101
|
Raposo RAS, Thomas B, Ridlova G, James W. Proteomic-based identification of CD4-interacting proteins in human primary macrophages. PLoS One 2011; 6:e18690. [PMID: 21533244 PMCID: PMC3076427 DOI: 10.1371/journal.pone.0018690] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 03/15/2011] [Indexed: 11/19/2022] Open
Abstract
Background Human macrophages (Mφ) express low levels of CD4 glycoprotein, which is
constitutively recycled, and 40–50% of its localization is
intracellular at steady-state. Although CD4-interacting proteins in lymphoid
cells are well characterised, little is known about the CD4 protein
interaction-network in human Mφ, which notably lack LCK, a Src family
protein tyrosine kinase believed to stabilise CD4 at the surface of T cells.
As CD4 is the main cellular receptor used by HIV-1, knowledge of its
molecular interactions is important for the understanding of viral infection
strategies. Methodology/Principal Findings We performed large-scale anti-CD4 immunoprecipitations in human primary
Mφ followed by high-resolution mass spectrometry analysis to elucidate
the protein interaction-network involved in induced CD4 internalization and
degradation. Proteomic analysis of CD4 co-immunoisolates in resting Mφ
showed CD4 association with a range of proteins found in the cellular
cortex, membrane rafts and components of clathrin-adaptor proteins, whereas
in induced internalization and degradation CD4 is associated with components
of specific signal transduction, transport and the proteasome. Conclusions/Significance This is the first time that the anti-CD4 co-immunoprecipitation sub-proteome
has been analysed in human primary Mφ. Our data have identified
important Mφ cell surface CD4-interacting proteins, as well as
regulatory proteins involved in internalization and degradation. The data
give valuable insights into the molecular pathways involved in the
regulation of CD4 expression in Mφ and provide candidates/targets for
further biochemical studies.
Collapse
|
102
|
Sloan RD, Kuhl BD, Donahue DA, Roland A, Bar-Magen T, Wainberg MA. Transcription of preintegrated HIV-1 cDNA modulates cell surface expression of major histocompatibility complex class I via Nef. J Virol 2011; 85:2828-36. [PMID: 21209113 PMCID: PMC3067938 DOI: 10.1128/jvi.01854-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/23/2010] [Indexed: 12/25/2022] Open
Abstract
Although transcription from unintegrated human immunodeficiency virus type 1 (HIV-1) DNA can occur inside infected cells, yielding all classes of viral mRNA transcripts, the translation of viral proteins is very limited. One of the proteins made is Nef, but it is unclear whether Nef produced in this way is able to play a role in immune evasion as occurs with integrated virus. We therefore asked whether transcription from preintegrated HIV-1 cDNAs could result in Nef-mediated modulation of cell surface major histocompatibility complex class I (MHC-I) expression. We infected a Rev-CEM green fluorescent protein (GFP) reporter cell line with virus and blocked integration though use of either an inactive integrase or the integrase inhibitor raltegravir. Infected cells were assayed by flow cytometry for cell surface expression of the HLA-A, HLA-B, and HLA-C allotypes (HLA-ABC), HLA-A31, and HLA-E. Viral RNA and DNA products were assayed via quantitative PCR (qPCR). The prevention of integration had no effect, relative to productively infected cells, on levels of expression of multiply spliced viral mRNA transcripts and Nef protein. Downregulation of HLA-ABC and HLA-A31 also occurred at levels similar to those seen in cells in which integration had occurred. Parallel experiments assaying cell surface HLA-ABC expression in infected activated primary CD4(+) T cells produced a similar pattern of results. Hence, the capacity of HIV-1 to modulate MHC-I is not linked to its ability to integrate. Thus, Nef-mediated evasion of host immune responsiveness might be attributable, in part at least, to transcription from unintegrated viral DNA.
Collapse
Affiliation(s)
- Richard D. Sloan
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada, Department of Experimental Medicine, McGill University, Montréal, Québec, Canada, Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Björn D. Kuhl
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada, Department of Experimental Medicine, McGill University, Montréal, Québec, Canada, Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Daniel A. Donahue
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada, Department of Experimental Medicine, McGill University, Montréal, Québec, Canada, Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - André Roland
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada, Department of Experimental Medicine, McGill University, Montréal, Québec, Canada, Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Tamara Bar-Magen
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada, Department of Experimental Medicine, McGill University, Montréal, Québec, Canada, Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Mark A. Wainberg
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada, Department of Experimental Medicine, McGill University, Montréal, Québec, Canada, Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
103
|
Foster JL, Denial SJ, Temple BRS, Garcia JV. Mechanisms of HIV-1 Nef function and intracellular signaling. J Neuroimmune Pharmacol 2011; 6:230-46. [PMID: 21336563 DOI: 10.1007/s11481-011-9262-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/01/2011] [Indexed: 11/29/2022]
Abstract
Advances in the last several years have enhanced mechanistic understanding of Nef-induced CD4 and MHCI downregulation and have suggested a new paradigm for analyzing Nef function. In both of these cases, Nef acts by forming ternary complexes with significant contributions to stability imparted by non-canonical interactions. The mutational analyses and binding assays that have led to these conclusions are discussed. The recent progress has been dependent on conservative mutations and multi-protein binding assays. The poorly understood Nef functions of p21 activated protein kinase (PAK2) activation, enhancement of virion infectivity, and inhibition of immunoglobulin class switching are also likely to involve ternary complexes and non-canonical interactions. Hence, investigation of these latter Nef functions should benefit from a similar approach. Six historically used alanine substitutions for determining structure-function relationships of Nef are discussed. These are M20A, E62A/E63A/E64A/E65A (AAAA), P72A/P75A (AXXA), R106A, L164A/L165A, and D174A/D175A. Investigations of less-disruptive mutations in place of AAAA and AXXA have led to different interpretations of mechanism. Two recent examples of this alternate approach, F191I for studying PAK2 activation and D123E for the critical residue D123 are discussed. The implications of the new findings and the resulting new paradigm for Nef structure-function are discussed with respect to creating a map of Nef functions on the protein surface. We report the results of a PPI-Pred analysis for protein-protein interfaces. There are three predicted patches produced by the analysis which describe regions consistent with the currently known mutational analyses of Nef function.
Collapse
Affiliation(s)
- John L Foster
- Division of Infectious Diseases, Center for AIDS Research, Chapel Hill, NC 27599-7042, USA.
| | | | | | | |
Collapse
|
104
|
Wonderlich ER, Leonard JA, Collins KL. HIV immune evasion disruption of antigen presentation by the HIV Nef protein. Adv Virus Res 2011; 80:103-27. [PMID: 21762823 PMCID: PMC3782996 DOI: 10.1016/b978-0-12-385987-7.00005-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Human Immunodeficiency Virus (HIV) Nef protein is necessary for high viral loads and for timely progression to AIDS. Nef plays a number of roles, but its effect on antigen presentation and immune evasion are among the best characterized. Cytotoxic T lymphocytes (CTLs) recognize and lyse virally infected cells by detecting viral antigens in complex with host major histocompatibility complex class I (MHC-I) molecules on the infected cell surface. The HIV Nef protein disrupts antigen presentation at the cell surface by interfering with the normal trafficking pathway of MHC-I and thus reduces CTL recognition and lysis of infected cells. The molecular mechanism by which Nef causes MHC-I downmodulation is becoming more clear, but some questions remain. A better understanding of how Nef disrupts antigen presentation may lead to the development of drugs that enhance the ability of the anti-HIV CTLs to control HIV disease.
Collapse
Affiliation(s)
- Elizabeth R Wonderlich
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
105
|
Dikeakos JD, Atkins KM, Thomas L, Emert-Sedlak L, Byeon IJL, Jung J, Ahn J, Wortman MD, Kukull B, Saito M, Koizumi H, Williamson DM, Hiyoshi M, Barklis E, Takiguchi M, Suzu S, Gronenborn AM, Smithgall TE, Thomas G. Small molecule inhibition of HIV-1-induced MHC-I down-regulation identifies a temporally regulated switch in Nef action. Mol Biol Cell 2010; 21:3279-92. [PMID: 20702582 PMCID: PMC2947465 DOI: 10.1091/mbc.e10-05-0470] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nef assembles a multi-kinase complex triggering MHC-I down-regulation. We identify an inhibitor that blocks MHC-I down-regulation, identifying a temporally regulated switch in Nef action from directing MHC-I endocytosis to blocking cell surface delivery. These findings challenge current dogma and reveal a regulated immune evasion program. HIV-1 Nef triggers down-regulation of cell-surface MHC-I by assembling a Src family kinase (SFK)-ZAP-70/Syk-PI3K cascade. Here, we report that chemical disruption of the Nef-SFK interaction with the small molecule inhibitor 2c blocks assembly of the multi-kinase complex and represses HIV-1–mediated MHC-I down-regulation in primary CD4+ T-cells. 2c did not interfere with the PACS-2–dependent trafficking of Nef required for the Nef-SFK interaction or the AP-1 and PACS-1–dependent sequestering of internalized MHC-I, suggesting the inhibitor specifically interfered with the Nef-SFK interaction required for triggering MHC-I down-regulation. Transport studies revealed Nef directs a highly regulated program to down-regulate MHC-I in primary CD4+ T-cells. During the first two days after infection, Nef assembles the 2c-sensitive multi-kinase complex to trigger down-regulation of cell-surface MHC-I. By three days postinfection Nef switches to a stoichiometric mode that prevents surface delivery of newly synthesized MHC-I. Pharmacologic inhibition of the multi-kinase cascade prevents the Nef-dependent block in MHC-I transport, suggesting the signaling and stoichiometric modes are causally linked. Together, these studies resolve the seemingly controversial models that describe Nef-induced MHC-I down-regulation and provide new insights into the mechanism of Nef action.
Collapse
Affiliation(s)
- Jimmy D Dikeakos
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Yi L, Rosales T, Rose JJ, Chowdhury B, Chaudhury B, Knutson JR, Venkatesan S. HIV-1 Nef binds a subpopulation of MHC-I throughout its trafficking itinerary and down-regulates MHC-I by perturbing both anterograde and retrograde trafficking. J Biol Chem 2010; 285:30884-905. [PMID: 20622010 DOI: 10.1074/jbc.m110.135947] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HIV protein Nef is thought to mediate immune evasion and promote viral persistence in part by down-regulating major histocompatibility complex class I protein (MHC-I or HLA-I) from the cell surface. Two different models have been proposed to explain this phenomenon as follows: 1) stimulation of MHC-I retrograde trafficking from and aberrant recycling to the plasma membrane, and 2) inhibition of anterograde trafficking of newly synthesized HLA-I from the endoplasmic reticulum to the plasma membrane. We show here that Nef simultaneously uses both mechanisms to down-regulate HLA-I in peripheral blood mononuclear cells or HeLa cells. Consistent with this, we found by using fluorescence correlation spectroscopy that a third of diffusing HLA-I at the endoplasmic reticulum, Golgi/trans-Golgi network, and the plasma membrane (PM) was associated with Nef. The binding of Nef was similarly avid for native HLA-I and recombinant HLA-I A2 at the PM. Nef binding to HLA-I at the PM was sensitive to specific inhibition of endocytosis. It was also attenuated by cyclodextrin disruption of PM lipid micro-domain architecture, a change that also retarded lateral diffusion and induced large clusters of HLA-I. In all, our data support a model for Nef down-regulation of HLA-I that involves both major trafficking itineraries and persistent protein-protein interactions throughout the cell.
Collapse
Affiliation(s)
- Ling Yi
- Molecular and Cell Biology Unit, Laboratory of Molecular Immunology, NIAID, Laboratory of Molecular Biophysics, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
107
|
Hauser H, Lopez LA, Yang SJ, Oldenburg JE, Exline CM, Guatelli JC, Cannon PM. HIV-1 Vpu and HIV-2 Env counteract BST-2/tetherin by sequestration in a perinuclear compartment. Retrovirology 2010; 7:51. [PMID: 20529266 PMCID: PMC2890665 DOI: 10.1186/1742-4690-7-51] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Accepted: 06/07/2010] [Indexed: 12/30/2022] Open
Abstract
Background In the absence of the Vpu protein, newly formed HIV-1 particles can remain attached to the surface of human cells due to the action of an interferon-inducible cellular restriction factor, BST-2/tetherin. Tetherin also restricts the release of other enveloped viral particles and is counteracted by a several viral anti-tetherin factors including the HIV-2 Env, SIV Nef and KSHV K5 proteins. Results We observed that a fraction of tetherin is located at the surface of restricting cells, and that co-expression of both HIV-1 Vpu and HIV-2 Env reduced this population. In addition, Vpu, but not the HIV-2 Env, reduced total cellular levels of tetherin. An additional effect observed for both Vpu and the HIV-2 Env was to redirect tetherin to an intracellular perinuclear compartment that overlapped with markers for the TGN (trans-Golgi network). Sequestration of tetherin in this compartment was independent of tetherin's normal endocytosis trafficking pathway. Conclusions Both HIV-1 Vpu and HIV-2 Env redirect tetherin away from the cell surface and sequester the protein in a perinuclear compartment, which likely blocks the action of this cellular restriction factor. Vpu also promotes the degradation of tetherin, suggesting that it uses more than one mechanism to counteract tetherin restriction.
Collapse
Affiliation(s)
- Heiko Hauser
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
Vesicle traffic to the immunological synapse: a multifunctional process targeted by lymphotropic viruses. Curr Top Microbiol Immunol 2010; 340:191-207. [PMID: 19960315 DOI: 10.1007/978-3-642-03858-7_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The site of contact between T lymphocytes and antigen-presenting cells becomes, upon antigen recognition, an organized junction named the immunological synapse. Various T cell organelles polarize, together with microtubules, toward the antigen-presenting cell. Among them, intracellular vesicular compartments, such as the Golgi apparatus, the recycling endosomal compartment, or cytotoxic granules help to build the immunological synapse and ensure effector functions, such as polarized secretion of cytokines by helper T cells, or exocytosis of lytic granules by cytotoxic T cells. Lymphotropic retroviruses, such as the human immunodeficiency virus type 1, the human T cell leukemia virus type 1, or the Herpesvirus saimiri, can subvert some of the vesicle traffic mechanisms impeding the generation and function of the immunological synapses. This review focuses on the polarization of vesicle traffic, its regulation, and its role in maintaining the structure and function of the immunological synapse. We discuss how some lymphotropic viruses target the vesicle traffic in T lymphocytes, inhibiting the formation of immunological synapses and modulating the response of infected T cells.
Collapse
|
109
|
Singh RK, Lau D, Noviello CM, Ghosh P, Guatelli JC. An MHC-I cytoplasmic domain/HIV-1 Nef fusion protein binds directly to the mu subunit of the AP-1 endosomal coat complex. PLoS One 2009; 4:e8364. [PMID: 20020046 PMCID: PMC2791223 DOI: 10.1371/journal.pone.0008364] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 11/26/2009] [Indexed: 11/18/2022] Open
Abstract
Background The down-regulation of the major histocompatibility complex class I (MHC-I) from the surface of infected cells by the Nef proteins of primate immunodeficiency viruses likely contributes to pathogenesis by providing evasion of cell-mediated immunity. HIV-1 Nef-induced down-regulation involves endosomal trafficking and a cooperative interaction between the cytoplasmic domain (CD) of MHC-I, Nef, and the clathrin adaptor protein complex-1 (AP-1). The CD of MHC-I contains a key tyrosine within the sequence YSQA that is required for down-regulation by Nef, but this sequence does not conform to the canonical AP-binding tyrosine-based motif Yxxφ, which mediates binding to the medium (μ) subunits of AP complexes. We previously proposed that Nef allows the MHC-I CD to bind the μ subunit of AP-1 (μ1) as if it contained a Yxxφmotif. Methods and Findings Here, we show that a direct interaction between the MHC-I CD/Nef and μ1 plays a primary role in the down-regulation of MHC-I: GST pulldown assays using recombinant proteins indicated that most of the MHC-I CD and Nef residues that are required for the down-regulation in human cells contribute to direct interactions with a truncated version of μ1. Specifically, the tyrosine residue of the YSQA sequence in the MHC-I CD as well as Nef residues E62-65 and P78 each contributed to the interaction between MHC-I CD/Nef and μ1 in vitro, whereas Nef M20 had little to no role. Conversely, residues F172/D174 and V392/L395 of the binding pocket on μ1 for Yxxφ motifs were required for a robust interaction. Conclusions These data indicate that the MHC-I cytoplasmic domain, Nef, and the C-terminal two thirds of the μ subunit of AP-1 are sufficient to constitute a biologically relevant interaction. The data also reveal an unexpected role for a hydrophobic pocket in μ1 for interaction with MHC-I CD/Nef.
Collapse
Affiliation(s)
- Rajendra Kumar Singh
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America.
| | | | | | | | | |
Collapse
|
110
|
MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol 2009; 9:503-13. [PMID: 19498380 DOI: 10.1038/nri2575] [Citation(s) in RCA: 295] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cell surface display of peptides by MHC class I molecules to lymphocytes provides the host with an important surveillance mechanism to protect against invading pathogens. However, in turn, viruses have evolved elegant strategies to inhibit various stages of the MHC class I antigen presentation pathway and prevent the display of viral peptides. This Review highlights how the elucidation of mechanisms of viral immune evasion is important for advancing our understanding of virus-host interactions and can further our knowledge of the MHC class I presentation pathway as well as other cellular pathways.
Collapse
|
111
|
Abstract
The endocytosis pathway controls multiple cellular and physiological events. The lysosome is the destination of newly synthesized lysosomal hydrolytic enzymes. Internalized molecules or particles are delivered to the lysosome for degradation through sequential transport along the endocytic pathway. The endocytic pathway is also emerging as a signalling platform, in addition to the well-known role of the plasma membrane for signalling. Rab7 is a late endosome-/lysosome-associated small GTPase, perhaps the only lysosomal Rab protein identified to date. Rab7 plays critical roles in the endocytic processes. Through interaction with its partners (including upstream regulators and downstream effectors), Rab7 participates in multiple regulation mechanisms in endosomal sorting, biogenesis of lysosome [or LRO (lysosome-related organelle)] and phagocytosis. These processes are closely related to substrates degradation, antigen presentation, cell signalling, cell survival and microbial pathogen infection. Consistently, mutations or dysfunctions of Rab7 result in traffic disorders, which cause various diseases, such as neuropathy, cancer and lipid metabolism disease. Rab7 also plays important roles in microbial pathogen infection and survival, as well as in participating in the life cycle of viruses. Here, we give a brief review on the central role of Rab7 in endosomal traffic and summarize the studies focusing on the participation of Rab7 in disease pathogenesis. The underlying mechanism governed by Rab7 and its partners will also be discussed.
Collapse
|
112
|
daSilva LLP, Sougrat R, Burgos PV, Janvier K, Mattera R, Bonifacino JS. Human immunodeficiency virus type 1 Nef protein targets CD4 to the multivesicular body pathway. J Virol 2009; 83:6578-90. [PMID: 19403684 PMCID: PMC2698520 DOI: 10.1128/jvi.00548-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 04/20/2009] [Indexed: 11/20/2022] Open
Abstract
The Nef protein of human immunodeficiency virus type 1 downregulates the CD4 coreceptor from the surface of host cells by accelerating the rate of CD4 endocytosis through a clathrin/AP-2 pathway. Herein, we report that Nef has the additional function of targeting CD4 to the multivesicular body (MVB) pathway for eventual delivery to lysosomes. This targeting involves the endosomal sorting complex required for transport (ESCRT) machinery. Perturbation of this machinery does not prevent removal of CD4 from the cell surface but precludes its lysosomal degradation, indicating that accelerated endocytosis and targeting to the MVB pathway are separate functions of Nef. We also show that both CD4 and Nef are ubiquitinated on lysine residues, but this modification is dispensable for Nef-induced targeting of CD4 to the MVB pathway.
Collapse
Affiliation(s)
- Luis L P daSilva
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Building 18T, Room 101, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
113
|
Liu SY, Zeng FF, Huang GF, Zhou H, Shi YM, Ling H, Wang FX, Wang BY, Zhou J. Analysis of human immunodeficiency virus type 1 nef gene sequences among inmates from prisons in China. AIDS Res Hum Retroviruses 2009; 25:525-9. [PMID: 19400734 DOI: 10.1089/aid.2008.0271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To provide the hard-won information on HIV-1 polymorphism from inmates in prison and to study the genetic variation of HIV-1 strains, we analyzed the characterization of the nucleotide and corresponding protein sequences of naturally occurring nef sequences derived from 16 HIV-1-positive inmates from prisons in China. Nested PCR and DNA sequencing were used to determine nef sequences in peripheral blood mononuclear cells. Phylogenetic analysis revealed a distribution of the viral sequences among subtype B, CRF_BC, and CRF_AE, with subtype B accounting for more than half of the genotypes. When compared with the consensus sequence, a certain amino acid sequence variability was observed. However, most of the described nef functional motifs were relatively well conserved in the majority of the sequences analyzed. Our results indicate that HIV-1 strains found in our study subjects may have a common origin and the description of motifs will produce important information for further studies of nef function.
Collapse
Affiliation(s)
- Sheng-Yuan Liu
- Department of Epidemiology, Public Health College of Harbin Medical University, Harbin 150081, China
- Department of Infectious Diseases, First Clinical College of Harbin Medical University, Harbin 150001, China
| | - Fang-Fang Zeng
- Department of Epidemiology, Public Health College of Harbin Medical University, Harbin 150081, China
| | | | - Hui Zhou
- Department of Infectious Diseases, First Clinical College of Harbin Medical University, Harbin 150001, China
| | - Yan-Mei Shi
- Department of Infectious Diseases, First Clinical College of Harbin Medical University, Harbin 150001, China
| | - Hong Ling
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Fu-Xiang Wang
- Department of Infectious Diseases, First Clinical College of Harbin Medical University, Harbin 150001, China
| | - Bin-You Wang
- Department of Epidemiology, Public Health College of Harbin Medical University, Harbin 150081, China
| | - Jin Zhou
- Department of Hematology, First Clinical College of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
114
|
Abstract
During HIV infection, the perturbation of the adaptive and innate immune responses contributes to the progressive immunosuppression leading to an increased susceptibility to opportunistic infections and neoplastic diseases. Several impairments observed in HIV-infected patients include a gradual loss of CD4(+) T cells, CD8(+) T cell dysfunction, and a decreased number and function of natural killer (NK) cells. Moreover, a functional impairment and variation in the number of DC and B cells were observed during HIV infection. HIV-1 codes for proteins, including the accessory Nef proteins, that interacting with immune cells may contribute to AIDS pathogenesis. Here, we review the recent progress on the immunomodulatory effect of the accessory Nef protein and its role in the pathogenesis of HIV-1 infection. (c) 2009 International Union of Biochemistry and Molecular Biology, Inc.
Collapse
Affiliation(s)
- Maria Giovanna Quaranta
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | |
Collapse
|
115
|
Arhel NJ, Kirchhoff F. Implications of Nef: host cell interactions in viral persistence and progression to AIDS. Curr Top Microbiol Immunol 2009; 339:147-75. [PMID: 20012528 DOI: 10.1007/978-3-642-02175-6_8] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The HIV and SIV Nef accessory proteins are potent enhancers of viral persistence and accelerate progression to AIDS in HIV-1-infected patients and non-human primate models. Although relatively small (27-35 kD), Nef can interact with a multitude of cellular factors and induce complex changes in trafficking, signal transduction, and gene expression that together converge to promote viral replication and immune evasion. In particular, Nef recruits several immunologically relevant cellular receptors to the endocytic machinery to reduce the recognition and elimination of virally infected cells by the host immune system, while simultaneously interacting with various kinases to promote T cell activation and viral replication. This review provides an overview on selected Nef interactions with host cell proteins, and discusses their possible relevance for viral spread and pathogenicity.
Collapse
Affiliation(s)
- Nathalie J Arhel
- Institute of Virology, Universitätsklinikum Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | |
Collapse
|