101
|
Gill VS, Lima VD, Zhang W, Wynhoven B, Yip B, Hogg RS, Montaner JSG, Harrigan PR. Improved virological outcomes in British Columbia concomitant with decreasing incidence of HIV type 1 drug resistance detection. Clin Infect Dis 2010; 50:98-105. [PMID: 19951169 DOI: 10.1086/648729] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND There have been limited studies evaluating temporal changes in the incidence of detection of drug resistance among human immunodeficiency virus type 1 (HIV-1) isolates and concomitant changes in plasma HIV load for treated individuals in a population-wide setting. METHODS Longitudinal plasma viral load and genotypic resistance data were obtained from patients receiving antiretroviral therapy from the British Columbia Drug Treatment Program from July 1996 through December 2008. A total of 24,652 resistance tests were available from 5422 individuals. The incidence of successful plasma viral load suppression and of resistance to each of 3 antiretroviral categories (nucleoside/nucleotide reverse-transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors) was calculated for the population receiving therapy. RESULTS There has been a drastic decrease in the incidence of new cases of HIV-1 drug resistance in individuals followed during 1996-2008. In 1997, the incidence rate of any newly detected resistance was 1.73 cases per 100 person-months of therapy, and by 2008, the incidence rate had decreased >12-fold, to 0.13 cases per 100 person-months of therapy. This decrease in the incidence of resistance has occurred at an exponential rate, with half-times on the order of 2-3 years. Concomitantly, the proportion of individuals with plasma viral load suppression has increased linearly over time (from 64.7% with HIV RNA levels <50 copies/mL in 2000 to 87.0% in 2008; R2=0.97; P<.001). CONCLUSIONS Our results suggest an increasing effectiveness of highly active antiretroviral therapy at the populational level. The vast majority of treated patients in British Columbia now have either suppressed plasma viral load or drug-susceptible HIV-1, according to their most recent test results.
Collapse
Affiliation(s)
- Vikram S Gill
- BC Centre for Excellence in HIV/AIDS, St Paul's Hospital, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Tang J, Malhotra R, Song W, Brill I, Hu L, Farmer PK, Mulenga J, Allen S, Hunter E, Kaslow RA. Human leukocyte antigens and HIV type 1 viral load in early and chronic infection: predominance of evolving relationships. PLoS One 2010; 5:e9629. [PMID: 20224785 PMCID: PMC2835758 DOI: 10.1371/journal.pone.0009629] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 02/18/2010] [Indexed: 11/18/2022] Open
Abstract
Background During untreated, chronic HIV-1 infection, plasma viral load (VL) is a relatively stable quantitative trait that has clinical and epidemiological implications. Immunogenetic research has established various human genetic factors, especially human leukocyte antigen (HLA) variants, as independent determinants of VL set-point. Methodology/Principal Findings To identify and clarify HLA alleles that are associated with either transient or durable immune control of HIV-1 infection, we evaluated the relationships of HLA class I and class II alleles with VL among 563 seroprevalent Zambians (SPs) who were seropositive at enrollment and 221 seroconverters (SCs) who became seropositive during quarterly follow-up visits. After statistical adjustments for non-genetic factors (sex and age), two unfavorable alleles (A*3601 and DRB1*0102) were independently associated with high VL in SPs (p<0.01) but not in SCs. In contrast, favorable HLA variants, mainly A*74, B*13, B*57 (or Cw*18), and one HLA-A and HLA-C combination (A*30+Cw*03), dominated in SCs; their independent associations with low VL were reflected in regression beta estimates that ranged from −0.47±0.23 to −0.92±0.32 log10 in SCs (p<0.05). Except for Cw*18, all favorable variants had diminishing or vanishing association with VL in SPs (p≤0.86). Conclusions/Significance Overall, each of the three HLA class I genes had at least one allele that might contribute to effective immune control, especially during the early course of HIV-1 infection. These observations can provide a useful framework for ongoing analyses of viral mutations induced by protective immune responses.
Collapse
Affiliation(s)
- Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Protease polymorphisms in HIV-1 subtype CRF01_AE represent selection by antiretroviral therapy and host immune pressure. AIDS 2010; 24:411-6. [PMID: 20009919 DOI: 10.1097/qad.0b013e3283350eef] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Most of our knowledge about how antiretrovirals and host immune responses influence the HIV-1 protease gene is derived from studies of subtype B virus. We investigated the effect of protease resistance-associated mutations (PRAMs) and population-based HLA haplotype frequencies on polymorphisms found in CRF01_AE pro. METHODS We used all CRF01_AE protease sequences retrieved from the LANL database and obtained regional HLA frequencies from the dbMHC database. Polymorphisms and major PRAMs in the sequences were identified using the Stanford Resistance Database, and we performed phylogenetic and selection analyses using HyPhy. HLA binding affinities were estimated using the Immune Epitope Database and Analysis. RESULTS Overall, 99% of CRF01_AE sequences had at least 1 polymorphism and 10% had at least 1 major PRAM. Three polymorphisms (L10 V, K20RMI and I62 V) were associated with the presence of a major PRAM (P < 0.05). Compared to the subtype B consensus, six additional polymorphisms (I13 V, E35D, M36I, R41K, H69K, L89M) were identified in the CRF01_AE consensus; all but L89M were located within epitopes recognized by HLA class I alleles. Of the predominant HLA haplotypes in the Asian regions of CRF01_AE origin, 80% were positively associated with the observed polymorphisms, and estimated HLA binding affinity was estimated to decrease 19-40 fold with the observed polymorphisms at positions 35, 36 and 41. CONCLUSION Polymorphisms in CRF01_AE protease gene were common, and polymorphisms at residues 10, 20 and 62 most likely represent selection by use of protease inhibitors, whereas R41K and H69K were more likely attributable to recognition of epitopes by the HLA haplotypes of the host population.
Collapse
|
104
|
Berger CT, Carlson JM, Brumme CJ, Hartman KL, Brumme ZL, Henry LM, Rosato PC, Piechocka-Trocha A, Brockman MA, Harrigan PR, Heckerman D, Kaufmann DE, Brander C. Viral adaptation to immune selection pressure by HLA class I-restricted CTL responses targeting epitopes in HIV frameshift sequences. ACTA ACUST UNITED AC 2010; 207:61-75. [PMID: 20065065 PMCID: PMC2812535 DOI: 10.1084/jem.20091808] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CD8+ cytotoxic T lymphocyte (CTL)-mediated immune responses to HIV contribute to viral control in vivo. Epitopes encoded by alternative reading frame (ARF) peptides may be targeted by CTLs as well, but their frequency and in vivo relevance are unknown. Using host genetic (human leukocyte antigen [HLA]) and plasma viral sequence information from 765 HIV-infected subjects, we identified 64 statistically significant (q<0.2) associations between specific HLA alleles and sequence polymorphisms in alternate reading frames of gag, pol, and nef that did not affect the regular frame protein sequence. Peptides spanning the top 20 HLA-associated imprints were used to test for ex vivo immune responses in 85 HIV-infected subjects and showed responses to 10 of these ARF peptides. The most frequent response recognized an HLA-A*03-restricted +2 frame-encoded epitope containing a unique A*03-associated polymorphism at position 6. Epitope-specific CTLs efficiently inhibited viral replication in vitro when viruses containing the wild-type sequence but not the observed polymorphism were tested. Mutating alternative internal start codons abrogated the CTL-mediated inhibition of viral replication. These data indicate that responses to ARF-encoded HIV epitopes are induced during natural infection, can contribute to viral control in vivo, and drive viral evolution on a population level.
Collapse
Affiliation(s)
- Christoph T Berger
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Boston, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Poon AFY, Swenson LC, Dong WWY, Deng W, Kosakovsky Pond SL, Brumme ZL, Mullins JI, Richman DD, Harrigan PR, Frost SDW. Phylogenetic analysis of population-based and deep sequencing data to identify coevolving sites in the nef gene of HIV-1. Mol Biol Evol 2009; 27:819-32. [PMID: 19955476 DOI: 10.1093/molbev/msp289] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rapidly evolving viruses such as HIV-1 display extensive sequence variation in response to host-specific selection, while simultaneously maintaining functions that are critical to replication and infectivity. This apparent conflict between diversifying and purifying selection may be resolved by an abundance of epistatic interactions such that the same functional requirements can be met by highly divergent sequences. We investigate this hypothesis by conducting an extensive characterization of sequence variation in the HIV-1 nef gene that encodes a highly variable multifunctional protein. Population-based sequences were obtained from 686 patients enrolled in the HOMER cohort in British Columbia, Canada, from which the distribution of nonsynonymous substitutions in the phylogeny was reconstructed by maximum likelihood. We used a phylogenetic comparative method on these data to identify putative epistatic interactions between residues. Two interactions (Y120/Q125 and N157/S169) were chosen to further investigate within-host evolution using HIV-1 RNA extractions from plasma samples from eight patients. Clonal sequencing confirmed strong linkage between polymorphisms at these sites in every case. We used massively parallel pyrosequencing (MPP) to reconstruct within-host evolution in these patients. Experimental error associated with MPP was quantified by performing replicates at two different stages of the protocol, which were pooled prior to analysis to reduce this source of variation. Phylogenetic reconstruction from these data revealed correlated substitutions at Y120/Q125 or N157/S169 repeated across multiple lineages in every host, indicating convergent within-host evolution shaped by epistatic interactions.
Collapse
Affiliation(s)
- Art F Y Poon
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Treurnicht FK, Seoighe C, Martin DP, Wood N, Abrahams MR, Rosa DDA, Bredell H, Woodman Z, Hide W, Mlisana K, Karim SA, Gray CM, Williamson C. Adaptive changes in HIV-1 subtype C proteins during early infection are driven by changes in HLA-associated immune pressure. Virology 2009; 396:213-25. [PMID: 19913270 DOI: 10.1016/j.virol.2009.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 07/21/2009] [Accepted: 10/04/2009] [Indexed: 01/12/2023]
Abstract
It is unresolved whether recently transmitted human immunodeficiency viruses (HIV) have genetic features that specifically favour their transmissibility. To identify potential "transmission signatures", we compared 20 full-length HIV-1 subtype C genomes from primary infections, with 66 sampled from ethnically and geographically matched individuals with chronic infections. Controlling for recombination and phylogenetic relatedness, we identified 39 sites at which amino acid frequency spectra differed significantly between groups. These sites were predominantly located within Env, Pol and Gag (14/39, 9/39 and 6/39 respectively) and were significantly clustered (33/39) within known immunoreactive peptides. Within 6 months of infection, we detected reversion-to-consensus mutations at 14 sites and potential CTL escape mutations at seven. Here we provide evidence that frequent reversion mutations probably allows the virus to recover replicative fitness which, together with immune escape driven by the HLA alleles of the new hosts, differentiate sequences from chronic infections from those sampled shortly after transmission.
Collapse
Affiliation(s)
- F K Treurnicht
- Institute of Infectious Diseases and Molecular Medicine (IIDMM), Division of Medical Virology, University of Cape Town, South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Brumme ZL, John M, Carlson JM, Brumme CJ, Chan D, Brockman MA, Swenson LC, Tao I, Szeto S, Rosato P, Sela J, Kadie CM, Frahm N, Brander C, Haas DW, Riddler SA, Haubrich R, Walker BD, Harrigan PR, Heckerman D, Mallal S. HLA-associated immune escape pathways in HIV-1 subtype B Gag, Pol and Nef proteins. PLoS One 2009; 4:e6687. [PMID: 19690614 PMCID: PMC2723923 DOI: 10.1371/journal.pone.0006687] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 05/27/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite the extensive genetic diversity of HIV-1, viral evolution in response to immune selective pressures follows broadly predictable mutational patterns. Sites and pathways of Human Leukocyte-Antigen (HLA)-associated polymorphisms in HIV-1 have been identified through the analysis of population-level data, but the full extent of immune escape pathways remains incompletely characterized. Here, in the largest analysis of HIV-1 subtype B sequences undertaken to date, we identify HLA-associated polymorphisms in the three HIV-1 proteins most commonly considered in cellular-based vaccine strategies. Results are organized into protein-wide escape maps illustrating the sites and pathways of HLA-driven viral evolution. METHODOLOGY/PRINCIPAL FINDINGS HLA-associated polymorphisms were identified in HIV-1 Gag, Pol and Nef in a multicenter cohort of >1500 chronically subtype-B infected, treatment-naïve individuals from established cohorts in Canada, the USA and Western Australia. At q< or =0.05, 282 codons commonly mutating under HLA-associated immune pressures were identified in these three proteins. The greatest density of associations was observed in Nef (where close to 40% of codons exhibited a significant HLA association), followed by Gag then Pol (where approximately 15-20% of codons exhibited HLA associations), confirming the extensive impact of immune selection on HIV evolution and diversity. Analysis of HIV codon covariation patterns identified over 2000 codon-codon interactions at q< or =0.05, illustrating the dense and complex networks of linked escape and secondary/compensatory mutations. CONCLUSIONS/SIGNIFICANCE The immune escape maps and associated data are intended to serve as a user-friendly guide to the locations of common escape mutations and covarying codons in HIV-1 subtype B, and as a resource facilitating the systematic identification and classification of immune escape mutations. These resources should facilitate research in HIV epitope discovery and host-pathogen co-evolution, and are relevant to the continued search for an effective CTL-based AIDS vaccine.
Collapse
|
108
|
Avila-Rios S, Ormsby CE, Carlson JM, Valenzuela-Ponce H, Blanco-Heredia J, Garrido-Rodriguez D, Garcia-Morales C, Heckerman D, Brumme ZL, Mallal S, John M, Espinosa E, Reyes-Teran G. Unique features of HLA-mediated HIV evolution in a Mexican cohort: a comparative study. Retrovirology 2009; 6:72. [PMID: 19664284 PMCID: PMC2734549 DOI: 10.1186/1742-4690-6-72] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Accepted: 08/10/2009] [Indexed: 11/30/2022] Open
Abstract
Background Mounting evidence indicates that HLA-mediated HIV evolution follows highly stereotypic pathways that result in HLA-associated footprints in HIV at the population level. However, it is not known whether characteristic HLA frequency distributions in different populations have resulted in additional unique footprints. Methods The phylogenetic dependency network model was applied to assess HLA-mediated evolution in datasets of HIV pol sequences from free plasma viruses and peripheral blood mononuclear cell (PBMC)-integrated proviruses in an immunogenetically unique cohort of Mexican individuals. Our data were compared with data from the IHAC cohort, a large multi-center cohort of individuals from Canada, Australia and the USA. Results Forty three different HLA-HIV codon associations representing 30 HLA-HIV codon pairs were observed in the Mexican cohort (q < 0.2). Strikingly, 23 (53%) of these associations differed from those observed in the well-powered IHAC cohort, strongly suggesting the existence of unique characteristics in HLA-mediated HIV evolution in the Mexican cohort. Furthermore, 17 of the 23 novel associations involved HLA alleles whose frequencies were not significantly different from those in IHAC, suggesting that their detection was not due to increased statistical power but to differences in patterns of epitope targeting. Interestingly, the consensus differed in four positions between the two cohorts and three of these positions could be explained by HLA-associated selection. Additionally, different HLA-HIV codon associations were seen when comparing HLA-mediated selection in plasma viruses and PBMC archived proviruses at the population level, with a significantly lower number of associations in the proviral dataset. Conclusion Our data support universal HLA-mediated HIV evolution at the population level, resulting in detectable HLA-associated footprints in the circulating virus. However, it also strongly suggests that unique genetic backgrounds in different HIV-infected populations may influence HIV evolution in a particular direction as particular HLA-HIV codon associations are determined by specific HLA frequency distributions. Our analysis also suggests a dynamic HLA-associated evolution in HIV with fewer HLA-HIV codon associations observed in the proviral compartment, which is likely enriched in early archived HIV sequences, compared to the plasma virus compartment. These results highlight the importance of comparative HIV evolutionary studies in immunologically different populations worldwide.
Collapse
Affiliation(s)
- Santiago Avila-Rios
- Center for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City, Mexico.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Schmid BV, Keşmir C, de Boer RJ. The distribution of CTL epitopes in HIV-1 appears to be random, and similar to that of other proteomes. BMC Evol Biol 2009; 9:184. [PMID: 19653887 PMCID: PMC3087517 DOI: 10.1186/1471-2148-9-184] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 08/04/2009] [Indexed: 11/20/2022] Open
Abstract
Background HIV-1 viruses are highly capable of mutating their proteins to escape the presentation of CTL epitopes in their current host. Upon transmission to another host, some escape mutations revert, but other remain stable in the virus sequence for at least several years. Depending on the rate of accumulation and reversion of escape mutations, HIV-1 could reach a high level of adaptation to the human population. Yusim et. al. hypothesized that the apparent clustering of CTL epitopes in the conserved regions of HIV-1 proteins could be an evolutionary signature left by large-scale adaptation of HIV-1 to its human/simian host. Results In this paper we quantified the distribution of CTL epitopes in HIV-1 and found that that in 99% of the HIV-1 protein sequences, the epitope distribution was indistinguishable from random. Similar percentages were found for HCV, Influenza and for three eukaryote proteomes (Human, Drosophila, Yeast). Conclusion We conclude that CTL epitopes in HIV-1 are randomly distributed, and that this distribution is similar to the distribution of CTL epitopes in proteins from other proteomes. Therefore, the visually apparent clustering of CTL epitopes in epitope maps should not be interpreted as a signature of a past large-scale adaptation of HIV-1 to the human cellular immune response.
Collapse
Affiliation(s)
- Boris V Schmid
- Theoretical Biology, Utrecht University, the Netherlands.
| | | | | |
Collapse
|
110
|
Abstract
BACKGROUND Viruses employ various means to evade immune detection. One common evasion strategy is the removal of CD8 cytotoxic T-lymphocyte (CTL) epitopes. METHOD Here, we use bioinformatic tools to compute the HIV CTL epitope repertoire presented by over 8000 HIV sequences in multiple Human Leukocyte Antigen alleles. We define the 'Size of Immune Repertoire' (SIR) score, which represents the ratio between the number of the predicted epitopes within a protein and their expected number within a scrambled version of the same protein. RESULTS We show that HIV proteins present less epitopes than expected and that the number of epitopes gradually decreases from SIV to recent HIV sequences. The decrease of the SIR score of HIV is accompanied by a high frequency of replacement mutations within epitopes. The SIR score of the different HIV proteins is not uniform. The regulatory proteins, Tat and Rev, expressed early during cellular infection have a low SIR score, whereas virion-associated genes that are expressed later, such as Env, Pol and Gag, have a higher SIR score. Actually, the SIR score of Gag keeps increasing over time. CONCLUSION We hypothesize that our results reflect an HIV immune evasion strategy. This involves the targeting of the CTL immune response to viral structural and enzyme proteins, allowing the virus a time interval to propagate before its host cells are destroyed by CTLs. An efficient anti-HIV CTL response against HIV should thus also target the regulatory genes that HIV seeks to hide from the immune system.
Collapse
|
111
|
Brumme ZL, Walker BD. Tracking the culprit: HIV-1 evolution and immune selection revealed by single-genome amplification. ACTA ACUST UNITED AC 2009; 206:1215-8. [PMID: 19487418 PMCID: PMC2715053 DOI: 10.1084/jem.20091094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Early control of HIV-1 infection is determined by a balance between the host immune response and the ability of the virus to escape this response. Studies using single-genome amplification now reveal new details about the kinetics and specificity of the CD8(+) T cell response and the evolution of the virus during early HIV infection.
Collapse
Affiliation(s)
- Zabrina L Brumme
- Ragon Institute of MGH, MIT and Harvard, Charlestown MA 02129, USA
| | | |
Collapse
|
112
|
T-cell vaccine strategies for human immunodeficiency virus, the virus with a thousand faces. J Virol 2009; 83:8300-14. [PMID: 19439471 DOI: 10.1128/jvi.00114-09] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
113
|
Tenzer S, Wee E, Burgevin A, Stewart-Jones G, Friis L, Lamberth K, Chang CH, Harndahl M, Weimershaus M, Gerstoft J, Akkad N, Klenerman P, Fugger L, Jones EY, McMichael AJ, Buus S, Schild H, van Endert P, Iversen AKN. Antigen processing influences HIV-specific cytotoxic T lymphocyte immunodominance. Nat Immunol 2009; 10:636-46. [PMID: 19412183 DOI: 10.1038/ni.1728] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 03/12/2009] [Indexed: 11/09/2022]
Abstract
Although cytotoxic T lymphocytes (CTLs) in people infected with human immunodeficiency virus type 1 can potentially target multiple virus epitopes, the same few are recognized repeatedly. We show here that CTL immunodominance in regions of the human immunodeficiency virus type 1 group-associated antigen proteins p17 and p24 correlated with epitope abundance, which was strongly influenced by proteasomal digestion profiles, affinity for the transporter protein TAP, and trimming mediated by the endoplasmatic reticulum aminopeptidase ERAAP, and was moderately influenced by HLA affinity. Structural and functional analyses demonstrated that proteasomal cleavage 'preferences' modulated the number and length of epitope-containing peptides, thereby affecting the response avidity and clonality of T cells. Cleavage patterns were affected by both flanking and intraepitope CTL-escape mutations. Our analyses show that antigen processing shapes CTL response hierarchies and that viral evolution modifies cleavage patterns and suggest strategies for in vitro vaccine optimization.
Collapse
Affiliation(s)
- Stefan Tenzer
- Institute of Immunology, University of Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
T-cell epitope prediction: rescaling can mask biological variation between MHC molecules. PLoS Comput Biol 2009; 5:e1000327. [PMID: 19300484 PMCID: PMC2650421 DOI: 10.1371/journal.pcbi.1000327] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 02/09/2009] [Indexed: 11/19/2022] Open
Abstract
Theoretical methods for predicting CD8+ T-cell epitopes are an important tool in vaccine design and for enhancing our understanding of the cellular immune system. The most popular methods currently available produce binding affinity predictions across a range of MHC molecules. In comparing results between these MHC molecules, it is common practice to apply a normalization procedure known as rescaling, to correct for possible discrepancies between the allelic predictors. Using two of the most popular prediction software packages, NetCTL and NetMHC, we tested the hypothesis that rescaling removes genuine biological variation from the predicted affinities when comparing predictions across a number of MHC molecules. We found that removing the condition of rescaling improved the prediction software's performance both qualitatively, in terms of ranking epitopes, and quantitatively, in the accuracy of their binding affinity predictions. We suggest that there is biologically significant variation among class 1 MHC molecules and find that retention of this variation leads to significantly more accurate epitope prediction.
Collapse
|
115
|
Timing and evolution of the most recent common ancestor of the Korean clade HIV subtype B based on nef and vif sequences. J Microbiol 2009; 47:85-90. [PMID: 19229495 DOI: 10.1007/s12275-008-0240-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 12/05/2008] [Indexed: 01/26/2023]
Abstract
Molecular phylogenetic studies of the HIV-1 isolated from Koreans have suggested the presence of the so-called "Korean clade", which can be defined as a cluster free of foreign isolates. The Korean clade accounts for more than 60% of Korean isolates and exerts characteristic amino acid sequences. Thus, it is merited to estimate when this Korean clade first emerged in order to understand the evolutionary pattern of the Korean clade. We analyzed and reconstructed the most recent common ancestor (MRCA) sequences from nef (n=229) and vif (n=179) Korean clade sequences. Linear regression analyses of sequence divergence estimates were plotted against sampling years to infer the year in which there was zero divergence from the MRCA sequences. MRCA sequences suggested the Korean clade was first emerged around 1984, before the first detection of HIV-1 in Korea in 1985. Further studies on synonymous and nonsynonymous substitution rates suggested positive selection event for the Korean clade, while other subtype B had undergone negative to neutral evolution.
Collapse
|
116
|
Duda A, Lee-Turner L, Fox J, Robinson N, Dustan S, Kaye S, Fryer H, Carrington M, McClure M, McLean AR, Fidler S, Weber J, Phillips RE, Frater AJ. HLA-associated clinical progression correlates with epitope reversion rates in early human immunodeficiency virus infection. J Virol 2009; 83:1228-39. [PMID: 19019964 PMCID: PMC2620910 DOI: 10.1128/jvi.01545-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 10/21/2008] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) can evade immunity shortly after transmission to a new host but the clinical significance of this early viral adaptation in HIV infection is not clear. We present an analysis of sequence variation from a longitudinal cohort study of HIV adaptation in 189 acute seroconverters followed for up to 3 years. We measured the rates of variation within well-defined epitopes to determine associations with the HLA-linked hazard of disease progression. We found early reversion across both the gag and pol genes, with a 10-fold faster rate of escape in gag (2.2 versus 0.27 forward mutations/1,000 amino acid sites). For most epitopes (23/34), variation in the HLA-matched and HLA-unmatched controls was similar. For a minority of epitopes (8/34, and generally associated with HLA class I alleles that confer clinical benefit), new variants appeared early and consistently over the first 3 years of infection. Reversion occurred early at a rate which was HLA-dependent and correlated with the HLA class 1-associated relative hazard of disease progression and death (P = 0.0008), reinforcing the association between strong cytotoxic T-lymphocyte responses, viral fitness, and disease status. These data provide a comprehensive overview of viral adaptation in the first 3 years of infection. Our findings of HLA-dependent reversion suggest that costs are borne by some escape variants which may benefit the host, a finding contrary to a simple immune evasion paradigm. These epitopes, which are both strongly and frequently recognized, and for which escape involves a high cost to the virus, have the potential to optimize vaccine design.
Collapse
Affiliation(s)
- A Duda
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, Oxford University, South Parks Road, Oxford OX1 3SY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
HLA-associated viral mutations are common in human immunodeficiency virus type 1 elite controllers. J Virol 2009; 83:3407-12. [PMID: 19153230 DOI: 10.1128/jvi.02459-08] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elite controllers (EC) of human immunodeficiency virus type 1 (HIV-1) maintain viremia below the limit of detection without antiretroviral treatment. Virus-specific cytotoxic CD8(+) T lymphocytes are believed to play a crucial role in viral containment, but the degree of immune imprinting and compensatory mutations in EC is unclear. We obtained plasma gag, pol, and nef sequences from HLA-diverse subjects and found that 30 to 40% of the predefined HLA-associated polymorphic sites show evidence of immune selection pressure in EC, compared to approximately 50% of the sites in chronic progressors. These data indicate ongoing viral replication and escape from cytotoxic T lymphocytes are present even in strictly controlled HIV-1 infection.
Collapse
|
118
|
Human immunodeficiency virus type 1 population genetics and adaptation in newly infected individuals. J Virol 2008; 83:2715-27. [PMID: 19116249 DOI: 10.1128/jvi.01960-08] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies on human immunodeficiency virus type 1 (HIV-1) diversity are critical for understanding viral pathogenesis and the emergence of immune escape variants and for design of vaccine strategies. To investigate HIV-1 population genetics, we used single-genome sequencing to obtain pro-pol and env sequences from longitudinal samples (n = 93) from 14 acutely or recently infected patients. The first available sample after infection for 12/14 patients revealed HIV-1 populations with low genetic diversity, consistent with transmission or outgrowth of a single variant. In contrast, two patients showed high diversity and coexistence of distinct virus populations in samples collected days after a nonreactive enzyme-linked immunosorbent assay or indeterminate Western blot, consistent with transmission or outgrowth of multiple variants. Comparison of PR and RT sequences from the first sample for all patients with the consensus subgroup B sequence revealed that nearly all nonsynonymous differences were confined to identified cytotoxic T-lymphocyte (CTL) epitopes. For HLA-typed patients, mutations compared to the consensus in transmitted variants were found in epitopes that would not be recognized by the patient's major histocompatibility complex type. Reversion of transmitted mutations was rarely seen over the study interval (up to 5 years). These data indicate that acute subtype B HIV-1 infection usually results from transmission or outgrowth of single viral variants carrying mutations in CTL epitopes that were selected prior to transmission either in the donor or in a previous donor and that reversion of these mutations can be very slow. These results have important implications for vaccine strategies because they imply that some HLA alleles could be compromised in newly acquired HIV infections.
Collapse
|
119
|
Delport W, Scheffler K, Seoighe C. Frequent toggling between alternative amino acids is driven by selection in HIV-1. PLoS Pathog 2008; 4:e1000242. [PMID: 19096508 PMCID: PMC2592544 DOI: 10.1371/journal.ppat.1000242] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 11/18/2008] [Indexed: 11/19/2022] Open
Abstract
Host immune responses against infectious pathogens exert strong selective pressures favouring the emergence of escape mutations that prevent immune recognition. Escape mutations within or flanking functionally conserved epitopes can occur at a significant cost to the pathogen in terms of its ability to replicate effectively. Such mutations come under selective pressure to revert to the wild type in hosts that do not mount an immune response against the epitope. Amino acid positions exhibiting this pattern of escape and reversion are of interest because they tend to coincide with immune responses that control pathogen replication effectively. We have used a probabilistic model of protein coding sequence evolution to detect sites in HIV-1 exhibiting a pattern of rapid escape and reversion. Our model is designed to detect sites that toggle between a wild type amino acid, which is susceptible to a specific immune response, and amino acids with lower replicative fitness that evade immune recognition. Through simulation, we show that this model has significantly greater power to detect selection involving immune escape and reversion than standard models of diversifying selection, which are sensitive to an overall increased rate of non-synonymous substitution. Applied to alignments of HIV-1 protein coding sequences, the model of immune escape and reversion detects a significantly greater number of adaptively evolving sites in env and nef. In all genes tested, the model provides a significantly better description of adaptively evolving sites than standard models of diversifying selection. Several of the sites detected are corroborated by association between Human Leukocyte Antigen (HLA) and viral sequence polymorphisms. Overall, there is evidence for a large number of sites in HIV-1 evolving under strong selective pressure, but exhibiting low sequence diversity. A phylogenetic model designed to detect rapid toggling between wild type and escape amino acids identifies a larger number of adaptively evolving sites in HIV-1, and can in some cases correctly identify the amino acid that is susceptible to the immune response. Viruses, such as HIV, are able to evade host immune responses through escape mutations, yet sometimes they do so at a cost. This cost is the reduction in the ability of the virus to replicate, and thus selective pressure exists for a virus to revert to its original state in the absence of the host immune response that caused the initial escape mutation. This pattern of escape and reversion typically occurs when viruses are transmitted between individuals with different immune responses. We develop a phylogenetic model of immune escape and reversion and provide evidence that it outperforms existing models for the detection of selective pressure associated with host immune responses. Finally, we demonstrate that amino acid toggling is a pervasive process in HIV-1 evolution, such that many of the positions in the virus that evolve rapidly, under the influence of positive Darwinian selection, nonetheless display quite low sequence diversity. This highlights the limitations of HIV-1 evolution, and sites such as these are potentially good targets for HIV-1 vaccines.
Collapse
Affiliation(s)
- Wayne Delport
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town, South Africa
- Centre for High-Performance Computing, Rosebank, Cape Town, South Africa
| | - Konrad Scheffler
- Computer Science Division, Department of Mathematical Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Cathal Seoighe
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town, South Africa
- Centre for High-Performance Computing, Rosebank, Cape Town, South Africa
- * E-mail:
| |
Collapse
|
120
|
Abstract
Human immunodeficiency virus effectively evades CD8(+) T-cell responses through the development of CD8 escape mutations. Recent reports documenting reversion of transmitted mutations and the impact of specific escape mutations upon viral replication suggest that complex forces limit the accumulation of CD8 escape mutations at the population level. However, the presence of compensatory mutations capable of alleviating the impact of CD8 escape mutations on replication capacity may enable their persistence in an HLA-mismatched host. Herein, we illustrate the long-term stability of stereotypic escape mutations in the immunodominant HLA-B27-restricted epitope KK10 in p24/Gag following transmission when accompanied by a specific compensatory mutation.
Collapse
|
121
|
Abstract
OBJECTIVE Missense mutations in HIV-1 reverse transcriptase are frequently selected in response to therapy; we examined whether silent mutations were also selected for by HIV therapy. DESIGN Retrospective, observational analysis. Biochemical assays. METHODS A comparison of the reverse transcriptase gene, from antiretroviral- naive (N = 812) and experienced individuals (N = 2212), reveals two silent mutations (K65K and K66K) that are strongly associated with treatment experience. To assess reverse transcription efficiency, steady-state kinetic assays were carried out using recombinant purified HIV-1 reverse transcriptase and a series of synthetic RNA/DNA template/primer substrates. The RNA templates spanned codons 60-77 in the reverse transcriptase and included different combinations of mutations at codons 65, 66, 67, and 70. RESULTS Silent AAG mutations (or mixtures) at reverse transcriptase codons 65 and/or 66 were observed in 812 samples from 351 patients and 2129 samples from 829 patients, respectively. In clade B samples, there was a very strong relationship between the silent mutations and the thymidine analogue mutations, in particular D67N. Steady-state kinetic experiments demonstrated that HIV-1 reverse transcriptase exhibited a strong tendency to pause and/or dissociate at codons 65 and 66 on RNA templates that contained the D67N and K70R mutations. However, when the K66 or K66 AAA to AAG mutations were added to the background of the 67 and 70 mutational changes, these pausing and/or dissociation events were largely alleviated. CONCLUSION Silent mutations at codons 65 and/or 66 are strongly coselected with thymidine analogue mutations. These data provide the first evidence for an RNA-level mechanism of direct relevance to drug resistance.
Collapse
|
122
|
Protective HLA class I alleles that restrict acute-phase CD8+ T-cell responses are associated with viral escape mutations located in highly conserved regions of human immunodeficiency virus type 1. J Virol 2008; 83:1845-55. [PMID: 19036810 DOI: 10.1128/jvi.01061-08] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The control of human immunodeficiency virus type 1 (HIV-1) associated with particular HLA class I alleles suggests that some CD8(+) T-cell responses may be more effective than others at containing HIV-1. Unfortunately, substantial diversities in the breadth, magnitude, and function of these responses have impaired our ability to identify responses most critical to this control. It has been proposed that CD8 responses targeting conserved regions of the virus may be particularly effective, since the development of cytotoxic T-lymphocyte (CTL) escape mutations in these regions may significantly impair viral replication. To address this hypothesis at the population level, we derived near-full-length viral genomes from 98 chronically infected individuals and identified a total of 76 HLA class I-associated mutations across the genome, reflective of CD8 responses capable of selecting for sequence evolution. The majority of HLA-associated mutations were found in p24 Gag, Pol, and Nef. Reversion of HLA-associated mutations in the absence of the selecting HLA allele was also commonly observed, suggesting an impact of most CTL escape mutations on viral replication. Although no correlations were observed between the number or location of HLA-associated mutations and protective HLA alleles, limiting the analysis to mutations selected by acute-phase immunodominant responses revealed a strong positive correlation between mutations at conserved residues and protective HLA alleles. These data suggest that control of HIV-1 may be associated with acute-phase CD8 responses capable of selecting for viral escape mutations in highly conserved regions of the virus, supporting the inclusion of these regions in the design of an effective vaccine.
Collapse
|
123
|
Carlson JM, Brumme ZL, Rousseau CM, Brumme CJ, Matthews P, Kadie C, Mullins JI, Walker BD, Harrigan PR, Goulder PJR, Heckerman D. Phylogenetic dependency networks: inferring patterns of CTL escape and codon covariation in HIV-1 Gag. PLoS Comput Biol 2008; 4:e1000225. [PMID: 19023406 PMCID: PMC2579584 DOI: 10.1371/journal.pcbi.1000225] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 10/09/2008] [Indexed: 11/18/2022] Open
Abstract
HIV avoids elimination by cytotoxic T-lymphocytes (CTLs) through the evolution of escape mutations. Although there is mounting evidence that these escape pathways are broadly consistent among individuals with similar human leukocyte antigen (HLA) class I alleles, previous population-based studies have been limited by the inability to simultaneously account for HIV codon covariation, linkage disequilibrium among HLA alleles, and the confounding effects of HIV phylogeny when attempting to identify HLA-associated viral evolution. We have developed a statistical model of evolution, called a phylogenetic dependency network, that accounts for these three sources of confounding and identifies the primary sources of selection pressure acting on each HIV codon. Using synthetic data, we demonstrate the utility of this approach for identifying sites of HLA-mediated selection pressure and codon evolution as well as the deleterious effects of failing to account for all three sources of confounding. We then apply our approach to a large, clinically-derived dataset of Gag p17 and p24 sequences from a multicenter cohort of 1144 HIV-infected individuals from British Columbia, Canada (predominantly HIV-1 clade B) and Durban, South Africa (predominantly HIV-1 clade C). The resulting phylogenetic dependency network is dense, containing 149 associations between HLA alleles and HIV codons and 1386 associations among HIV codons. These associations include the complete reconstruction of several recently defined escape and compensatory mutation pathways and agree with emerging data on patterns of epitope targeting. The phylogenetic dependency network adds to the growing body of literature suggesting that sites of escape, order of escape, and compensatory mutations are largely consistent even across different clades, although we also identify several differences between clades. As recent case studies have demonstrated, understanding both the complexity and the consistency of immune escape has important implications for CTL-based vaccine design. Phylogenetic dependency networks represent a major step toward systematically expanding our understanding of CTL escape to diverse populations and whole viral genes.
Collapse
Affiliation(s)
- Jonathan M. Carlson
- eScience Group, Microsoft Research, Redmond, Washington, United States of America
- Department of Computer Science and Engineering, University of Washington, Seattle, Washington, United States of America
| | - Zabrina L. Brumme
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christine M. Rousseau
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Chanson J. Brumme
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Philippa Matthews
- Department of Paediatrics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Carl Kadie
- eScience Group, Microsoft Research, Redmond, Washington, United States of America
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Bruce D. Walker
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - P. Richard Harrigan
- B.C. Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philip J. R. Goulder
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Paediatrics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - David Heckerman
- eScience Group, Microsoft Research, Redmond, Washington, United States of America
| |
Collapse
|
124
|
Stürmer M, Carlebach A, Staszewski S, Linde R, Königs C, Doerr HW, Däumer M, Berger A. Short communication: Different mutation patterns in subtype CRF06_cpx after mother-to-child transmission. AIDS Res Hum Retroviruses 2008; 24:1429-33. [PMID: 19032066 DOI: 10.1089/aid.2007.0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract Development of drug resistance mutation patterns (DRMP) in HIV after treatment failure depends on the drugs used in the failing regimen. However, selected patterns may not be unique; there is evidence that selection of DRMP for nelfinavir is dependent on subtype and/or background polymorphisms. Here we describe the selection of DRMP in a mother and son infected with subtype CRF06_cpx by mother-to-child transmission. Four years after delivery the mother received stavudine/lamivudine/nelfinavir as first-line therapy. Genotypic resistance tests (GRT) during follow-up showed selection of M184V/L283I in reverse transcriptase (RT) and H63Q/A71V/L90M in protease (PR). The child started treatment 8 months after birth with stavudine/didanosine/nelfinavir followed by an intensification period with efavirenz. Due to toxicity, efavirenz was removed from the regimen again. GRT during follow-up showed selection of L74V/K103N/M184V/M230L in RT and M46I/H63Q/N88S in PR. The viral load (VL) of the mother was initially undetectable followed by intermediate replication (1000-21,000 copies/ml), whereas the child had both periods of undetectable VL and low-level replication. Although both patients were infected with the same virus and treated with the same protease inhibitor, different DRMPs were selected. Whether the nucleoside backbone, course of antiretroviral therapy, or different host environment is responsible for this variability must be determined in larger studies.
Collapse
Affiliation(s)
- Martin Stürmer
- J.W. Goethe University Hospital, Institute for Medical Virology, 60596 Frankfurt, Germany
| | - Amina Carlebach
- J.W. Goethe University Hospital, Medical HIV Treatment and Research Unit, Department of Internal Medicine II, 60590 Frankfurt, Germany
- HIV Speciality Practice, 60311 Frankfurt, Germany
| | - Schlomo Staszewski
- J.W. Goethe University Hospital, Medical HIV Treatment and Research Unit, Department of Internal Medicine II, 60590 Frankfurt, Germany
| | - Richard Linde
- J.W. Goethe University Hospital, Immunodeficiency Unit, Department of Pediatrics III, 60590 Frankfurt, Germany
| | - Christoph Königs
- J.W. Goethe University Hospital, Immunodeficiency Unit, Department of Pediatrics III, 60590 Frankfurt, Germany
| | - Hans W. Doerr
- J.W. Goethe University Hospital, Institute for Medical Virology, 60596 Frankfurt, Germany
| | - Martin Däumer
- Institute for Immunology and Genetic, Medical Laboratory Dr. med. B. Thiele, 67653 Kaiserslautern, Germany
| | - Annemarie Berger
- J.W. Goethe University Hospital, Institute for Medical Virology, 60596 Frankfurt, Germany
| |
Collapse
|
125
|
The specificity and polymorphism of the MHC class I prevents the global adaptation of HIV-1 to the monomorphic proteasome and TAP. PLoS One 2008; 3:e3525. [PMID: 18949050 PMCID: PMC2569417 DOI: 10.1371/journal.pone.0003525] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 09/29/2008] [Indexed: 11/19/2022] Open
Abstract
The large diversity in MHC class I molecules in a population lowers the chance that a virus infects a host to which it is pre-adapted to escape the MHC binding of CTL epitopes. However, viruses can also lose CTL epitopes by escaping the monomorphic antigen processing components of the pathway (proteasome and TAP) that create the epitope precursors. If viruses were to accumulate escape mutations affecting these monomorphic components, they would become pre-adapted to all hosts regardless of the MHC polymorphism. To assess whether viruses exploit this apparent vulnerability, we study the evolution of HIV-1 with bioinformatic tools that allow us to predict CTL epitopes, and quantify the frequency and accumulation of antigen processing escapes. We found that within hosts, proteasome and TAP escape mutations occur frequently. However, on the population level these escapes do not accumulate: the total number of predicted epitopes and epitope precursors in HIV-1 clade B has remained relatively constant over the last 30 years. We argue that this lack of adaptation can be explained by the combined effect of the MHC polymorphism and the high specificity of individual MHC molecules. Because of these two properties, only a subset of the epitope precursors in a host are potential epitopes, and that subset differs between hosts. We estimate that upon transmission of a virus to a new host 39%–66% of the mutations that caused epitope precursor escapes are released from immune selection pressure.
Collapse
|
126
|
Asquith B. The evolutionary selective advantage of HIV-1 escape variants and the contribution of escape to the HLA-associated risk of AIDS progression. PLoS One 2008; 3:e3486. [PMID: 18941529 PMCID: PMC2567026 DOI: 10.1371/journal.pone.0003486] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 10/01/2008] [Indexed: 11/19/2022] Open
Abstract
HIV-1 escape from surveillance by cytotoxic T lymphocytes (CTL) is thought to cause at least transient weakening of immune control. However, the CTL response is highly adaptable and the long-term consequences of viral escape are not fully understood. The objective of this study was to address the question “to what extent does HIV-1 escape from CTL contribute to HLA-associated AIDS progression?” We combined an analysis of 21 escape events in longitudinally-studied HIV-1 infected people with a population-level analysis of the functional CTL response in 150 subjects (by IFNg ELISpot) and an analysis of the HIV-1 sequence database to quantify the contribution of escape to the HLA-associated rate of AIDS progression. We found that CTL responses restricted by protective HLA class I alleles, which are associated with slow progression to AIDS, recognised epitopes where escape variants had a weak evolutionary selective advantage (P = 0.008) and occurred infrequently (P = 0.017). Epitopes presented by protective HLA class I alleles were more likely to elicit a CTL response (P = 0.001) and less likely to contain sequence variation (P = 0.006). A third of between-individual variation in HLA-associated disease risk was predicted by the selective advantage of escape variants: a doubling in the evolutionary selective advantage was associated with a decrease in the AIDS-free period of 1.2 yrs. These results contribute to our understanding of what makes a CTL response protective and why some individuals progress to AIDS more rapidly than others.
Collapse
Affiliation(s)
- Becca Asquith
- Department of Immunology, Imperial College London, London, United Kingdom.
| |
Collapse
|
127
|
Tang J, Shao W, Yoo YJ, Brill I, Mulenga J, Allen S, Hunter E, Kaslow RA. Human leukocyte antigen class I genotypes in relation to heterosexual HIV type 1 transmission within discordant couples. THE JOURNAL OF IMMUNOLOGY 2008; 181:2626-35. [PMID: 18684953 DOI: 10.4049/jimmunol.181.4.2626] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Differences in immune control of HIV-1 infection are often attributable to the highly variable HLA class I molecules that present viral epitopes to CTL. In our immunogenetic analyses of 429 HIV-1 discordant Zambian couples (infected index partners paired with cohabiting seronegative partners), several HLA class I variants in index partners were associated with contrasting rates and incidence of HIV-1 transmission within a 12-year study period. In particular, A*3601 on the A*36-Cw*04-B*53 haplotype was the most unfavorable marker of HIV-1 transmission by index partners, while Cw*1801 (primarily on the A*30-Cw*18-B*57 haplotype) was the most favorable, irrespective of the direction of transmission (male to female or female to male) and other commonly recognized cofactors of infection, including age and GUI. The same HLA markers were further associated with contrasting viral load levels in index partners, but they had no clear impact on HIV-1 acquisition by the seronegative partners. Thus, HLA class I gene products not only mediate HIV-1 pathogenesis and evolution but also influence heterosexual HIV-1 transmission.
Collapse
Affiliation(s)
- Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
The development of anti-virals has blunted the AIDS epidemic in the Western world but globally the epidemic has not been curtailed. Standard vaccines have not worked, and attenuated vaccines are not being developed because of safety concerns. Interest in attenuated vaccines has centered on isolated cases of patients infected with HIV-1 containing a deleted nef gene. Nef is a multifunctional accessory protein that is necessary for full HIV-1 virulence. Unfortunately, some patients infected with the nef-deleted virus eventually lose their CD4+ T cells to levels indicating progression to AIDS. This renders the possibility of an attenuated HIV-1 based solely on a deleted nef remote. In this review we discuss the knowledge gained both from the study of these patients and from in vitro investigations of Nef function to assess the possibility of developing new anti-HIV-1 drugs based on Nef. Specifically, we consider CD4 downregulation, major histocompatibility complex I downregulation, Pak2 activation, and enhancement of virion infectivity. We also consider the recent proposal that simian immunodeficiency viruses are non-pathogenic in their hosts because they have Nefs that downregulate CD3, but HIV-1 is pathogenic because its Nef fails to downregulate CD3. The possibility of incorporating the CD3 downregulation function into HIV-1 Nef as a therapeutic option is also considered. Finally, we conclude that inhibiting the CD4 downregulation function is the most promising Nef-targeted approach for developing a new anti-viral as a contribution to combating AIDS.
Collapse
Affiliation(s)
- John L Foster
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | |
Collapse
|
129
|
Srinivasan A, Ayyavoo V, Mahalingam S, Kannan A, Boyd A, Datta D, Kalyanaraman VS, Cristillo A, Collman RG, Morellet N, Sawaya BE, Murali R. A comprehensive analysis of the naturally occurring polymorphisms in HIV-1 Vpr: potential impact on CTL epitopes. Virol J 2008; 5:99. [PMID: 18721481 PMCID: PMC2553080 DOI: 10.1186/1743-422x-5-99] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 08/23/2008] [Indexed: 12/20/2022] Open
Abstract
The enormous genetic variability reported in HIV-1 has posed problems in the treatment of infected individuals. This is evident in the form of HIV-1 resistant to antiviral agents, neutralizing antibodies and cytotoxic T lymphocytes (CTLs) involving multiple viral gene products. Based on this, it has been suggested that a comprehensive analysis of the polymorphisms in HIV proteins is of value for understanding the virus transmission and pathogenesis as well as for the efforts towards developing anti-viral therapeutics and vaccines. This study, for the first time, describes an in-depth analysis of genetic variation in Vpr using information from global HIV-1 isolates involving a total of 976 Vpr sequences. The polymorphisms at the individual amino acid level were analyzed. The residues 9, 33, 39, and 47 showed a single variant amino acid compared to other residues. There are several amino acids which are highly polymorphic. The residues that show ten or more variant amino acids are 15, 16, 28, 36, 37, 48, 55, 58, 59, 77, 84, 86, 89, and 93. Further, the variant amino acids noted at residues 60, 61, 34, 71 and 72 are identical. Interestingly, the frequency of the variant amino acids was found to be low for most residues. Vpr is known to contain multiple CTL epitopes like protease, reverse transcriptase, Env, and Gag proteins of HIV-1. Based on this, we have also extended our analysis of the amino acid polymorphisms to the experimentally defined and predicted CTL epitopes. The results suggest that amino acid polymorphisms may contribute to the immune escape of the virus. The available data on naturally occurring polymorphisms will be useful to assess their potential effect on the structural and functional constraints of Vpr and also on the fitness of HIV-1 for replication.
Collapse
Affiliation(s)
- Alagarsamy Srinivasan
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Human leukocyte antigen-specific polymorphisms in HIV-1 Gag and their association with viral load in chronic untreated infection. AIDS 2008; 22:1277-86. [PMID: 18580606 DOI: 10.1097/qad.0b013e3283021a8c] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Selection of specific human leukocyte antigen (HLA)-restricted cytotoxic T-lymphocyte (CTL) escape mutations in key Gag epitopes has been associated with loss of HIV immune control on an individual basis. Here we undertake a population-based identification of HLA-associated polymorphisms in Gag and investigate their relationship with plasma viral load. DESIGN Cross-sectional analysis of 567 chronically HIV subtype B-infected, treatment-naive individuals. METHODS HLA class I-associated Gag substitutions were identified using phylogenetically corrected analysis methods featuring a multivariate adjustment for HLA linkage disequilibrium and a q-value correction for multiple tests. Presence of HLA-associated substitutions and markers of HIV disease status were correlated using Spearman's rank test. RESULTS We have created a gene-wide map of HLA class I-associated substitutions in HIV-1 subtype B Gag. This features 111 HLA-associated substitutions occurring at 51 of 500 Gag codons, more than 50% of which occur within published and/or putative HLA-restricted CTL epitopes. A modest inverse correlation was observed between the total number of HLA-associated Gag polymorphic sites within each individual and plasma viral load in chronic untreated infection (R = -0.17, P < 0.0001), supporting the hypothesis that a broad ability to target Gag in vivo contributes to viral control. A modest positive correlation was observed between the proportion of these sites exhibiting HLA-associated substitutions and plasma viral load (R = 0.09, P = 0.03), consistent with a loss of viremia control with the accumulation of CTL escape mutations. CONCLUSION Results contribute to our understanding of immune-driven viral adaptation and suggest that the accumulation of CTL escape mutations in Gag results in clinically detectable consequences at the population level. These data have implications for HIV vaccines.
Collapse
|
131
|
Marked epitope- and allele-specific differences in rates of mutation in human immunodeficiency type 1 (HIV-1) Gag, Pol, and Nef cytotoxic T-lymphocyte epitopes in acute/early HIV-1 infection. J Virol 2008; 82:9216-27. [PMID: 18614631 DOI: 10.1128/jvi.01041-08] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During acute human immunodeficiency virus type 1 (HIV-1) infection, early host cellular immune responses drive viral evolution. The rates and extent of these mutations, however, remain incompletely characterized. In a cohort of 98 individuals newly infected with HIV-1 subtype B, we longitudinally characterized the rates and extent of HLA-mediated escape and reversion in Gag, Pol, and Nef using a rational definition of HLA-attributable mutation based on the analysis of a large independent subtype B data set. We demonstrate rapid and dramatic HIV evolution in response to immune pressures that in general reflect established cytotoxic T-lymphocyte (CTL) response hierarchies in early infection. On a population level, HLA-driven evolution was observed in approximately 80% of published CTL epitopes. Five of the 10 most rapidly evolving epitopes were restricted by protective HLA alleles (HLA-B*13/B*51/B*57/B*5801; P = 0.01), supporting the importance of a strong early CTL response in HIV control. Consistent with known fitness costs of escape, B*57-associated mutations in Gag were among the most rapidly reverting positions upon transmission to non-B*57-expressing individuals, whereas many other HLA-associated polymorphisms displayed slow or negligible reversion. Overall, an estimated minimum of 30% of observed substitutions in Gag/Pol and 60% in Nef were attributable to HLA-associated escape and reversion events. Results underscore the dominant role of immune pressures in driving early within-host HIV evolution. Dramatic differences in escape and reversion rates across codons, genes, and HLA restrictions are observed, highlighting the complexity of viral adaptation to the host immune response.
Collapse
|
132
|
Lima V, Gill V, Yip B, Hogg R, Montaner J, Harrigan P. Increased Resilience to the Development of Drug Resistance with Modern Boosted Protease Inhibitor–Based Highly Active Antiretroviral Therapy. J Infect Dis 2008; 198:51-8. [DOI: 10.1086/588675] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
133
|
Rousseau CM, Daniels MG, Carlson JM, Kadie C, Crawford H, Prendergast A, Matthews P, Payne R, Rolland M, Raugi DN, Maust BS, Learn GH, Nickle DC, Coovadia H, Ndung'u T, Frahm N, Brander C, Walker BD, Goulder PJR, Bhattacharya T, Heckerman DE, Korber BT, Mullins JI. HLA class I-driven evolution of human immunodeficiency virus type 1 subtype c proteome: immune escape and viral load. J Virol 2008; 82:6434-46. [PMID: 18434400 PMCID: PMC2447109 DOI: 10.1128/jvi.02455-07] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 04/11/2008] [Indexed: 01/02/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) mutations that confer escape from cytotoxic T-lymphocyte (CTL) recognition can sometimes result in lower viral fitness. These mutations can then revert upon transmission to a new host in the absence of CTL-mediated immune selection pressure restricted by the HLA alleles of the prior host. To identify these potentially critical recognition points on the virus, we assessed HLA-driven viral evolution using three phylogenetic correction methods across full HIV-1 subtype C proteomes from a cohort of 261 South Africans and identified amino acids conferring either susceptibility or resistance to CTLs. A total of 558 CTL-susceptible and -resistant HLA-amino acid associations were identified and organized into 310 immunological sets (groups of individual associations related to a single HLA/epitope combination). Mutations away from seven susceptible residues, including four in Gag, were associated with lower plasma viral-RNA loads (q < 0.2 [where q is the expected false-discovery rate]) in individuals with the corresponding HLA alleles. The ratio of susceptible to resistant residues among those without the corresponding HLA alleles varied in the order Vpr > Gag > Rev > Pol > Nef > Vif > Tat > Env > Vpu (Fisher's exact test; P < or = 0.0009 for each comparison), suggesting the same ranking of fitness costs by genes associated with CTL escape. Significantly more HLA-B (chi(2); P = 3.59 x 10(-5)) and HLA-C (chi(2); P = 4.71 x 10(-6)) alleles were associated with amino acid changes than HLA-A, highlighting their importance in driving viral evolution. In conclusion, specific HIV-1 residues (enriched in Vpr, Gag, and Rev) and HLA alleles (particularly B and C) confer susceptibility to the CTL response and are likely to be important in the development of vaccines targeted to decrease the viral load.
Collapse
Affiliation(s)
- Christine M Rousseau
- Department of Microbiology, University of Washington, 1959 NE Pacific Street, Box 358070, Seattle, WA 98195-8070, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Genetic characterization of human immunodeficiency virus type 1 in elite controllers: lack of gross genetic defects or common amino acid changes. J Virol 2008; 82:8422-30. [PMID: 18562530 DOI: 10.1128/jvi.00535-08] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite reports of viral genetic defects in persons who control human immunodeficiency virus type 1 (HIV-1) in the absence of antiviral therapy, the extent to which such defects contribute to the long-term containment of viremia is not known. Most previous studies examining for such defects have involved small numbers of subjects, primarily focused on subjects expressing HLA-B57, or have examined single viral genes, and they have focused on cellular proviral DNA rather than plasma viral RNA sequences. Here, we attempted viral sequencing from 95 HIV-1 elite controllers (EC) who maintained plasma viral loads of <50 RNA copies/ml in the absence of therapy, the majority of whom did not express HLA-B57. HIV-1 gene fragments were obtained from 94% (89/95) of the EC, and plasma viral sequences were obtained from 78% (61/78), the latter indicating the presence of replicating virus in the majority of EC. Of 63 persons for whom nef was sequenced, only three cases of nef deletions were identified, and gross genetic defects were rarely observed in other HIV-1 coding genes. In a codon-by-codon comparison between EC and persons with progressive infection, correcting for HLA bias and coevolving secondary mutations, a significant difference was observed at only three codons in Gag, all three of which represented the historic population consensus amino acid at the time of infection. These results indicate that the spontaneous control of HIV replication is not attributable to shared viral genetic defects or shared viral polymorphisms.
Collapse
|
135
|
Abstract
A quarter century of scientific discovery has been applied to developing an AIDS vaccine, yet this goal remains elusive. Specific characteristics of the virus, including the extreme genetic variability in circulating viral isolates worldwide, biological properties of HIV that impede immune attack, and a high mutation rate that allows for rapid escape from adaptive immune responses, render this a huge challenge. However, evidence of protection against AIDS viruses in animal models and control of HIV in humans under certain circumstances, together with scientific advances in understanding disease pathogenesis, provide a strong rationale and objective paths to continue the pursuit of an effective AIDS vaccine to stem the global epidemic.
Collapse
Affiliation(s)
- Bruce D Walker
- Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| | | |
Collapse
|
136
|
Goepfert PA, Lumm W, Farmer P, Matthews P, Prendergast A, Carlson JM, Derdeyn CA, Tang J, Kaslow RA, Bansal A, Yusim K, Heckerman D, Mulenga J, Allen S, Goulder PJR, Hunter E. Transmission of HIV-1 Gag immune escape mutations is associated with reduced viral load in linked recipients. ACTA ACUST UNITED AC 2008; 205:1009-17. [PMID: 18426987 PMCID: PMC2373834 DOI: 10.1084/jem.20072457] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In a study of 114 epidemiologically linked Zambian transmission pairs, we evaluated the impact of human leukocyte antigen class I (HLA-I)–associated amino acid polymorphisms, presumed to reflect cytotoxic T lymphocyte (CTL) escape in Gag and Nef of the virus transmitted from the chronically infected donor, on the plasma viral load (VL) in matched recipients 6 mo after infection. CTL escape mutations in Gag and Nef were seen in the donors, which were subsequently transmitted to recipients, largely unchanged soon after infection. We observed a significant correlation between the number of Gag escape mutations targeted by specific HLA-B allele–restricted CTLs and reduced VLs in the recipients. This negative correlation was most evident in newly infected individuals, whose HLA alleles were unable to effectively target Gag and select for CTL escape mutations in this gene. Nef mutations in the donor had no impact on VL in the recipient. Thus, broad Gag-specific CTL responses capable of driving virus escape in the donor may be of clinical benefit to both the donor and recipient. In addition to their direct implications for HIV-1 vaccine design, these data suggest that CTL-induced viral polymorphisms and their associated in vivo viral fitness costs could have a significant impact on HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Paul A Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Listgarten J, Brumme Z, Kadie C, Xiaojiang G, Walker B, Carrington M, Goulder P, Heckerman D. Statistical resolution of ambiguous HLA typing data. PLoS Comput Biol 2008; 4:e1000016. [PMID: 18392148 PMCID: PMC2289775 DOI: 10.1371/journal.pcbi.1000016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 01/30/2008] [Indexed: 11/18/2022] Open
Abstract
High-resolution HLA typing plays a central role in many areas of immunology, such as in identifying immunogenetic risk factors for disease, in studying how the genomes of pathogens evolve in response to immune selection pressures, and also in vaccine design, where identification of HLA-restricted epitopes may be used to guide the selection of vaccine immunogens. Perhaps one of the most immediate applications is in direct medical decisions concerning the matching of stem cell transplant donors to unrelated recipients. However, high-resolution HLA typing is frequently unavailable due to its high cost or the inability to re-type historical data. In this paper, we introduce and evaluate a method for statistical, in silico refinement of ambiguous and/or low-resolution HLA data. Our method, which requires an independent, high-resolution training data set drawn from the same population as the data to be refined, uses linkage disequilibrium in HLA haplotypes as well as four-digit allele frequency data to probabilistically refine HLA typings. Central to our approach is the use of haplotype inference. We introduce new methodology to this area, improving upon the Expectation-Maximization (EM)-based approaches currently used within the HLA community. Our improvements are achieved by using a parsimonious parameterization for haplotype distributions and by smoothing the maximum likelihood (ML) solution. These improvements make it possible to scale the refinement to a larger number of alleles and loci in a more computationally efficient and stable manner. We also show how to augment our method in order to incorporate ethnicity information (as HLA allele distributions vary widely according to race/ethnicity as well as geographic area), and demonstrate the potential utility of this experimentally. A tool based on our approach is freely available for research purposes at http://microsoft.com/science.
Collapse
Affiliation(s)
| | - Zabrina Brumme
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carl Kadie
- Microsoft Research, Redmond, Washington, United States of America
| | - Gao Xiaojiang
- SAIC-Frederick, National Cancer Institute, Frederick, Maryland, United States of America
| | - Bruce Walker
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Frederick, Maryland, United States of America
| | - Mary Carrington
- SAIC-Frederick, National Cancer Institute, Frederick, Maryland, United States of America
| | - Philip Goulder
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - David Heckerman
- Microsoft Research, Redmond, Washington, United States of America
| |
Collapse
|
138
|
CD4+ target cell availability determines the dynamics of immune escape and reversion in vivo. J Virol 2008; 82:4091-101. [PMID: 18272587 DOI: 10.1128/jvi.02552-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Infections with human immunodeficiency virus (HIV) and the closely related monkey viruses simian-human immunodeficiency virus (SHIV) and simian immunodeficiency virus (SIV) are characterized by progressive waves of immune responses, followed by viral mutation and "immune escape." However, escape mutation usually leads to lower replicative fitness, and in the absence of immune pressure, an escape mutant (EM) virus "reverts" to the wild-type phenotype. Analysis of the dynamics of immune escape and reversion has suggested it is a mechanism for identifying the immunogens best capable of controlling viremia. We have analyzed and modeled data of the dynamics of wild-type (WT) and EM viruses during SHIV infection of macaques. Modeling suggests that the dynamics of reversion and immune escape should be determined by the availability of target cells for infection. Consistent with this suggestion, we find that the rate of reversion of cytotoxic T-lymphocyte (CTL) EM virus strongly correlates with the number of CD4(+) T cells available for infection. This phenomenon also affects the rate of immune escape, since this rate is determined by the balance of CTL killing and the WT fitness advantage. This analysis predicts that the optimal timing for the selection of immune escape variants will be immediately after the peak of viremia and that the development of escape variants at later times will lead to slower selection. This has important implications for comparative studies of immune escape and reversion in different infections and for identifying epitopes with high fitness cost for use as vaccine targets.
Collapse
|
139
|
HIV evolution in response to HLA-restricted CTL selection pressures: a population-based perspective. Microbes Infect 2008; 10:455-61. [PMID: 18407775 DOI: 10.1016/j.micinf.2008.01.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 01/21/2008] [Accepted: 01/22/2008] [Indexed: 11/22/2022]
Abstract
Cytotoxic T lymphocytes (CTL) recognize antigenic peptides displayed by HLA class I molecules on the infected cell surface and represent a major selective force driving HIV evolution through a phenomenon known as "immune escape". Here we summarize recent advances in our understanding of the consequences of CTL escape on HIV evolution at the population level and discuss its implications for HIV vaccine design.
Collapse
|
140
|
Ueno T, Motozono C, Dohki S, Mwimanzi P, Rauch S, Fackler OT, Oka S, Takiguchi M. CTL-Mediated Selective Pressure Influences Dynamic Evolution and Pathogenic Functions of HIV-1 Nef. THE JOURNAL OF IMMUNOLOGY 2008; 180:1107-16. [DOI: 10.4049/jimmunol.180.2.1107] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
141
|
Poon AFY, Kosakovsky Pond SL, Richman DD, Frost SDW. Mapping protease inhibitor resistance to human immunodeficiency virus type 1 sequence polymorphisms within patients. J Virol 2007; 81:13598-607. [PMID: 17913806 PMCID: PMC2168824 DOI: 10.1128/jvi.01570-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance genotyping provides an important resource for the clinical management of patients infected with human immunodeficiency virus type 1 (HIV-1). However, resistance to protease (PR) inhibitors (PIs) is a complex phenotype shaped by interactions among nearly half of the residues in HIV-1 PR. Previous studies of the genetic basis of PI resistance focused on fixed substitutions among populations of HIV-1, i.e., host-specific adaptations. Consequently, they are susceptible to a high false discovery rate due to founder effects. Here, we employ sequencing "mixtures" (i.e., ambiguous base calls) as a site-specific marker of genetic variation within patients that is independent of the phylogeny. We demonstrate that the transient response to selection by PIs is manifested as an excess of nonsynonymous mixtures. Using a sample of 5,651 PR sequences isolated from both PI-naive and -treated patients, we analyze the joint distribution of mixtures and eight PIs as a Bayesian network, which distinguishes residue-residue interactions from direct associations with PIs. We find that selection for resistance is associated with the emergence of nonsynonymous mixtures in two distinct groups of codon sites clustered along the substrate cleft and distal regions of PR, respectively. Within-patient evolution at several positions is independent of PIs, including those formerly postulated to be involved in resistance. These positions are under strong positive selection in the PI-naive patient population, implying that other factors can produce spurious associations with resistance, e.g., mutational escape from the immune response.
Collapse
Affiliation(s)
- Art F Y Poon
- Department of Pathology, University of California, San Diego, La Jolla, California, USA.
| | | | | | | |
Collapse
|