LCVs harboring wild-type L. pneumophila rapidly move along microtubules, while LCVs harboring ΔlegG1 mutant bacteria are stalled. Together, our results demonstrate that Ran activation and RanBP1 promote LCV formation, and the Icm/Dot substrate LegG1 functions as a bacterial Ran activator, which localizes to LCVs and promotes microtubule stabilization, LCV motility as well as intracellular replication of L. pneumophila.
Collapse
Affiliation(s)
- Eva Rothmeier
- Max von Pettenkofer-Institute, Department of Medicine, Ludwig-Maximilians Universität München, München, Germany
| | - Gudrun Pfaffinger
- Max von Pettenkofer-Institute, Department of Medicine, Ludwig-Maximilians Universität München, München, Germany
| | - Christine Hoffmann
- Max von Pettenkofer-Institute, Department of Medicine, Ludwig-Maximilians Universität München, München, Germany
| | - Christopher F. Harrison
- Max von Pettenkofer-Institute, Department of Medicine, Ludwig-Maximilians Universität München, München, Germany
| | - Heinrich Grabmayr
- Institute of Molecular and Cellular Biophysics, Department of Physics, Technische Universität München, Garching, Germany
| | - Urska Repnik
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Mandy Hannemann
- Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Stefan Wölke
- Max von Pettenkofer-Institute, Department of Medicine, Ludwig-Maximilians Universität München, München, Germany
| | - Andreas Bausch
- Institute of Molecular and Cellular Biophysics, Department of Physics, Technische Universität München, Garching, Germany
| | - Gareth Griffiths
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Annette Müller-Taubenberger
- Institute for Anatomy and Cell Biology, Department of Medicine, Ludwig-Maximilians Universität München, München, Germany
| | - Aymelt Itzen
- Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Hubert Hilbi
- Max von Pettenkofer-Institute, Department of Medicine, Ludwig-Maximilians Universität München, München, Germany
- * E-mail:
| |
Collapse
|
134
|
Harrison CF, Kicka S, Trofimov V, Berschl K, Ouertatani-Sakouhi H, Ackermann N, Hedberg C, Cosson P, Soldati T, Hilbi H. Exploring anti-bacterial compounds against intracellular Legionella. PLoS One 2013; 8:e74813. [PMID: 24058631 PMCID: PMC3772892 DOI: 10.1371/journal.pone.0074813] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 08/06/2013] [Indexed: 01/10/2023] Open
Abstract
Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an 'accidental' human pathogen and cause a severe pneumonia known as Legionnaires' disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoebacastellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target.
Collapse
Affiliation(s)
| | - Sébastien Kicka
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Valentin Trofimov
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Kathrin Berschl
- Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany
| | | | - Nikolaus Ackermann
- Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany
| | | | - Pierre Cosson
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Hubert Hilbi
- Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany
- * E-mail:
| |
Collapse
|
135
|
LtpD is a novel Legionella pneumophila effector that binds phosphatidylinositol 3-phosphate and inositol monophosphatase IMPA1. Infect Immun 2013; 81:4261-70. [PMID: 24002062 DOI: 10.1128/iai.01054-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Dot/Icm type IV secretion system (T4SS) of Legionella pneumophila is crucial for the pathogen to survive in protozoa and cause human disease. Although more than 275 effector proteins are delivered into the host cell by the T4SS, the function of the majority is unknown. Here we have characterized the Dot/Icm effector LtpD. During infection, LtpD localized to the cytoplasmic face of the membrane of the Legionella-containing vacuole (LCV). In A549 lung epithelial cells, ectopically expressed LtpD localized to large vesicular structures that contained markers of endosomal compartments. Systematic analysis of LtpD fragments identified an internal 17-kDa fragment, LtpD471-626, which was essential for targeting ectopically expressed LtpD to vesicular structures and for the association of translocated LtpD with the LCV. LtpD471-626 bound directly to phosphatidylinositol 3-phosphate [PtdIns(3)P] in vitro and colocalized with the PtdIns(3)P markers FYVE and SetA in cotransfected cells. LtpD was also found to bind the host cell enzyme inositol (myo)-1 (or 4)-monophosphatase 1, an important phosphatase involved in phosphoinositide production. Analysis of the role of LtpD in infection showed that LtpD is involved in bacterial replication in THP-1 macrophages, the larvae of Galleria mellonella, and mouse lungs. Together, these data suggest that LtpD is a novel phosphoinositide-binding L. pneumophila effector that has a role in intracellular bacterial replication.
Collapse
|
136
|
Toulabi L, Wu X, Cheng Y, Mao Y. Identification and structural characterization of a Legionella phosphoinositide phosphatase. J Biol Chem 2013; 288:24518-27. [PMID: 23843460 PMCID: PMC3750150 DOI: 10.1074/jbc.m113.474239] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/09/2013] [Indexed: 01/17/2023] Open
Abstract
Bacterial pathogen Legionella pneumophila is the causative agent of Legionnaires' disease, which is associated with intracellular replication of the bacteria in macrophages of human innate immune system. Recent studies indicate that pathogenic bacteria can subvert host cell phosphoinositide (PI) metabolism by translocated virulence effectors. However, in which manner Legionella actively exploits PI lipids to benefit its infection is not well characterized. Here we report that L. pneumophila encodes an effector protein, named SidP, that functions as a PI-3-phosphatase specifically hydrolyzing PI(3)P and PI(3,5)P2 in vitro. This activity of SidP rescues the growth phenotype of a yeast strain defective in PI(3)P phosphatase activity. Crystal structure of SidP orthologue from Legionella longbeachae reveals that this unique PI-3-phosphatase is composed of three distinct domains: a large catalytic domain, an appendage domain that is inserted into the N-terminal portion of the catalytic domain, and a C-terminal α-helical domain. SidP has a small catalytic pocket that presumably provides substrate specificity by limiting the accessibility of bulky PIs with multiple phosphate groups. Together, our identification of a unique family of Legionella PI phosphatases highlights a common scheme of exploiting host PI lipids in many intracellular bacterial pathogen infections.
Collapse
Affiliation(s)
- Leila Toulabi
- From the Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Xiaochun Wu
- From the Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Yanshu Cheng
- From the Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Yuxin Mao
- From the Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| |
Collapse
|
137
|
Finsel I, Ragaz C, Hoffmann C, Harrison C, Weber S, van Rahden V, Johannes L, Hilbi H. The Legionella Effector RidL Inhibits Retrograde Trafficking to Promote Intracellular Replication. Cell Host Microbe 2013; 14:38-50. [DOI: 10.1016/j.chom.2013.06.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 03/28/2013] [Accepted: 05/16/2013] [Indexed: 01/11/2023]
|
138
|
Exploitation of eukaryotic subcellular targeting mechanisms by bacterial effectors. Nat Rev Microbiol 2013; 11:316-26. [PMID: 23588250 DOI: 10.1038/nrmicro3009] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several bacterial species have evolved specialized secretion systems to deliver bacterial effector proteins into eukaryotic cells. These effectors have the capacity to modulate host cell pathways in order to promote bacterial survival and replication. The spatial and temporal context in which the effectors exert their biochemical activities is crucial for their function. To fully understand effector function in the context of infection, we need to understand the mechanisms that lead to the precise subcellular localization of effectors following their delivery into host cells. Recent studies have shown that bacterial effectors exploit host cell machinery to accurately target their biochemical activities within the host cell.
Collapse
|
139
|
Chen Y, Tascón I, Neunuebel MR, Pallara C, Brady J, Kinch LN, Fernández-Recio J, Rojas AL, Machner MP, Hierro A. Structural basis for Rab1 de-AMPylation by the Legionella pneumophila effector SidD. PLoS Pathog 2013; 9:e1003382. [PMID: 23696742 DOI: 10.1371/journal.ppat.1003382] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/08/2013] [Indexed: 12/31/2022] Open
Abstract
The covalent attachment of adenosine monophosphate (AMP) to proteins, a process called AMPylation (adenylylation), has recently emerged as a novel theme in microbial pathogenesis. Although several AMPylating enzymes have been characterized, the only known virulence protein with de-AMPylation activity is SidD from the human pathogen Legionella pneumophila. SidD de-AMPylates mammalian Rab1, a small GTPase involved in secretory vesicle transport, thereby targeting the host protein for inactivation. The molecular mechanisms underlying Rab1 recognition and de-AMPylation by SidD are unclear. Here, we report the crystal structure of the catalytic region of SidD at 1.6 Å resolution. The structure reveals a phosphatase-like fold with additional structural elements not present in generic PP2C-type phosphatases. The catalytic pocket contains a binuclear metal-binding site characteristic of hydrolytic metalloenzymes, with strong dependency on magnesium ions. Subsequent docking and molecular dynamics simulations between SidD and Rab1 revealed the interface contacts and the energetic contribution of key residues to the interaction. In conjunction with an extensive structure-based mutational analysis, we provide in vivo and in vitro evidence for a remarkable adaptation of SidD to its host cell target Rab1 which explains how this effector confers specificity to the reaction it catalyses.
Collapse
Affiliation(s)
- Yang Chen
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Abstract
Legionella pneumophila the causative agent of Legionnaires' disease, actively manipulates host cell -processes to establish a membrane-bound replication vacuole permissive for its replication. Establishment of such replication niche requires the Dot/Icm type IV secretion system which translocates a plethora of effectors into host cells. Determining whether a particular protein is a substrate of the transporter is a prerequisite for subsequent functional studies. Thus, a variety of methods have been developed in the last decade to measure Dot/Icm-dependent delivery of protein into the host cell. The combination of these methods and the appropriate screening strategies has allowed for the identification of more than 270 translocated proteins. These efforts have laid a solid foundation for further study of the roles of these proteins in the interactions between L. pneumophila and its host. Here, we summarized the experimental details of these methods.
Collapse
|
141
|
Clayton EL, Minogue S, Waugh MG. Mammalian phosphatidylinositol 4-kinases as modulators of membrane trafficking and lipid signaling networks. Prog Lipid Res 2013; 52:294-304. [PMID: 23608234 PMCID: PMC3989048 DOI: 10.1016/j.plipres.2013.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/08/2013] [Indexed: 12/19/2022]
Abstract
The four mammalian phosphatidylinositol 4-kinases modulate inter-organelle lipid trafficking, phosphoinositide signalling and intracellular vesicle trafficking. In addition to catalytic domains required for the synthesis of PI4P, the phosphatidylinositol 4-kinases also contain isoform-specific structural motifs that mediate interactions with proteins such as AP-3 and the E3 ubiquitin ligase Itch, and such structural differences determine isoform-specific roles in membrane trafficking. Moreover, different permutations of phosphatidylinositol 4-kinase isozymes may be required for a single cellular function such as occurs during distinct stages of GPCR signalling and in Golgi to lysosome trafficking. Phosphatidylinositol 4-kinases have recently been implicated in human disease. Emerging paradigms include increased phosphatidylinositol 4-kinase expression in some cancers, impaired functioning associated with neurological pathologies, the subversion of PI4P trafficking functions in bacterial infection and the activation of lipid kinase activity in viral disease. We discuss how the diverse and sometimes overlapping functions of the phosphatidylinositol 4-kinases present challenges for the design of isoform-specific inhibitors in a therapeutic context.
Collapse
Affiliation(s)
- Emma L Clayton
- UCL Institute for Liver & Digestive Health, UCL Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | | | | |
Collapse
|
142
|
Abstract
Small GTPases of the Rab family represent an attractive target for microbial pathogens due to their role in controlling many aspects of intracellular cargo transport. Legionella pneumophila is an intravacuolar pathogen that survives inside host cells by manipulating protein trafficking pathways through a number of effector proteins secreted by the bacterium. These act as functional mimics of host proteins that modulate the activity of switch proteins such as guanosine triphosphatases (GTPases). L. pneumophila exploits the ER (endoplasmic reticulum)-to-Golgi vesicle transport pathway by modifying activity of Rab1, the GTPase regulating this pathway. This pathogen recruits Rab1 to the vacuole in which it resides, where effector proteins located on the surface of the vacuole regulate the activity status of Rab1 by mimicking the function of a guanine dissociation inhibitor (GDI) displacement factor, guanine exchange factor (GEF), or a GTPase-activating protein (GAP). In addition to these non-covalent modifications that alter the nucleotide binding state of Rab1, the bacterium also uses covalent modifications such as adenylylation (AMPylation) to control the dynamic of Rab1 on the Legionella-containing vacuole. Remarkably, AMPylation of Rab1 by SidM can be reversed by the L. pneumophila effector protein SidD, which exhibits de-AMPylation activity, demonstrating that L. pneumophila and related pathogens may utilize covalent modifications in order to transiently alter the activity of host proteins.
Collapse
Affiliation(s)
- M Ramona Neunuebel
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | | |
Collapse
|
143
|
Rab6a/a' are important Golgi regulators of pro-inflammatory TNF secretion in macrophages. PLoS One 2013; 8:e57034. [PMID: 23437303 PMCID: PMC3578815 DOI: 10.1371/journal.pone.0057034] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/16/2013] [Indexed: 02/06/2023] Open
Abstract
Lipopolysaccharide (LPS)-activated macrophages secrete pro-inflammatory cytokines, including tumor necrosis factor (TNF) to elicit innate immune responses. Secretion of these cytokines is also a major contributing factor in chronic inflammatory disease. In previous studies we have begun to elucidate the pathways and molecules that mediate the intracellular trafficking and secretion of TNF. Rab6a and Rab6a' (collectively Rab6) are trans-Golgi-localized GTPases known for roles in maintaining Golgi structure and Golgi-associated trafficking. We found that induction of TNF secretion by LPS promoted the selective increase of Rab6 expression. Depletion of Rab6 (via siRNA and shRNA) resulted in reorganization of the Golgi ribbon into more compact structures that at the resolution of electron microcopy consisted of elongated Golgi stacks that likely arose from fusion of smaller Golgi elements. Concomitantly, the delivery of TNF to the cell surface and subsequent release into the media was reduced. Dominant negative mutants of Rab6 had similar effects in disrupting TNF secretion. In live cells, Rab6-GFP were localized on trans-Golgi network (TGN)-derived tubular carriers demarked by the golgin p230. Rab6 depletion and inactive mutants altered carrier egress and partially reduced p230 membrane association. Our results show that Rab6 acts on TNF trafficking at the level of TGN exit in tubular carriers and our findings suggest Rab6 may stabilize p230 on the tubules to facilitate TNF transport. Both Rab6 isoforms are needed in macrophages for Golgi stack organization and for the efficient post-Golgi transport of TNF. This work provides new insights into Rab6 function and into the role of the Golgi complex in cytokine secretion in inflammatory macrophages.
Collapse
|
144
|
LegC3, an effector protein from Legionella pneumophila, inhibits homotypic yeast vacuole fusion in vivo and in vitro. PLoS One 2013; 8:e56798. [PMID: 23437241 PMCID: PMC3577674 DOI: 10.1371/journal.pone.0056798] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/15/2013] [Indexed: 12/12/2022] Open
Abstract
During infection, the intracellular pathogenic bacterium Legionella pneumophila causes an extensive remodeling of host membrane trafficking pathways, both in the construction of a replication-competent vacuole comprised of ER-derived vesicles and plasma membrane components, and in the inhibition of normal phagosome:endosome/lysosome fusion pathways. Here, we identify the LegC3 secreted effector protein from L. pneumophila as able to inhibit a SNARE- and Rab GTPase-dependent membrane fusion pathway in vitro, the homotypic fusion of yeast vacuoles (lysosomes). This vacuole fusion inhibition appeared to be specific, as similar secreted coiled-coiled domain containing proteins from L. pneumophila, LegC7/YlfA and LegC2/YlfB, did not inhibit vacuole fusion. The LegC3-mediated fusion inhibition was reversible by a yeast cytosolic extract, as well as by a purified soluble SNARE, Vam7p. LegC3 blocked the formation of trans-SNARE complexes during vacuole fusion, although we did not detect a direct interaction of LegC3 with the vacuolar SNARE protein complexes required for fusion. Additionally, LegC3 was incapable of inhibiting a defined synthetic model of vacuolar SNARE-driven membrane fusion, further suggesting that LegC3 does not directly inhibit the activity of vacuolar SNAREs, HOPS complex, or Sec17p/18p during membrane fusion. LegC3 is likely utilized by Legionella to modulate eukaryotic membrane fusion events during pathogenesis.
Collapse
|
145
|
Harada T, Tanikawa T, Iwasaki Y, Yamada M, Imai Y, Miyake M. Phagocytic entry of Legionella pneumophila into macrophages through phosphatidylinositol 3,4,5-trisphosphate-independent pathway. Biol Pharm Bull 2013; 35:1460-8. [PMID: 22975496 DOI: 10.1248/bpb.b11-00011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Legionella pneumophila, a causative agent of Legionnaire's disease, is an intracellular pathogen. It intervenes in the signal transduction of macrophages by secreting effector molecules through the Icm/Dot type IV secretion system (T4SS). There is a connection between signaling cascades that regulate phagocytosis and the production of reactive oxygen species (ROS). Class I phosphatidylinositol 3-kinase (PI3-K) and its product phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) play key roles in the reorganization of cytoskeleton (phagocytosis) and activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (ROS production). We investigated the production of PI(3,4,5)P3 and recruitment of class I PI3-K and Rac1 during phagocytosis of L. pneumophila by macrophages. Transient recruitment of class I PI3-K as well as PI(3,4,5)P3 production was observed around a phagocytosed T4SS mutant LELA3118 or avirulent mutant 25D in an early stage of infection. In contrast, class I PI3-K was recruited while accumulation of PI(3,4,5)P3 was not observed around wild type JR32. Immunoglobulin G (IgG)-opsonized live JR32, which would activate class I PI3-K through the Fcγ receptor pathway, did not induce PI(3,4,5)P3 production. Regardless of whether wild type or mutants were used, transient Rac1 accumulation was observed around bacteria. These results indicate that the phagocytosis of wild type L. pneumophila occurs via a special mechanism in which PI(3,4,5)P3 production is absent. This suggests that L. pneumophila may inhibit the production of PI(3,4,5)P3, but not the recruitment of class I PI3-K and Rac1, in a T4SS-dependent manner. L. pneumophila may start the modulation of host signaling cascade immediately after contact with host cells to evade the ROS-dependent bactericidal system while completing entry into macrophages.
Collapse
Affiliation(s)
- Toshihiko Harada
- Laboratory of Microbiology and Immunology and The Global COE Program, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | | | | | | | |
Collapse
|
146
|
Abstract
Legionella pneumophila replicates intracellularly in environmental and immune phagocytes within a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). Formation of LCVs is strictly dependent on the Icm/Dot type IV secretion system and the translocation of "effector" proteins into the cell. Some effector proteins decorate the LCV membrane and subvert host cell vesicle trafficking pathways. Here we describe a method to purify intact LCVs from Dictyostelium discoideum amoebae and RAW 264.7 murine macrophages. The method comprises a two-step protocol: first, LCVs are enriched by immuno-magnetic separation using an antibody against a bacterial effector protein specifically localizing to the LCV membrane, and second, the LCVs are further purified by density gradient centrifugation. The purified LCVs can be characterized by proteomics and other biochemical approaches.
Collapse
|
147
|
Bozzaro S, Peracino B, Eichinger L. Dictyostelium host response to legionella infection: strategies and assays. Methods Mol Biol 2013; 954:417-38. [PMID: 23150412 DOI: 10.1007/978-1-62703-161-5_26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The professional phagocyte Dictyostelium discoideum is a simple eukaryotic microorganism, whose natural habitat is deciduous forest soil and decaying leaves, where the amoebae feed on bacteria and grow as separate, independent, single cells. In the last decade, the organism has been successfully used as a host for several human pathogens, including Legionella pneumophila, Mycobacterium avium and Mycobacterium marinum,Pseudomonas aeruginosa, Klebsiella pneumoniae, Cryptococcus neoformans, and Salmonella typhimurium. To dissect the complex cross-talk between host and pathogen Dictyostelium offers easy cultivation, a high quality genome sequence and excellent molecular genetic and biochemical tools. Dictyostelium cells are also extremely suitable for cell biological studies, which in combination with in vivo expression of fluorescence-tagged proteins allow investigating the dynamics of bacterial uptake and infection. Inactivation of genes by homologous recombination as well as gene rescue and overexpression are well established and a large mutant collection is available at the Dictyostelium stock center, favoring identification of host resistance or susceptibility genes. Here, we briefly introduce the organism, address the value of Dictyostelium as model host, describe strategies to identify host cell factors important for infection followed by protocols for cell culture and storage, uptake and infection, and confocal microscopy of infected cells.
Collapse
Affiliation(s)
- Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy,
| | | | | |
Collapse
|
148
|
Finsel I, Hoffmann C, Hilbi H. Immunomagnetic purification of fluorescent Legionella-containing vacuoles. Methods Mol Biol 2013; 983:431-43. [PMID: 23494322 DOI: 10.1007/978-1-62703-302-2_24] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protozoa are natural reservoirs of the environmental bacterium Legionella pneumophila. Upon inhalation of Legionella-laden aerosols, the amoeba-resistant bacteria replicate within human alveolar macrophages causing the severe pneumonia "Legionnaires' disease." Within host cells, including Dictyostelium discoideum, L. pneumophila establishes a custom-tailored compartment, the Legionella-containing vacuole (LCV). LCV formation requires the bacterial Icm/Dot type IV secretion system and involves a plethora of "effector" proteins, some of which specifically decorate the LCV membrane. This unique feature of LCVs is exploited to isolate the pathogen vacuole by immunomagnetic separation using an antibody against the effector protein SidC. LCV purity is further increased by a subsequent density gradient centrifugation step. The use of red fluorescent L. pneumophila and D. discoideum producing the LCV marker calnexin-GFP allows following the purification by fluorescence microscopy.
Collapse
Affiliation(s)
- Ivo Finsel
- Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany
| | | | | |
Collapse
|
149
|
Escoll P, Rolando M, Gomez-Valero L, Buchrieser C. From amoeba to macrophages: exploring the molecular mechanisms of Legionella pneumophila infection in both hosts. Curr Top Microbiol Immunol 2013; 376:1-34. [PMID: 23949285 DOI: 10.1007/82_2013_351] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Legionella pneumophila is a Gram-negative bacterium and the causative agent of Legionnaires' disease. It replicates within amoeba and infects accidentally human macrophages. Several similarities are seen in the L. pneumophila-infection cycle in both hosts, suggesting that the tools necessary for macrophage infection may have evolved during co-evolution of L. pneumophila and amoeba. The establishment of the Legionella-containing vacuole (LCV) within the host cytoplasm requires the remodeling of the LCV surface and the hijacking of vesicles and organelles. Then L. pneumophila replicates in a safe intracellular niche in amoeba and macrophages. In this review we will summarize the existing knowledge of the L. pneumophila infection cycle in both hosts at the molecular level and compare the factors involved within amoeba and macrophages. This knowledge will be discussed in the light of recent findings from the Acanthamoeba castellanii genome analyses suggesting the existence of a primitive immune-like system in amoeba.
Collapse
Affiliation(s)
- Pedro Escoll
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR, 3525, Paris, France
| | | | | | | |
Collapse
|
150
|
Abstract
Upon uptake into a host cell, the intracellular bacterium Legionella pneumophila is not degraded on the lysosomal pathway but efficiently establishes a highly specialized replicative vacuole in which it readily multiplies. As many Icm/Dot type 4 secretion translocated bacterial effectors contribute to the establishment of this subcellular compartment in close interaction with host cell trafficking pathways, the analysis of the intracellular localization of this bacterium during infection is of pivotal importance to dissect the cellular and bacterial components of this process. In this chapter we describe a protocol for immunofluorescence microscopy in fixed mammalian and amoebal cells as well as transfection protocols to produce host cells expressing fluorescently labeled proteins as intracellular trafficking markers.
Collapse
Affiliation(s)
- Stefan S Weber
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|