101
|
Abstract
Biological processes such as defense mechanisms and microbial offense strategies are regulated through RNA induced interference in eukaryotes. Genetic mutations are modulated through biogenesis of small RNAs which directly impacts upon host development. Plant defense mechanisms are regulated and supported by a diversified group of small RNAs which are involved in streamlining several RNA interference pathways leading toward the initiation of pathogen gene silencing mechanisms. In the similar context, pathogens also utilize the support of small RNAs to launch their offensive attacks. Also there are strong evidences about the active involvement of these RNAs in symbiotic associations. Interestingly, small RNAs are not limited to the individuals in whom they are produced; they also show cross kingdom influences through variable interactions with other species thus leading toward the inter-organismic gene silencing. The phenomenon is understandable in the microbes which utilize these mechanisms to overcome host defense line. Understanding the mechanism of triggering host defense strategies can be a valuable step toward the generation of disease resistant host plants. We think that the cross kingdom trafficking of small RNA is an interesting insight that is needed to be explored for its vitality.
Collapse
Affiliation(s)
- Waqar Islam
- a College of Plant Protection , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Saif Ul Islam
- a College of Plant Protection , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Muhammad Qasim
- a College of Plant Protection , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Liande Wang
- a College of Plant Protection , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| |
Collapse
|
102
|
Ludman M, Burgyán J, Fátyol K. Crispr/Cas9 Mediated Inactivation of Argonaute 2 Reveals its Differential Involvement in Antiviral Responses. Sci Rep 2017; 7:1010. [PMID: 28432338 PMCID: PMC5430636 DOI: 10.1038/s41598-017-01050-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/17/2017] [Indexed: 12/21/2022] Open
Abstract
RNA silencing constitutes an important antiviral mechanism in plants. Small RNA guided Argonaute proteins fulfill essential role in this process by acting as executors of viral restriction. Plants encode multiple Argonaute proteins of which several exhibit antiviral activities. A recent addition to this group is AGO2. Its involvement in antiviral responses is established predominantly by studies employing mutants of Arabidopsis thaliana. In the virological model plant, Nicotiana benthamiana, the contribution of AGO2 to antiviral immunity is much less certain due to the lack of appropriate genetic mutants. Previous studies employed various RNAi based tools to down-regulate AGO2 expression. However, these techniques have several disadvantages, especially in the context of antiviral RNA silencing. Here, we have utilized the CRISPR/Cas9 technology to inactivate the AGO2 gene of N. benthamiana. The ago2 plants exhibit differential sensitivities towards various viruses. AGO2 is a critical component of the plants' immune responses against PVX, TuMV and TCV. In contrast, AGO2 deficiency does not significantly influence the progression of tombusvirus and CMV infections. In summary, our work provides unequivocal proof for the virus-specific antiviral role of AGO2 in a plant species other than A. thaliana for the first time.
Collapse
Affiliation(s)
- Márta Ludman
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Szent-Györgyi Albert u. 4, Gödöllő, 2100, Hungary
| | - József Burgyán
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Szent-Györgyi Albert u. 4, Gödöllő, 2100, Hungary.
| | - Károly Fátyol
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Szent-Györgyi Albert u. 4, Gödöllő, 2100, Hungary.
| |
Collapse
|
103
|
Zhou CJ, Zhang XY, Liu SY, Wang Y, Li DW, Yu JL, Han CG. Synergistic infection of BrYV and PEMV 2 increases the accumulations of both BrYV and BrYV-derived siRNAs in Nicotiana benthamiana. Sci Rep 2017; 7:45132. [PMID: 28345652 PMCID: PMC5366869 DOI: 10.1038/srep45132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
Viral synergism is caused by co-infection of two unrelated viruses, leading to more severe symptoms or increased titres of one or both viruses. Synergistic infection of phloem-restricted poleroviruses and umbraviruses has destructive effects on crop plants. The mechanism underlying this synergy remains elusive. In our study, synergism was observed in co-infections of a polerovirus Brassica yellows virus (BrYV) and an umbravirus Pea enation mosaic virus 2 (PEMV 2) on Nicotiana benthamiana, which led to (1) increased titres of BrYV, (2) appearance of severe symptoms, (3) gain of mechanical transmission capacity of BrYV, (4) broader distribution of BrYV to non-vascular tissues. Besides, profiles of virus-derived small interfering RNAs (vsiRNAs) from BrYV and PEMV 2 in singly and doubly infected plants were obtained by small RNA deep sequencing. Our results showed that accumulation of BrYV vsiRNAs increased tremendously and ratio of positive to negative strand BrYV vsiRNAs differed between singly infected and co-infected plants. Positions to which the BrYV vsiRNAs mapped to the viral genome varied considerably during synergistic infection. Moreover, target genes of vsiRNAs were predicted and annotated. Our results revealed the synergistic characteristics during co-infection of BrYV and PEMV 2, and implied possible effects of synergism have on vsiRNAs.
Collapse
Affiliation(s)
- Cui-Ji Zhou
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, P. R. China
| | - Xiao-Yan Zhang
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, P. R. China
| | - Song-Yu Liu
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, P. R. China
| | - Ying Wang
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, P. R. China
| | - Da-Wei Li
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, P. R. China
| | - Jia-Lin Yu
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, P. R. China
| | - Cheng-Gui Han
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
104
|
Bhor SA, Tateda C, Mochizuki T, Sekine KT, Yaeno T, Yamaoka N, Nishiguchi M, Kobayashi K. Inducible transgenic tobacco system to study the mechanisms underlying chlorosis mediated by the silencing of chloroplast heat shock protein 90. Virusdisease 2017; 28:81-92. [PMID: 28466059 PMCID: PMC5377861 DOI: 10.1007/s13337-017-0361-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/12/2017] [Indexed: 12/11/2022] Open
Abstract
Chlorosis is one of the most common symptoms of plant diseases, including those caused by viruses and viroids. Recently, a study has shown that Peach latent mosaic viroid (PLMVd) exploits host RNA silencing machinery to modulate the virus disease symptoms through the silencing of chloroplast-targeted heat shock protein 90 (Hsp90C). To understand the molecular mechanisms of chlorosis in this viroid disease, we established an experimental system suitable for studying the mechanism underlying the chlorosis induced by the RNA silencing of Hsp90C in transgenic tobacco. Hairpin RNA of the Hsp90C-specific region was expressed under the control of a dexamethasone-inducible promoter, resulted in the silencing of Hsp90C gene in 2 days and the chlorosis along with growth suppression phenotypes. Time course study suggests that a sign of chlorosis can be monitored as early as 2 days, suggesting that this experimental model is suitable for studying the molecular events taken place before and after the onset of chlorosis. During the early phase of chlorosis development, the chloroplast- and photosynthesis-related genes were downregulated. It should be noted that some pathogenesis related genes were upregulated during the early phase of chlorosis in spite of the absence of any pathogen-derived molecules in this system.
Collapse
Affiliation(s)
- Sachin Ashok Bhor
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566 Japan
| | - Chika Tateda
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003 Japan
| | - Tomofumi Mochizuki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531 Japan
| | - Ken-Taro Sekine
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003 Japan
- Faculty of Agriculture, University of the Ryukyus, Nakagami, Okinawa 903-0213 Japan
| | - Takashi Yaeno
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566 Japan
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566 Japan
- Research Unit for Citromics, Ehime University, Matsuyama, Ehime 790-8566 Japan
| | - Naoto Yamaoka
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566 Japan
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566 Japan
| | - Masamichi Nishiguchi
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566 Japan
| | - Kappei Kobayashi
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566 Japan
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566 Japan
- Research Unit for Citromics, Ehime University, Matsuyama, Ehime 790-8566 Japan
| |
Collapse
|
105
|
Bhor SA, Tateda C, Mochizuki T, Sekine KT, Yaeno T, Yamaoka N, Nishiguchi M, Kobayashi K. Inducible expression of magnesium protoporphyrin chelatase subunit I (CHLI)-amiRNA provides insights into cucumber mosaic virus Y satellite RNA-induced chlorosis symptoms. Virusdisease 2017; 28:69-80. [PMID: 28466058 PMCID: PMC5377865 DOI: 10.1007/s13337-017-0360-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022] Open
Abstract
Recent studies with Y satellite RNA (Y-sat) of cucumber mosaic virus have demonstrated that Y-sat modifies the disease symptoms in specific host plants through the silencing of the magnesium protoporphyrin chelatase I subunit (CHLI), which is directed by the Y-sat derived siRNA. Along with the development of peculiar yellow phenotypes, a drastic decrease in CHLI-transcripts and a higher accumulation of Y-sat derived siRNA were observed. To investigate the molecular mechanisms underlying the Y-sat-induced chlorosis, especially whether or not the reduced expression of CHLI causes the chlorosis simply through the reduced production of chlorophyll or it triggers some other mechanisms leading to the chlorosis, we have established a new experimental system with an inducible silencing mechanism. This system involves the expression of artificial microRNAs targeting of Nicotiana tabacum CHLI gene under the control of chemically inducible promoter. The CHLI mRNA levels and total chlorophyll content decreased significantly in 2 days, enabling us to analyze early events in induced chlorosis and temporary changes therein. This study revealed that the silencing of CHLI did not only result in the decreased chlorophyll content but also lead to the downregulation of chloroplast and photosynthesis-related genes expression and the upregulation of defense-related genes. Based on these results, we propose that the reduced expression of CHLI could activate unidentified signaling pathways that lead plants to chlorosis.
Collapse
Affiliation(s)
- Sachin Ashok Bhor
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566 Japan
| | - Chika Tateda
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003 Japan
| | - Tomofumi Mochizuki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531 Japan
| | - Ken-Taro Sekine
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003 Japan
- Faculty of Agriculture, University of the Ryukyus, Nakagami, Okinawa 903-0213 Japan
| | - Takashi Yaeno
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566 Japan
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566 Japan
- Research Unit for Citromics, Ehime University, Matsuyama, Ehime 790-8566 Japan
| | - Naoto Yamaoka
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566 Japan
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566 Japan
| | - Masamichi Nishiguchi
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566 Japan
| | - Kappei Kobayashi
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566 Japan
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566 Japan
- Research Unit for Citromics, Ehime University, Matsuyama, Ehime 790-8566 Japan
| |
Collapse
|
106
|
Xu D, Zhou G. Characteristics of siRNAs derived from Southern rice black-streaked dwarf virus in infected rice and their potential role in host gene regulation. Virol J 2017. [PMID: 28183327 DOI: 10.1186/s12985-017-0699-314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Virus-derived siRNAs (vsiRNAs)-mediated RNA silencing plays important roles in interaction between plant viruses and their hosts. Southern rice black-streaked dwarf virus (SRBSDV) is a newly emerged devastating rice reovirus with ten dsRNA genomic segments. The characteristics of SRBSDV-derived siRNAs and their biological implications in SRBSDV-rice interaction remain unexplored. METHODS VsiRNAs profiling from SRBSDV-infected rice samples was done via small RNA deep sequencing. The putative rice targets of abundantly expressed vsiRNAs were bioinformatically predicted and subjected to functional annotation. Differential expression analysis of rice targets and RNA silencing components between infected and healthy samples was done using RT-qPCR. RESULTS The vsiRNA was barely detectable at 14 days post infection (dpi) but abundantly present along with elevated expression level of the viral genome at 28 dpi. From the 28-dpi sample, 70,878 reads of 18 ~ 30-nt vsiRNAs were recognized (which mostly were 21-nt and 22-nt), covering 75 ~ 91% of the length of the ten genomic segments respectively. 86% of the vsiRNAs had a <50% GC content and 79% of them were 5'-uridylated or adenylated. The production of vsiRNAs had no strand polarity but varied among segment origins. Each segment had a few hotspot regions where vsiRNAs of high abundance were produced. 151 most abundant vsiRNAs were predicted to target 844 rice genes, including several types of host resistance or pathogenesis related genes encoding F-box/LRR proteins, receptor-like protein kinases, universal stress proteins, tobamovirus multiplication proteins, and RNA silencing components OsDCL2a and OsAGO17 respectively, some of which showed down regulation in infected plants in RT-qPCR. GO and KEGG classification showed that a majority of the predicted targets were related to cell parts and cellular processes and involved in carbohydrate metabolism, translation, and signal transduction. The silencing component genes OsDCL2a, OsDCL2b, OsDCL4, and OsAGO18 were down regulated, while OsAGO1d, OsAGO2, OsRDR1 and OsRDR6 were up regulated, significantly, upon SRBSDV infection. CONCLUSIONS SRBSDV can regulate the expression of rice RNA silencing pathway components and the virus might compromise host defense and influence host pathogenesis via siRNA pathways.
Collapse
Affiliation(s)
- Donglin Xu
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Guohui Zhou
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China.
| |
Collapse
|
107
|
Xu D, Zhou G. Characteristics of siRNAs derived from Southern rice black-streaked dwarf virus in infected rice and their potential role in host gene regulation. Virol J 2017; 14:27. [PMID: 28183327 PMCID: PMC5301327 DOI: 10.1186/s12985-017-0699-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/07/2017] [Indexed: 11/10/2022] Open
Abstract
Background Virus-derived siRNAs (vsiRNAs)-mediated RNA silencing plays important roles in interaction between plant viruses and their hosts. Southern rice black-streaked dwarf virus (SRBSDV) is a newly emerged devastating rice reovirus with ten dsRNA genomic segments. The characteristics of SRBSDV-derived siRNAs and their biological implications in SRBSDV-rice interaction remain unexplored. Methods VsiRNAs profiling from SRBSDV-infected rice samples was done via small RNA deep sequencing. The putative rice targets of abundantly expressed vsiRNAs were bioinformatically predicted and subjected to functional annotation. Differential expression analysis of rice targets and RNA silencing components between infected and healthy samples was done using RT-qPCR. Results The vsiRNA was barely detectable at 14 days post infection (dpi) but abundantly present along with elevated expression level of the viral genome at 28 dpi. From the 28-dpi sample, 70,878 reads of 18 ~ 30-nt vsiRNAs were recognized (which mostly were 21-nt and 22-nt), covering 75 ~ 91% of the length of the ten genomic segments respectively. 86% of the vsiRNAs had a <50% GC content and 79% of them were 5’-uridylated or adenylated. The production of vsiRNAs had no strand polarity but varied among segment origins. Each segment had a few hotspot regions where vsiRNAs of high abundance were produced. 151 most abundant vsiRNAs were predicted to target 844 rice genes, including several types of host resistance or pathogenesis related genes encoding F-box/LRR proteins, receptor-like protein kinases, universal stress proteins, tobamovirus multiplication proteins, and RNA silencing components OsDCL2a and OsAGO17 respectively, some of which showed down regulation in infected plants in RT-qPCR. GO and KEGG classification showed that a majority of the predicted targets were related to cell parts and cellular processes and involved in carbohydrate metabolism, translation, and signal transduction. The silencing component genes OsDCL2a, OsDCL2b, OsDCL4, and OsAGO18 were down regulated, while OsAGO1d, OsAGO2, OsRDR1 and OsRDR6 were up regulated, significantly, upon SRBSDV infection. Conclusions SRBSDV can regulate the expression of rice RNA silencing pathway components and the virus might compromise host defense and influence host pathogenesis via siRNA pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0699-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Donglin Xu
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Guohui Zhou
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China.
| |
Collapse
|
108
|
Peláez P, Hernández-López A, Estrada-Navarrete G, Sanchez F. Small RNAs Derived from the T-DNA of Agrobacterium rhizogenes in Hairy Roots of Phaseolus vulgaris. FRONTIERS IN PLANT SCIENCE 2017; 8:96. [PMID: 28203245 PMCID: PMC5285386 DOI: 10.3389/fpls.2017.00096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
Agrobacterium rhizogenes is a pathogenic bacteria that causes hairy root disease by transferring bacterial DNA into the plant genome. It is an essential tool for industry and research due to its capacity to produce genetically modified roots and whole organisms. Here, we identified and characterized small RNAs generated from the transfer DNA (T-DNA) of A. rhizogenes in hairy roots of common bean (Phaseolus vulgaris). Distinct abundant A. rhizogenes T-DNA-derived small RNAs (ArT-sRNAs) belonging to several oncogenes were detected in hairy roots using high-throughput sequencing. The most abundant and diverse species of ArT-sRNAs were those of 21- and 22-nucleotides in length. Many T-DNA encoded genes constituted phasiRNA producing loci (PHAS loci). Interestingly, degradome analysis revealed that ArT-sRNAs potentially target genes of P. vulgaris. In addition, we detected low levels of ArT-sRNAs in the A. rhizogenes-induced calli generated at the wound site before hairy root emergence. These results suggest that RNA silencing targets several genes from T-DNA of A. rhizogenes in hairy roots of common bean. Therefore, the role of RNA silencing observed in this study has implications in our understanding and usage of this unique plant-bacteria interaction.
Collapse
Affiliation(s)
- Pablo Peláez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, Mexico
| | - Alejandrina Hernández-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Georgina Estrada-Navarrete
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Federico Sanchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| |
Collapse
|
109
|
Pérez-Cañamás M, Blanco-Pérez M, Forment J, Hernández C. Nicotiana benthamiana plants asymptomatically infected by Pelargonium line pattern virus show unusually high accumulation of viral small RNAs that is neither associated with DCL induction nor RDR6 activity. Virology 2017; 501:136-146. [PMID: 27915129 DOI: 10.1016/j.virol.2016.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 01/25/2023]
Abstract
Pelargonium line pattern virus (PLPV, Tombusviridae) normally establishes systemic, low-titered and asymptomatic infections in its hosts. This type of interaction may be largely determined by events related to RNA silencing, a major antiviral mechanism in plants. This mechanism is triggered by double or quasi double-stranded (ds) viral RNAs which are cut by DCL ribonucleases into virus small RNAs (vsRNAs). Such vsRNAs are at the core of the silencing process as they guide sequence-specific RNA degradation Host RNA dependent-RNA polymerases (RDRs), and particularly RDR6, strengthen antiviral silencing by promoting biosynthesis of secondary vsRNAs. To approach PLPV-host relationship, here we have characterized the vsRNAs that accumulate in PLPV-infected Nicotiana benthamiana. Such accumulation was found unprecedented high despite DCLs were not induced in infected tissue and neither vsRNA generation nor PLPV infection was apparently affected by RDR6 impairment. From the obtained data, triggers and host factors likely involved in anti-PLPV silencing are proposed.
Collapse
Affiliation(s)
- Miryam Pérez-Cañamás
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Marta Blanco-Pérez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Javier Forment
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Carmen Hernández
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
110
|
Souza PFN, Silva FDA, Carvalho FEL, Silveira JAG, Vasconcelos IM, Oliveira JTA. Photosynthetic and biochemical mechanisms of an EMS-mutagenized cowpea associated with its resistance to cowpea severe mosaic virus. PLANT CELL REPORTS 2017; 36:219-234. [PMID: 27838815 DOI: 10.1007/s00299-016-2074-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/08/2016] [Indexed: 05/04/2023]
Abstract
The seed treatment of a CPSMV-susceptible cowpea genotype with the mutagenic agent EMS generated mutagenized resistant plantlets that respond to the virus challenge by activating biochemical and physiological defense mechanisms. Cowpea is an important crop that makes major nutritional contributions particularly to the diet of the poor population worldwide. However, its production is low, because cowpea is naturally exposed to several abiotic and biotic stresses, including viral agents. Cowpea severe mosaic virus (CPSMV) drastically affects cowpea grain production. This study was conducted to compare photosynthetic and biochemical parameters of a CPSMV-susceptible cowpea (CE-31 genotype) and its derived ethyl methanesulfonate-mutagenized resistant plantlets, both challenged with CPSMV, to shed light on the mechanisms of virus resistance. CPSMV inoculation was done in the fully expanded secondary leaves, 15 days after planting. At 7 days post-inoculation, in vivo photosynthetic parameters were measured and leaves collected for biochemical analysis. CPSMV-inoculated mutagenized-resistant cowpea plantlets (MCPI) maintained higher photosynthesis index, chlorophyll, and carotenoid contents in relation to the susceptible (CE-31) CPSMV-inoculated cowpea (CPI). Visually, the MCPI leaves did not exhibit any viral symptoms neither the presence of the virus as examined by RT-PCR. In addition, MCPI showed higher SOD, GPOX, chitinase, and phenylalanine ammonia lyase activities, H2O2, phenolic contents, and cell wall lignifications, but lower CAT and APX activities in comparison to CPI. All together, these photosynthetic and biochemical changes might have contributed for the CPSMS resistance of MCPI. Contrarily, CPI plantlets showed CPSMV accumulation, severe disease symptoms, reduction in the photosynthesis-related parameters, chlorophyll, carotenoid, phenolic compound, and H2O2 contents, in addition to increased β-1,3-glucanase, and catalase activities that might have favored viral infection.
Collapse
Affiliation(s)
- Pedro F N Souza
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Av. Mister Hull, P.O. Box: 60451, Fortaleza, CE, Brazil
| | - Fredy D A Silva
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Av. Mister Hull, P.O. Box: 60451, Fortaleza, CE, Brazil
| | - Fabricio E L Carvalho
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Av. Mister Hull, P.O. Box: 60451, Fortaleza, CE, Brazil
| | - Joaquim A G Silveira
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Av. Mister Hull, P.O. Box: 60451, Fortaleza, CE, Brazil
| | - Ilka M Vasconcelos
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Av. Mister Hull, P.O. Box: 60451, Fortaleza, CE, Brazil
| | - Jose T A Oliveira
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Av. Mister Hull, P.O. Box: 60451, Fortaleza, CE, Brazil.
| |
Collapse
|
111
|
Li M, Li Y, Xia Z, Di D, Zhang A, Miao H, Zhou T, Fan Z. Characterization of small interfering RNAs derived from Rice black streaked dwarf virus in infected maize plants by deep sequencing. Virus Res 2016; 228:66-74. [PMID: 27888127 DOI: 10.1016/j.virusres.2016.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 12/18/2022]
Abstract
Rice black streaked dwarf virus (RBSDV) is the casual agent of maize rough dwarf disease, which frequently causes severe yield loss in China. However, the interaction between RBSDV and maize plants is largely unknown. RNA silencing is a conserved mechanism against viruses in plants. To understand the antiviral RNA interfering response in RBSDV-infected plants, the profile of virus-derived small interfering RNAs (vsiRNAs) from RBSDV in infected maize plants was obtained by deep sequencing in this study. Our data showed that vsiRNAs, accumulated preferentially as 21- and 22-nucleotide (nt) species, were mapped against all 10 genomic RNA segments of RBSDV and derived almost equally overall from both positive and negative strands, while there were significant differences in the accumulation level of vsiRNAs from segments 2, 4, 6, 7 and 10. The vsiRNAs (21 and 22 nt) generated from each segment of RBSDV genome had a 5'-terminal nucleotide bias toward adenine and uracil. The single-nucleotide resolution maps showed that RBSDV-derived siRNAs preferentially distributed in the 5'- or 3'-terminal regions of several genomic segments. In addition, our results showed that the mRNA levels of some components involved in antiviral RNA silencing pathway were differentially modified during RBSDV infection. Among them, the accumulation levels of ZmDCL1, ZmDCL2, ZmDCL3a, ZmAGO1a, ZmAGO1b, ZmAGO2a, ZmAGO18a and ZmRDR6 mRNAs were significantly up-regulated, while those of ZmDCL3b, ZmDCL4 and ZmAGO1c mRNAs showed no obvious changes in RBSDV-infected maize plants.
Collapse
Affiliation(s)
- Mingjun Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Yongqiang Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zihao Xia
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Dianping Di
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Aihong Zhang
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Hongqin Miao
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Tao Zhou
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zaifeng Fan
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
112
|
Li J, Zheng H, Zhang C, Han K, Wang S, Peng J, Lu Y, Zhao J, Xu P, Wu X, Li G, Chen J, Yan F. Different Virus-Derived siRNAs Profiles between Leaves and Fruits in Cucumber Green Mottle Mosaic Virus-Infected Lagenaria siceraria Plants. Front Microbiol 2016; 7:1797. [PMID: 27881977 PMCID: PMC5101232 DOI: 10.3389/fmicb.2016.01797] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/25/2016] [Indexed: 01/24/2023] Open
Abstract
RNA silencing is an evolutionarily conserved antiviral mechanism, through which virus-derived small interfering RNAs (vsiRNAs) playing roles in host antiviral defense are produced in virus-infected plant. Deep sequencing technology has revolutionized the study on the interaction between virus and plant host through the analysis of vsiRNAs profile. However, comparison of vsiRNA profiles in different tissues from a same host plant has been rarely reported. In this study, the profiles of vsiRNAs from leaves and fruits of Lagenaria siceraria plants infected with Cucumber green mottle mosaic virus (CGMMV) were comprehensively characterized and compared. Many more vsiRNAs were present in infected leaves than in fruits. vsiRNAs from both leaves and fruits were mostly 21- and 22-nt in size as previously described in other virus-infected plants. Interestingly, vsiRNAs were predominantly produced from the viral positive strand RNAs in infected leaves, whereas in infected fruits they were derived equally from the positive and negative strands. Many leaf-specific positive vsiRNAs with lengths of 21-nt (2058) or 22-nt (3996) were identified but only six (21-nt) and one (22-nt) positive vsiRNAs were found to be specific to fruits. vsiRNAs hotspots were only present in the 5'-terminal and 3'-terminal of viral positive strand in fruits, while multiple hotspots were identified in leaves. Differences in GC content and 5'-terminal nucleotide of vsiRNAs were also observed in the two organs. To our knowledge, this provides the first high-resolution comparison of vsiRNA profiles between different tissues of the same host plant.
Collapse
Affiliation(s)
- Junmin Li
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Hongying Zheng
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Chenhua Zhang
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Kelei Han
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Shu Wang
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Jiejun Peng
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Yuwen Lu
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Jinping Zhao
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Pei Xu
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Xiaohua Wu
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Guojing Li
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Jianping Chen
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Fei Yan
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| |
Collapse
|
113
|
Xu J, Liu D, Zhang Y, Wang Y, Han C, Li D, Yu JL, Wang XB. Improved Pathogenicity of a Beet Black Scorch Virus Variant by Low Temperature and Co-infection with Its Satellite RNA. Front Microbiol 2016; 7:1771. [PMID: 27867378 PMCID: PMC5095503 DOI: 10.3389/fmicb.2016.01771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/21/2016] [Indexed: 01/26/2023] Open
Abstract
Co-infection of none-coding satellite RNAs (sat-RNAs) usually inhibits replication and attenuates disease symptoms of helper viruses. However, we find that the sat-RNA of Beet black scorch virus (BBSV) and low temperature (18°C) additively enhance the systemic infection of BBSV in Nicotiana benthamiana. Northern blotting hybridization revealed a relatively reduced accumulation of BBSV-derived small interfering RNAs (siRNAs) in presence of sat-RNA as compared to that of BBSV alone. Cloning and sequencing of total small RNAs showed that more than 50% of the total small RNAs sequenced from BBSV-infected plants were BBSV-siRNAs, whereas the abundance of sat-siRNAs were higher than BBSV-siRNAs in the sat-RNA co-infected plants, indicating that the sat-RNA occupies most of the silencing components and possibly relieves the RNA silencing-mediated defense against BBSV. Interestingly, the 5' termini of siRNAs derived from BBSV and sat-RNA were dominated by Uridines (U) and Adenines (A), respectively. Besides, the infection of BBSV alone and with sat-RNA induce down-regulation of miR168 and miR403, respectively, which leads to high accumulation of their targets, Argonaute 1 (AGO1) and AGO2. Our work reveals the profiles of siRNAs of BBSV and sat-RNA and provides an additional clue to investigate the complicated interaction between the helper virus and sat-RNA.
Collapse
Affiliation(s)
- Jin Xu
- State Key Laboratory of Agro-Biotechnology, China Agricultural UniversityBeijing, China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural SciencesBeijing, China
| | - Deshui Liu
- State Key Laboratory of Agro-Biotechnology, China Agricultural UniversityBeijing, China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology, China Agricultural UniversityBeijing, China
| | - Ying Wang
- State Key Laboratory of Agro-Biotechnology, China Agricultural UniversityBeijing, China
| | - Chenggui Han
- State Key Laboratory of Agro-Biotechnology, China Agricultural UniversityBeijing, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology, China Agricultural UniversityBeijing, China
| | - Jia-Lin Yu
- State Key Laboratory of Agro-Biotechnology, China Agricultural UniversityBeijing, China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology, China Agricultural UniversityBeijing, China
| |
Collapse
|
114
|
Lin W, Yan W, Yang W, Yu C, Chen H, Zhang W, Wu Z, Yang L, Xie L. Characterisation of siRNAs derived from new isolates of bamboo mosaic virus and their associated satellites in infected ma bamboo (Dendrocalamus latiflorus). Arch Virol 2016; 162:505-510. [PMID: 27743256 DOI: 10.1007/s00705-016-3092-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 09/26/2016] [Indexed: 12/24/2022]
Abstract
We characterised the virus-derived small interfering RNAs (vsiRNA) of bamboo mosaic virus (Ba-vsiRNAs) and its associated satellite RNA (satRNA)-derived siRNAs (satsiRNAs) in a bamboo plant (Dendrocalamus latiflorus) by deep sequencing. Ba-vsiRNAs and satsiRNAs of 21-22 nt in length, with both (+) and (-) polarity, predominated. The 5'-terminal base of Ba-vsiRNA was biased towards A, whereas a bias towards C/U was observed in sense satsiRNAs, and towards A in antisense satsiRNAs. A large set of bamboo genes were identified as potential targets of Ba-vsiRNAs and satsiRNAs, revealing RNA silencing-based virus-host interactions in plants. Moreover, we isolated and characterised new isolates of bamboo mosaic virus (BaMV; 6,350 nt) and BaMV-associated satRNA (satBaMV; 834 nt), designated BaMV-MAZSL1 and satBaMV-MAZSL1, respectively.
Collapse
Affiliation(s)
- Wenwu Lin
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenkai Yan
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenting Yang
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chaowei Yu
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huihuang Chen
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wen Zhang
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zujian Wu
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liang Yang
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Lianhui Xie
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
115
|
Guo Q, Liu Q, Smith NA, Liang G, Wang MB. RNA Silencing in Plants: Mechanisms, Technologies and Applications in Horticultural Crops. Curr Genomics 2016; 17:476-489. [PMID: 28217004 PMCID: PMC5108043 DOI: 10.2174/1389202917666160520103117] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 12/20/2022] Open
Abstract
Understanding the fundamental nature of a molecular process or a biological pathway is often a catalyst for the development of new technologies in biology. Indeed, studies from late 1990s to early 2000s have uncovered multiple overlapping but functionally distinct RNA silencing pathways in plants, including the posttranscriptional microRNA and small interfering RNA pathways and the transcriptional RNA-directed DNA methylation pathway. These findings have in turn been exploited for developing artificial RNA silencing technologies such as hairpin RNA, artificial microRNA, intrinsic direct repeat, 3' UTR inverted repeat, artificial trans-acting siRNA, and virus-induced gene silencing technologies. Some of these RNA silencing technologies, such as the hairpin RNA technology, have already been widely used for genetic improvement of crop plants in agriculture. For horticultural plants, RNA silencing technologies have been used to increase disease and pest resistance, alter plant architecture and flowering time, improve commercial traits of fruits and flowers, enhance nutritional values, remove toxic compounds and allergens, and develop high-value industrial products. In this article we aim to provide an overview of the RNA silencing pathways in plants, summarize the existing RNA silencing technologies, and review the current progress in applying these technologies for the improvement of agricultural crops particularly horticultural crops.
Collapse
Affiliation(s)
- Qigao Guo
- College of Horticulture & Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Qing Liu
- Commonwealth Scientific and Industrial Research Organisation Agriculture (CSIRO), ACT 2601, Australia
| | - Neil A Smith
- Commonwealth Scientific and Industrial Research Organisation Agriculture (CSIRO), ACT 2601, Australia
| | - Guolu Liang
- College of Horticulture & Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Ming-Bo Wang
- Commonwealth Scientific and Industrial Research Organisation Agriculture (CSIRO), ACT 2601, Australia
| |
Collapse
|
116
|
Liu J, Zhang X, Yang Y, Hong N, Wang G, Wang A, Wang L. Characterization of virus-derived small interfering RNAs in Apple stem grooving virus-infected in vitro-cultured Pyrus pyrifolia shoot tips in response to high temperature treatment. Virol J 2016; 13:166. [PMID: 27716257 PMCID: PMC5053029 DOI: 10.1186/s12985-016-0625-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/27/2016] [Indexed: 11/10/2022] Open
Abstract
Background Heat treatment (known as thermotherapy) together with in vitro culture of shoot meristem tips is a commonly used technology to obtain virus-free germplasm for the effective control of virus diseases in fruit trees. RNA silencing as an antiviral defense mechanism has been implicated in this process. To understand if high temperature-mediated acceleration of the host antiviral gene silencing system in the meristem tip facilitates virus-derived small interfering RNAs (vsiRNA) accumulation to reduce the viral RNA titer in the fruit tree meristem tip cells, we used the Apple stem grooving virus (ASGV)–Pyrus pyrifolia pathosystem to explore the possible roles of vsiRNA in thermotherapy. Results At first we determined the full-length genome sequence of the ASGV-Js2 isolate and then profiled vsiRNAs in the meristem tip of in vitro-grown pear (cv. ‘Jinshui no. 2’) shoots infected by ASGV-Js2 and cultured at 24 and 37 °C. A total of 7,495 and 7,949 small RNA reads were obtained from the tips of pear shoots cultured at 24 and 37 °C, respectively. Mapping of the vsiRNAs to the ASGV-Js2 genome revealed that they were unevenly distributed along the ASGV-Js2 genome, and that 21- and 22-nt vsiRNAs preferentially accumulated at both temperatures. The 5′-terminal nucleotides of ASGV-specific siRNAs in the tips cultured under different temperatures had a similar distribution pattern, and the nucleotide U was the most frequent. RT-qPCR analyses suggested that viral genome accumulation was drastically compromised at 37 °C compared to 24 °C, which was accompanied with the elevated levels of vsiRNAs at 37 °C. As plant Dicer-like proteins (DCLs), Argonaute proteins (AGOs), and RNA-dependent RNA polymerases (RDRs) are implicated in vsiRNA biogenesis, we also cloned the partial sequences of PpDCL2,4, PpAGO1,2,4 and PpRDR1 genes, and found their expression levels were up-regulated in the ASGV-infected pear shoots at 37 °C. Conclusions Collectively, these results showed that upon high temperature treatment, the ASGV-infected meristem shoot tips up-regulated the expression of key genes in the RNA silencing pathway, induced the biogenesis of vsiRNAs and inhibited viral RNA accumulation. This study represents the first report on the characterization of the vsiRNA population in pear plants infected by ASGV-Js2, in response to high temperature treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0625-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, People's Republic of China.,Laboratory of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, People's Republic of China
| | - XueJiao Zhang
- Shihezi University, Shihezi City, Xinjiang Uyghur Autonomous Region, 832003, People's Republic of China
| | - YueKun Yang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, People's Republic of China.,Laboratory of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, People's Republic of China
| | - Ni Hong
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, People's Republic of China.,Laboratory of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, People's Republic of China
| | - GuoPing Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, People's Republic of China.,Laboratory of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, People's Republic of China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, N5V 4 T3, Canada
| | - LiPing Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, People's Republic of China. .,Laboratory of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, People's Republic of China.
| |
Collapse
|
117
|
Zhao J, Zhang X, Hong Y, Liu Y. Chloroplast in Plant-Virus Interaction. Front Microbiol 2016; 7:1565. [PMID: 27757106 PMCID: PMC5047884 DOI: 10.3389/fmicb.2016.01565] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/20/2016] [Indexed: 11/16/2022] Open
Abstract
In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction.
Collapse
Affiliation(s)
- Jinping Zhao
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua UniversityBeijing, China
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Xian Zhang
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua UniversityBeijing, China
| |
Collapse
|
118
|
Castellano M, Martinez G, Marques MC, Moreno-Romero J, Köhler C, Pallas V, Gomez G. Changes in the DNA methylation pattern of the host male gametophyte of viroid-infected cucumber plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5857-5868. [PMID: 27697787 PMCID: PMC5066502 DOI: 10.1093/jxb/erw353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Eukaryotic organisms exposed to adverse conditions are required to show a certain degree of transcriptional plasticity in order to cope successfully with stress. Epigenetic regulation of the genome is a key regulatory mechanism allowing dynamic changes of the transcriptional status of the plant in response to stress. The Hop stunt viroid (HSVd) induces the demethylation of ribosomal RNA (rRNA) in cucumber (Cucumis sativus) leaves, leading to increasing transcription rates of rRNA. In addition to the clear alterations observed in vegetative tissues, HSVd infection is also associated with drastic changes in gametophyte development. To examine the basis of viroid-induced alterations in reproductive tissues, we analysed the cellular and molecular consequences of HSVd infection in the male gametophyte of cucumber plants. Our results indicate that in the pollen grain, accumulation of HSVd RNA induces a decondensation of the generative nucleus that correlates with a dynamic demethylation of repetitive regions in the cucumber genome that include rRNA genes and transposable elements (TEs). We therefore propose that HSVd infection impairs the epigenetic control of rRNA genes and TEs in gametic cells of cucumber, a phenomenon thus far unknown to occur in this reproductive tissue as a consequence of pathogen infection.
Collapse
Affiliation(s)
- Mayte Castellano
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politecnica de Valencia (UPV), CPI, Edificio 8 E, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - German Martinez
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-750 07 Uppsala, Sweden
| | - Maria Carmen Marques
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politecnica de Valencia (UPV), CPI, Edificio 8 E, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Jordi Moreno-Romero
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-750 07 Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-750 07 Uppsala, Sweden
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politecnica de Valencia (UPV), CPI, Edificio 8 E, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Gustavo Gomez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politecnica de Valencia (UPV), CPI, Edificio 8 E, Av. de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
119
|
Kontra L, Csorba T, Tavazza M, Lucioli A, Tavazza R, Moxon S, Tisza V, Medzihradszky A, Turina M, Burgyán J. Distinct Effects of p19 RNA Silencing Suppressor on Small RNA Mediated Pathways in Plants. PLoS Pathog 2016; 12:e1005935. [PMID: 27711201 PMCID: PMC5053613 DOI: 10.1371/journal.ppat.1005935] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/13/2016] [Indexed: 12/30/2022] Open
Abstract
RNA silencing is one of the main defense mechanisms employed by plants to fight viruses. In change, viruses have evolved silencing suppressor proteins to neutralize antiviral silencing. Since the endogenous and antiviral functions of RNA silencing pathway rely on common components, it was suggested that viral suppressors interfere with endogenous silencing pathway contributing to viral symptom development. In this work, we aimed to understand the effects of the tombusviral p19 suppressor on endogenous and antiviral silencing during genuine virus infection. We showed that ectopically expressed p19 sequesters endogenous small RNAs (sRNAs) in the absence, but not in the presence of virus infection. Our presented data question the generalized model in which the sequestration of endogenous sRNAs by the viral suppressor contributes to the viral symptom development. We further showed that p19 preferentially binds the perfectly paired ds-viral small interfering RNAs (vsiRNAs) but does not select based on their sequence or the type of the 5' nucleotide. Finally, co-immunoprecipitation of sRNAs with AGO1 or AGO2 from virus-infected plants revealed that p19 specifically impairs vsiRNA loading into AGO1 but not AGO2. Our findings, coupled with the fact that p19-expressing wild type Cymbidium ringspot virus (CymRSV) overcomes the Nicotiana benthamiana silencing based defense killing the host, suggest that AGO1 is the main effector of antiviral silencing in this host-virus combination.
Collapse
Affiliation(s)
- Levente Kontra
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllő, Hungary
- Szent István University, Gödöllő, Hungary
| | - Tibor Csorba
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Mario Tavazza
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), C.R. Casaccia, Rome, Italy
| | - Alessandra Lucioli
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), C.R. Casaccia, Rome, Italy
| | - Raffaela Tavazza
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), C.R. Casaccia, Rome, Italy
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Viktória Tisza
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Anna Medzihradszky
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Massimo Turina
- National Research Council, Institute for Sustainable Plant Protection, Torino, Italy
| | - József Burgyán
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllő, Hungary
| |
Collapse
|
120
|
Palma-Martínez I, Guerrero-Mandujano A, Ruiz-Ruiz MJ, Hernández-Cortez C, Molina-López J, Bocanegra-García V, Castro-Escarpulli G. Active Shiga-Like Toxin Produced by Some Aeromonas spp., Isolated in Mexico City. Front Microbiol 2016; 7:1552. [PMID: 27757103 PMCID: PMC5048074 DOI: 10.3389/fmicb.2016.01552] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/16/2016] [Indexed: 12/29/2022] Open
Abstract
RNA silencing is a conserved mechanism that utilizes small RNAs (sRNAs) to direct the regulation of gene expression at the transcriptional or post-transcriptional level. Plants utilizing RNA silencing machinery to defend pathogen infection was first identified in plant–virus interaction and later was observed in distinct plant–pathogen interactions. RNA silencing is not only responsible for suppressing RNA accumulation and movement of virus and viroid, but also facilitates plant immune responses against bacterial, oomycete, and fungal infection. Interestingly, even the same plant sRNA can perform different roles when encounters with different pathogens. On the other side, pathogens counteract by generating sRNAs that directly regulate pathogen gene expression to increase virulence or target host genes to facilitate pathogen infection. Here, we summarize the current knowledge of the characterization and biogenesis of host- and pathogen-derived sRNAs, as well as the different RNA silencing machineries that plants utilize to defend against different pathogens. The functions of these sRNAs in defense and counter-defense and their mechanisms for regulation during different plant–pathogen interactions are also discussed.
Collapse
Affiliation(s)
- Ingrid Palma-Martínez
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| | - Andrea Guerrero-Mandujano
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| | - Manuel J Ruiz-Ruiz
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico; Laboratorio Central de Análisis Clínicos Unidad Médica de Alta Especialidad Hospital de Pediatría "Silvestre Frenk Freund," Centro Médico Nacional Siglo XXIMexico City, Mexico
| | - Cecilia Hernández-Cortez
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico; Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico
| | - José Molina-López
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | | | - Graciela Castro-Escarpulli
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| |
Collapse
|
121
|
Hadidi A, Flores R, Candresse T, Barba M. Next-Generation Sequencing and Genome Editing in Plant Virology. Front Microbiol 2016; 7:1325. [PMID: 27617007 PMCID: PMC4999435 DOI: 10.3389/fmicb.2016.01325] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/11/2016] [Indexed: 01/18/2023] Open
Abstract
Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21-24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae) by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus); beet curly top virus and beet severe curly top virus (curtovirus); and bean yellow dwarf virus (mastrevirus). The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus) and cucumber vein yellowing virus (ipomovirus, family, Potyviridae) by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology.
Collapse
Affiliation(s)
- Ahmed Hadidi
- United States Department of Agriculture – Agricultural Research ServiceBeltsville, MD, USA
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia–Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université de BordeauxBordeaux, France
| | - Marina Barba
- Consiglio per la Ricerca in Agricoltura e l’analisi dell’Economia Agraria, Centro di Ricerca per la Patologia VegetaleRome, Italy
| |
Collapse
|
122
|
Nee S. The evolutionary ecology of molecular replicators. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160235. [PMID: 27853598 PMCID: PMC5108948 DOI: 10.1098/rsos.160235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/01/2016] [Indexed: 05/12/2023]
Abstract
By reasonable criteria, life on the Earth consists mainly of molecular replicators. These include viruses, transposons, transpovirons, coviruses and many more, with continuous new discoveries like Sputnik Virophage. Their study is inherently multidisciplinary, spanning microbiology, genetics, immunology and evolutionary theory, and the current view is that taking a unified approach has great power and promise. We support this with a new, unified, model of their evolutionary ecology, using contemporary evolutionary theory coupling the Price equation with game theory, studying the consequences of the molecular replicators' promiscuous use of each others' gene products for their natural history and evolutionary ecology. Even at this simple expository level, we can make a firm prediction of a new class of replicators exploiting viruses such as lentiviruses like SIVs, a family which includes HIV: these have been explicitly stated in the primary literature to be non-existent. Closely connected to this departure is the view that multicellular organism immunology is more about the management of chronic infections rather than the elimination of acute ones and new understandings emerging are changing our view of the kind of theatre we ourselves provide for the evolutionary play of molecular replicators. This study adds molecular replicators to bacteria in the emerging field of sociomicrobiology.
Collapse
Affiliation(s)
- Sean Nee
- Author for correspondence: Sean Nee e-mail:
| |
Collapse
|
123
|
Differential Inductions of RNA Silencing among Encapsidated Double-Stranded RNA Mycoviruses in the White Root Rot Fungus Rosellinia necatrix. J Virol 2016; 90:5677-92. [PMID: 27030271 DOI: 10.1128/jvi.02951-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/28/2016] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED RNA silencing acts as a defense mechanism against virus infection in a wide variety of organisms. Here, we investigated inductions of RNA silencing against encapsidated double-stranded RNA (dsRNA) fungal viruses (mycoviruses), including a partitivirus (RnPV1), a quadrivirus (RnQV1), a victorivirus (RnVV1), a mycoreovirus (RnMyRV3), and a megabirnavirus (RnMBV1) in the phytopathogenic fungus Rosellinia necatrix Expression profiling of RNA silencing-related genes revealed that a dicer-like gene, an Argonaute-like gene, and two RNA-dependent RNA polymerase genes were upregulated by RnMyRV3 or RnMBV1 infection but not by other virus infections or by constitutive expression of dsRNA in R. necatrix Massive analysis of viral small RNAs (vsRNAs) from the five mycoviruses showed that 19- to 22-nucleotide (nt) vsRNAs were predominant; however, their ability to form duplexes with 3' overhangs and the 5' nucleotide preferences of vsRNAs differed among the five mycoviruses. The abundances of 19- to 22-nt vsRNAs from RnPV1, RnQV1, RnVV1, RnMyRV3, and RnMBV1 were 6.8%, 1.2%, 0.3%, 13.0%, and 24.9%, respectively. Importantly, the vsRNA abundances and accumulation levels of viral RNA were not always correlated, and the origins of the vsRNAs were distinguishable among the five mycoviruses. These data corroborated diverse interactions between encapsidated dsRNA mycoviruses and RNA silencing. Moreover, a green fluorescent protein (GFP)-based sensor assay in R. necatrix revealed that RnMBV1 infection induced silencing of the target sensor gene (GFP gene and the partial RnMBV1 sequence), suggesting that vsRNAs from RnMBV1 activated the RNA-induced silencing complex. Overall, this study provides insights into RNA silencing against encapsidated dsRNA mycoviruses. IMPORTANCE Encapsidated dsRNA fungal viruses (mycoviruses) are believed to replicate inside their virions; therefore, there is a question of whether they induce RNA silencing. Here, we investigated inductions of RNA silencing against encapsidated dsRNA mycoviruses (a partitivirus, a quadrivirus, a victorivirus, a mycoreovirus, and a megabirnavirus) in Rosellinia necatrix We revealed upregulation of RNA silencing-related genes in R. necatrix infected with a mycoreovirus or a megabirnavirus but not with other viruses, which was consistent with the relatively high abundances of vsRNAs from the two mycoviruses. We also showed common and different molecular features and origins of the vsRNAs from the five mycoviruses. Furthermore, we demonstrated the activation of RNA-induced silencing complex by mycoviruses in R. necatrix Taken together, our data provide insights into an RNA silencing pathway against encapsidated dsRNA mycoviruses which is differentially induced among encapsidated dsRNA mycoviruses; that is, diverse replication strategies exist among encapsidated dsRNA mycoviruses.
Collapse
|
124
|
Flores R. Highly Abundant Small Interfering RNAs Derived from a Satellite RNA Contribute to Symptom Attenuation by Binding Helper Virus-Encoded RNA Silencing Suppressors. FRONTIERS IN PLANT SCIENCE 2016; 7:692. [PMID: 27242884 PMCID: PMC4873498 DOI: 10.3389/fpls.2016.00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
|
125
|
Generation of a high resolution map of sRNAs from Fusarium graminearum and analysis of responses to viral infection. Sci Rep 2016; 6:26151. [PMID: 27189438 PMCID: PMC4870495 DOI: 10.1038/srep26151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/28/2016] [Indexed: 01/18/2023] Open
Abstract
Previously, we characterized F. graminearum hypovirus 1 (FgHV1) and F. graminearum hypovirus 2 (FgHV2), which are the only two hypoviruses in F. graminearum that are closely related to Cryphonectria hypovirus 1 (CHV1) and Cryphonectria hypovirus 2 (CHV2) in the Hypoviridae family. In this study, we preliminarily elucidated the RNA silencing mechanism of the F. graminearum/hypovirus system from a small RNA (sRNA) perspective by using HiSeq deep sequencing. The length distributions of F. graminearum sRNA were altered by hypoviral infection. Potential microRNA-like (milRNA) candidates were differentially expressed between the hypovirus-free and hypovirus-infected library types. Extensive virus-derived small interfering RNAs (vsiRNAs) were also principally defined. The 1,831,081 and 3,254,758 total reads generated from the FgHV1 and FgHV2 genomes in F. graminearum yielded the first high-resolution sRNA maps of fungal viruses. In addition, extensive bioinformatics searches identified a large number of transcripts that are potentially targeted by vsiRNAs, several of which were effectively down-regulated. In particular, the RNA silencing-related genes FgDicer1 and FgRdRp5 were predicted targets of FgHV1- and FgHV2-derived siRNAs, possibly revealing a novel anti-RNA silencing strategy employed by mycoviruses.
Collapse
|
126
|
Garcia-Ruiz H, Ruiz MTG, Peralta SMG, Gabriel CBM, El-Mounadi K. Mechanisms, applications, and perspectives of antiviral RNA silencing in plants. ACTA ACUST UNITED AC 2016; 34. [PMID: 28890589 DOI: 10.18781/r.mex.fit.1606-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Viral diseases of plants cause important economic losses due to reduction in crop quality and quantity to the point of threatening food security in some countries. Given the reduced availability of natural sources, genetic resistance to viruses has been successfully engineered for some plant-virus combinations. A sound understanding of the basic mechanisms governing plant-virus interactions, including antiviral RNA silencing, is the foundation to design better management strategies and biotechnological approaches to engineer and implement antiviral resistance in plants. In this review, we present current molecular models to explain antiviral RNA silencing and its application in basic plant research, biotechnology and genetic engineering.
Collapse
Affiliation(s)
- Hernan Garcia-Ruiz
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583 USA
| | | | | | | | - Kautar El-Mounadi
- Department of Biology, Kuztown University of Pennsylvania, Kuztown, PA 19530 USA
| |
Collapse
|
127
|
Huang J, Yang M, Zhang X. The function of small RNAs in plant biotic stress response. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:312-27. [PMID: 26748943 DOI: 10.1111/jipb.12463] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/07/2016] [Indexed: 05/18/2023]
Abstract
Small RNAs (sRNAs) play essential roles in plants upon biotic stress. Plants utilize RNA silencing machinery to facilitate pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity to defend against pathogen attack or to facilitate defense against insect herbivores. Pathogens, on the other hand, are also able to generate effectors and sRNAs to counter the host immune response. The arms race between plants and pathogens/insect herbivores has triggered the evolution of sRNAs, RNA silencing machinery and pathogen effectors. A great number of studies have been performed to investigate the roles of sRNAs in plant defense, bringing in the opportunity to utilize sRNAs in plant protection. Transgenic plants with pathogen-derived resistance ability or transgenerational defense have been generated, which show promising potential as solutions for pathogen/insect herbivore problems in the field. Here we summarize the recent progress on the function of sRNAs in response to biotic stress, mainly in plant-pathogen/insect herbivore interaction, and the application of sRNAs in disease and insect herbivore control.
Collapse
Affiliation(s)
- Juan Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Meiling Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
128
|
Zhao JH, Hua CL, Fang YY, Guo HS. The dual edge of RNA silencing suppressors in the virus–host interactions. Curr Opin Virol 2016; 17:39-44. [DOI: 10.1016/j.coviro.2015.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/19/2015] [Accepted: 12/28/2015] [Indexed: 02/02/2023]
|
129
|
Palukaitis P. Satellite RNAs and Satellite Viruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:181-186. [PMID: 26551994 DOI: 10.1094/mpmi-10-15-0232-fi] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Satellite RNAs and satellite viruses are extraviral components that can affect either the pathogenicity, the accumulation, or both of their associated viruses while themselves being dependent on the associated viruses as helper viruses for their infection. Most of these satellite RNAs are noncoding RNAs, and in many cases, have been shown to alter the interaction of their helper viruses with their hosts. In only a few cases have the functions of these satellite RNAs in such interactions been studied in detail. In particular, work on the satellite RNAs of Cucumber mosaic virus and Turnip crinkle virus have provided novel insights into RNAs functioning as noncoding RNAs. These effects are described and potential roles for satellite RNAs in the processes involved in symptom intensification or attenuation are discussed. In most cases, models describing these roles involve some aspect of RNA silencing or its suppression, either directly or indirectly involving the particular satellite RNA.
Collapse
Affiliation(s)
- Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women's University, 621 Hwarangno, Nowon-gu, Seoul, 139-774, Republic of Korea
| |
Collapse
|
130
|
Miller WA, Shen R, Staplin W, Kanodia P. Noncoding RNAs of Plant Viruses and Viroids: Sponges of Host Translation and RNA Interference Machinery. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:156-64. [PMID: 26900786 PMCID: PMC5410770 DOI: 10.1094/mpmi-10-15-0226-fi] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Noncoding sequences in plant viral genomes are well-known to control viral replication and gene expression in cis. However, plant viral and viroid noncoding (nc)RNA sequences can also regulate gene expression acting in trans, often acting like 'sponges' that bind and sequester host cellular machinery to favor viral infection. Noncoding sequences of small subgenomic (sg)RNAs of Barley yellow dwarf virus (BYDV) and Red clover necrotic mosaic virus (RCNMV) contain a cap-independent translation element that binds translation initiation factor eIF4G. We provide new evidence that a sgRNA of BYDV can globally attenuate host translation, probably by sponging eIF4G. Subgenomic ncRNA of RCNMV is generated via 5' to 3' degradation by a host exonuclease. The similar noncoding subgenomic flavivirus (sf)RNA, inhibits the innate immune response, enhancing viral pathogenesis. Cauliflower mosaic virus transcribes massive amounts of a 600-nt ncRNA, which is processed into small RNAs that overwhelm the host's RNA interference (RNAi) system. Viroids use the host RNAi machinery to generate viroid-derived ncRNAs that inhibit expression of host defense genes by mimicking a microRNA. More examples of plant viral and viroid ncRNAs are likely to be discovered, revealing fascinating new weaponry in the host-virus arms race.
Collapse
Affiliation(s)
- W. Allen Miller
- Interdepartmental Genetics & Genomics Program, Iowa State University, Ames, IA 50011 USA
- Corresponding author:
| | - Ruizhong Shen
- Interdepartmental Genetics & Genomics Program, Iowa State University, Ames, IA 50011 USA
| | | | - Pulkit Kanodia
- Interdepartmental Genetics & Genomics Program, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
131
|
Flores R, Owens RA, Taylor J. Pathogenesis by subviral agents: viroids and hepatitis delta virus. Curr Opin Virol 2016; 17:87-94. [PMID: 26897654 DOI: 10.1016/j.coviro.2016.01.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/21/2016] [Accepted: 01/29/2016] [Indexed: 12/18/2022]
Abstract
The viroids of plants are the simplest known infectious genetic elements. They have RNA genomes of up to 400 nucleotides in length and no protein encoding capacity. Hepatitis delta virus (HDV), an infectious agent found only in humans co-infected with hepatitis B virus (HBV), is just slightly more complex, with an RNA genome of about 1700 nucleotides, and the ability to express just one small protein. Viroid and HDV RNAs share several features that include circular structure, compact folding, and replication via a rolling-circle mechanism. Both agents were detected because of their obvious pathogenic effects. Their simplicity demands a greater need than conventional RNA or DNA viruses to redirect host components for facilitating their infectious cycle, a need that directly and indirectly incites pathogenic effects. The mechanisms by which these pathogenic effects are produced are the topic of this review. In this context, RNA silencing mediates certain aspects of viroid pathogenesis.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Valencia 46022, Spain.
| | - Robert A Owens
- Molecular Plant Pathology Laboratory, USDA-ARS, Beltsville, MD 20705, USA.
| | - John Taylor
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
132
|
Synergistic infection of two viruses MCMV and SCMV increases the accumulations of both MCMV and MCMV-derived siRNAs in maize. Sci Rep 2016; 6:20520. [PMID: 26864602 PMCID: PMC4808907 DOI: 10.1038/srep20520] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/07/2016] [Indexed: 12/03/2022] Open
Abstract
The co-infection of Maize chlorotic mottle virus (MCMV) and Sugarcane mosaic virus (SCMV) can cause maize lethal necrosis. However, the mechanism underlying the synergistic interaction between these two viruses remains elusive. In this study, we found that the co-infection of MCMV and SCMV increased the accumulation of MCMV. Moreover, the profiles of virus-derived siRNAs (vsiRNAs) from MCMV and SCMV in single- and co-infected maize plants were obtained by high-throughput sequencing. Our data showed that synergistic infection of MCMV and SCMV increased remarkably the accumulation of vsiRNAs from MCMV, which were mainly 22 and 21 nucleotides in length. The single-nucleotide resolution maps of vsiRNAs revealed that vsiRNAs were almost continuously but heterogeneously distributed throughout MCMV and SCMV genomic RNAs, respectively. Moreover, we predicted and annotated dozens of host transcript genes targeted by vsiRNAs. Our results also showed that maize DCLs and several AGOs RNAs were differentially accumulated in maize plants with different treatments (mock, single or double inoculations), which were associated with the accumulation of vsiRNAs. Our findings suggested possible roles of vsiRNAs in the synergistic interaction of MCMV and SCMV in maize plants.
Collapse
|
133
|
Shi B, Lin L, Wang S, Guo Q, Zhou H, Rong L, Li J, Peng J, Lu Y, Zheng H, Yang Y, Chen Z, Zhao J, Jiang T, Song B, Chen J, Yan F. Identification and regulation of host genes related to Rice stripe virus symptom production. THE NEW PHYTOLOGIST 2016; 209:1106-19. [PMID: 26487490 DOI: 10.1111/nph.13699] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 08/28/2015] [Indexed: 05/11/2023]
Abstract
Viral infections cause plant chlorosis, stunting, necrosis or other symptoms. The down-regulation of chloroplast-related genes (ChRGs) is assumed to be responsible for chlorosis. We identified the differentially expressed genes (DEGs) in Rice stripe virus (RSV)-infected Nicotiana benthamiana, and examined the contribution of 75 down-regulated DEGs to RSV symptoms by silencing them one by one using Tobacco rattle virus (TRV)-induced gene silencing. Silencing of 11 of the 75 down-regulated DEGs caused plant chlorosis, and nine of the 11 were ChRGs. Silencing of a down-regulated DEG encoding the eukaryotic translation initiation factor 4A (eIF4A) caused leaf-twisting and stunting that were visible on RSV-infected N. benthamiana. A region of RSV RNA4 was complementary to part of eIF4A mRNA and virus-derived small interfering (vsiRNAs) from that region were present in infected N. benthamiana. When expressed as artificial microRNAs, those vsiRNAs could target NbeIF4A mRNA for regulation. We provide experimental evidence supporting the association of ChRGs with chlorosis and show that eIF4A is involved in RSV symptom development. This is also the first report demonstrating that siRNA derived directly from a plant virus can target a host gene for regulation.
Collapse
Affiliation(s)
- Bingbin Shi
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Lin Lin
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shihui Wang
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qin Guo
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Hong Zhou
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Lingling Rong
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Junmin Li
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jiejun Peng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuwen Lu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hongying Zheng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yong Yang
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhuo Chen
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Jinping Zhao
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Tong Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Baoan Song
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Jianping Chen
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fei Yan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
134
|
Chaturvedi S, Rao ALN. A shift in plant proteome profile for a Bromodomain containing RNA binding Protein (BRP1) in plants infected with Cucumber mosaic virus and its satellite RNA. J Proteomics 2016; 131:1-7. [PMID: 26463137 DOI: 10.1016/j.jprot.2015.09.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/03/2015] [Accepted: 09/30/2015] [Indexed: 12/18/2022]
Abstract
Host proteins are the integral part of a successful infection caused by a given RNA virus pathogenic to plants. Therefore, identification of crucial host proteins playing an important role in establishing the infection process is likely to help in devising approaches to curbing disease spread. Cucumber mosaic virus (Q-CMV) and its satellite RNA (QsatRNA) are important pathogens of many economically important crop plants worldwide. In a previous study, we demonstrated the biological significance of a Bromodomain containing RNA-binding Protein (BRP1) in the infection cycle of QsatRNA, making BRP1 an important host protein to study. To further shed a light on the mechanistic role of BRP1 in the replication of Q-CMV and QsatRNA, we analyzed the Nicotiana benthamiana host protein interactomes either for BRP1 alone or in the presence of Q-CMV or QsatRNA. Co-immunoprecipitation, followed by LC-MS/MS analysis of BRP1-FLAG on challenging with Q-CMV or QsatRNA has led us to observe a shift in the host protein interactome of BRP1. We discuss the significance of these results in relation to Q-CMV and its QsatRNA infection cycle. BIOLOGICAL SIGNIFICANCE Host proteins play an important role in replication and infection of eukaryotic cells by a wide-range of RNA viruses pathogenic to humans, animals and plants. Since a given eukaryotic cell typically contains ~30,000 different proteins, recent advances made in proteomics and bioinformatics approaches allowed the identification of host proteins critical for viral replication and pathogenesis. Although Cucumber mosaic virus (CMV) and its satRNA are well characterized at molecular level, information concerning the network of host factors involved in their replication and pathogenesis is still on its infancy. We have recently observed that a Bromodomain containing host protein (BRP1) is obligatory to transport satRNA to the nucleus. Consequently, it is imperative to apply proteomics and bioinformatics approaches in deciphering how host interactome network regulates the replication of CMV and its satRNA. In this study, first we established the importance of BRP1 in CMV replication. Then, application of co-immunoprecipitation in conjunction with LC-MS/MS allowed the identification of a wide range of host proteins that are associated with the replication of CMV and its satRNA. Interestingly, a shift in the plant proteome was observed when plants infected with CMV were challenged with its satRNA.
Collapse
Affiliation(s)
- Sonali Chaturvedi
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521, United States
| | - A L N Rao
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
135
|
Wang J, Tang Y, Yang Y, Ma N, Ling X, Kan J, He Z, Zhang B. Cotton Leaf Curl Multan Virus-Derived Viral Small RNAs Can Target Cotton Genes to Promote Viral Infection. FRONTIERS IN PLANT SCIENCE 2016; 7:1162. [PMID: 27540385 PMCID: PMC4972823 DOI: 10.3389/fpls.2016.01162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/19/2016] [Indexed: 05/19/2023]
Abstract
RNA silencing is a conserved mechanism in plants that targets viruses. Viral small RNAs (vsiRNAs) can be generated from viral double-stranded RNA replicative intermediates within the infected host, or from host RNA-dependent RNA polymerases activity on viral templates. The abundance and profile of vsiRNAs in viral infections have been reported previously. However, the involvement of vsiRNAs during infection of the Geminiviridae family member cotton leaf curl virus (CLCuD), which causes significant economic losses in cotton growing regions, remains largely uncharacterized. Cotton leaf curl Multan virus (CLCuMuV) associated with a betasatellite called Cotton leaf curl Multan betasatellite (CLCuMuB) is a major constraint to cotton production in South Asia and is now established in Southern China. In this study, we obtained the profiles of vsiRNAs from CLCuMV and CLCuMB in infected upland cotton (Gossypium hirsutum) plants by deep sequencing. Our data showed that vsiRNA that were derived almost equally from sense and antisense CLCuD DNA strands accumulated preferentially as 21- and 22-nucleotide (nt) small RNA population and had a cytosine bias at the 5'-terminus. Polarity distribution revealed that vsiRNAs were almost continuously present along the CLCuD genome and hotspots of sense and antisense strands were mainly distributed in the Rep proteins region of CLCuMuV and in the C1 protein of CLCuMuB. In addition, hundreds of host transcripts targeted by vsiRNAs were predicted, many of which encode transcription factors associated with biotic and abiotic stresses. Quantitative real-time polymerase chain reaction analysis of selected potential vsiRNA targets showed that some targets were significantly down-regulated in CLCuD-infected cotton plants. We also verified the potential function of vsiRNA targets that may be involved in CLCuD infection by virus-induced gene silencing (VIGS) and 5'-rapid amplification of cDNA end (5'-RACE). Here, we provide the first report on vsiRNAs responses to CLCuD infection in cotton.
Collapse
Affiliation(s)
- Jinyan Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Yafei Tang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
| | - Yuwen Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Na Ma
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Xitie Ling
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Jialiang Kan
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Zifu He
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
- *Correspondence: Baolong Zhang, Zifu He,
| | - Baolong Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural SciencesNanjing, China
- *Correspondence: Baolong Zhang, Zifu He,
| |
Collapse
|
136
|
Abstract
In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction.
Collapse
Affiliation(s)
- Jinping Zhao
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua UniversityBeijing, China; State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Xian Zhang
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University Hangzhou, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University Hangzhou, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University Beijing, China
| |
Collapse
|
137
|
Li Y, Deng C, Shang Q, Zhao X, Liu X, Zhou Q. Characterization of siRNAs derived from cucumber green mottle mosaic virus in infected cucumber plants. Arch Virol 2015; 161:455-8. [DOI: 10.1007/s00705-015-2687-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
|
138
|
Zhang C, Wu Z, Li Y, Wu J. Biogenesis, Function, and Applications of Virus-Derived Small RNAs in Plants. Front Microbiol 2015; 6:1237. [PMID: 26617580 PMCID: PMC4637412 DOI: 10.3389/fmicb.2015.01237] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/26/2015] [Indexed: 11/13/2022] Open
Abstract
RNA silencing, an evolutionarily conserved and sequence-specific gene-inactivation system, has a pivotal role in antiviral defense in most eukaryotic organisms. In plants, a class of exogenous small RNAs (sRNAs) originating from the infecting virus called virus-derived small interfering RNAs (vsiRNAs) are predominantly responsible for RNA silencing-mediated antiviral immunity. Nowadays, the process of vsiRNA formation and the role of vsiRNAs in plant viral defense have been revealed through deep sequencing of sRNAs and diverse genetic analysis. The biogenesis of vsiRNAs is analogous to that of endogenous sRNAs, which require diverse essential components including dicer-like (DCL), argonaute (AGO), and RNA-dependent RNA polymerase (RDR) proteins. vsiRNAs trigger antiviral defense through post-transcriptional gene silencing (PTGS) or transcriptional gene silencing (TGS) of viral RNA, and they hijack the host RNA silencing system to target complementary host transcripts. Additionally, several applications that take advantage of the current knowledge of vsiRNAs research are being used, such as breeding antiviral plants through genetic engineering technology, reconstructing of viral genomes, and surveying viral ecology and populations. Here, we will provide an overview of vsiRNA pathways, with a primary focus on the advances in vsiRNA biogenesis and function, and discuss their potential applications as well as the future challenges in vsiRNAs research.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University Fuzhou, China
| | - Zujian Wu
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University Fuzhou, China
| | - Yi Li
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University Beijing, China
| | - Jianguo Wu
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University Fuzhou, China ; Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University Beijing, China
| |
Collapse
|
139
|
Wang MB, Smith NA. Satellite RNA pathogens of plants: impacts and origins-an RNA silencing perspective. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:5-16. [PMID: 26481458 DOI: 10.1002/wrna.1311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 11/09/2022]
Abstract
Viral satellite RNAs (satRNAs) are among the smallest RNA pathogens in plants. They have little or no protein-coding capacity but can have a major impact on the host plants through trilateral interactions with helper viruses and host plants. Studies around the 1980s revealed much of what we know about satRNAs: they can affect helper virus accumulation, modulate helper virus-induced disease symptoms, and induce their own symptoms with the assistance of helper viruses which depend on specific nucleotide sequences of their genome and host species. The molecular basis of these satRNA-caused impacts and the origin of satRNAs have yet to be fully understood and revealed, but recent understanding of the antiviral RNA silencing pathways and advancement in RNA and DNA sequencing technologies have provided new avenues and opportunities to examine these unanswered questions. These RNA silencing-based studies have revealed the existence of cross silencing between some satRNAs and helper viruses, the downregulation of helper virus-encoded suppressor (VSR) of RNA silencing or inhibition/enhancement of VSR activity by satRNAs, the silencing of host-encoded genes by satRNA-derived small interfering RNA (siRNAs), and the presence of satRNA-like small RNAs in uninfected host plants. These findings have provided alternative RNA silencing-based models to explain the pathogenicity and origin of satRNAs. WIREs RNA 2016, 7:5-16. doi: 10.1002/wrna.1311 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ming-Bo Wang
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia
| | - Neil A Smith
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia
| |
Collapse
|
140
|
Gu X, Mooers BHM, Thomas LM, Malone J, Harris S, Schroeder SJ. Structures and Energetics of Four Adjacent G·U Pairs That Stabilize an RNA Helix. J Phys Chem B 2015; 119:13252-61. [PMID: 26425937 DOI: 10.1021/acs.jpcb.5b06970] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Consecutive G·U base pairs inside RNA helices can be destabilizing, while those at the ends of helices are thermodynamically stabilizing. To determine if this paradox could be explained by differences in base stacking, we determined the high-resolution (1.32 Å) crystal structure of (5'-GGUGGCUGUU-3')2 and studied three sequences with four consecutive terminal G·U pairs by NMR spectroscopy. In the crystal structure of (5'-GGUGGCUGUU-3')2, the helix is overwound but retains the overall features of A-form RNA. The penultimate base steps at each end of the helix have high base overlap and contribute to the unexpectedly favorable energetic contribution for the 5'-GU-3'/3'-UG-5' motif in this helix position. The balance of base stacking and helical twist contributes to the positional dependence of G·U pair stabilities. The energetic stabilities and similarity to A-form RNA helices suggest that consecutive G·U pairs would be recognized by RNA helix binding proteins, such as Dicer and Ago. Thus, these results will aid future searches for target sites of small RNAs in gene regulation.
Collapse
Affiliation(s)
- Xiaobo Gu
- Department of Chemistry and Biochemistry and ‡Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States.,Department of Biochemistry and Molecular Biology and ∥Stephenson Cancer Center, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma 73104, United States
| | - Blaine H M Mooers
- Department of Chemistry and Biochemistry and ‡Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States.,Department of Biochemistry and Molecular Biology and ∥Stephenson Cancer Center, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma 73104, United States
| | - Leonard M Thomas
- Department of Chemistry and Biochemistry and ‡Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States.,Department of Biochemistry and Molecular Biology and ∥Stephenson Cancer Center, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma 73104, United States
| | - Joshua Malone
- Department of Chemistry and Biochemistry and ‡Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States.,Department of Biochemistry and Molecular Biology and ∥Stephenson Cancer Center, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma 73104, United States
| | - Steven Harris
- Department of Chemistry and Biochemistry and ‡Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States.,Department of Biochemistry and Molecular Biology and ∥Stephenson Cancer Center, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma 73104, United States
| | - Susan J Schroeder
- Department of Chemistry and Biochemistry and ‡Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States.,Department of Biochemistry and Molecular Biology and ∥Stephenson Cancer Center, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
141
|
Carbonell A, Carrington JC. Antiviral roles of plant ARGONAUTES. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:111-7. [PMID: 26190744 PMCID: PMC4618181 DOI: 10.1016/j.pbi.2015.06.013] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/11/2015] [Accepted: 06/19/2015] [Indexed: 05/20/2023]
Abstract
ARGONAUTES (AGOs) are the effector proteins functioning in eukaryotic RNA silencing pathways. AGOs associate with small RNAs and are programmed to target complementary RNA or DNA. Plant viruses induce a potent and specific antiviral RNA silencing host response in which AGOs play a central role. Antiviral AGOs associate with virus-derived small RNAs to repress complementary viral RNAs or DNAs, or with endogenous small RNAs to regulate host gene expression and promote antiviral defense. Here, we review recent progress towards understanding the roles of plant AGOs in antiviral defense. We also discuss the strategies that viruses have evolved to modulate, attenuate or suppress AGO antiviral functions.
Collapse
Affiliation(s)
- Alberto Carbonell
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | | |
Collapse
|
142
|
Gursinsky T, Pirovano W, Gambino G, Friedrich S, Behrens SE, Pantaleo V. Homeologs of the Nicotiana benthamiana Antiviral ARGONAUTE1 Show Different Susceptibilities to microRNA168-Mediated Control. PLANT PHYSIOLOGY 2015; 168:938-52. [PMID: 26015446 PMCID: PMC4741319 DOI: 10.1104/pp.15.00070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/20/2015] [Indexed: 05/21/2023]
Abstract
The plant ARGONAUTE1 protein (AGO1) is a central functional component of the posttranscriptional regulation of gene expression and the RNA silencing-based antiviral defense. By genomic and molecular approaches, we here reveal the presence of two homeologs of the AGO1-like gene in Nicotiana benthamiana, NbAGO1-1H and NbAGO1-1L. Both homeologs retain the capacity to transcribe messenger RNAs (mRNAs), which mainly differ in one 18-nucleotide insertion/deletion (indel). The indel does not modify the frame of the open reading frame, and it is located eight nucleotides upstream of the target site of a microRNA, miR168, which is an important modulator of AGO1 expression. We demonstrate that there is a differential accumulation of the two NbAGO1-1 homeolog mRNAs at conditions where miR168 is up-regulated, such as during a tombusvirus infection. The data reported suggest that the indel affects the miR168-guided regulation of NbAGO1 mRNA. The two AGO1 homeologs show full functionality in reconstituted, catalytically active RNA-induced silencing complexes following the incorporation of small interfering RNAs. Virus-induced gene silencing experiments suggest a specific involvement of the NbAGO1 homeologs in symptom development. The results provide an example of the diversity of microRNA target regions in NbAGO1 homeolog genes, which has important implications for improving resilience measures of the plant during viral infections.
Collapse
Affiliation(s)
- Torsten Gursinsky
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| | - Walter Pirovano
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| | - Giorgio Gambino
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| | - Susann Friedrich
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| | - Vitantonio Pantaleo
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| |
Collapse
|
143
|
Wang B, Hajano JUD, Ren Y, Lu C, Wang X. iTRAQ-based quantitative proteomics analysis of rice leaves infected by Rice stripe virus reveals several proteins involved in symptom formation. Virol J 2015; 12:99. [PMID: 26113023 PMCID: PMC4489111 DOI: 10.1186/s12985-015-0328-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/18/2015] [Indexed: 01/17/2023] Open
Abstract
Background Rice plants infected by Rice stripe virus (RSV) usually leads to chlorosis and death of newly emerged leaves. However, the mechanism of RSV-induced these symptoms was not clear. Methods We used an iTRAQ approach for a quantitative proteomics comparison of non-infected and infected rice leaves. RT-qPCR and Northern blot analyses were performed for assessing the transcription of candidate genes. Results As a whole, 681 (65.8 % downregulated, 34.2 % upregulated infected vs. non-infected) differentially accumulated proteins were identified. A bioinformatics analysis indicated that ten of these regulated proteins are involved in chlorophyll biosynthesis and three in cell death processes. Subsequent RT-qPCR results showed that downregulation of magnesium chelatase was due to reduced expression levels of the genes encoding subunits CHLI and CHLD, which resulted in chlorophyll reduction involved in leaf chlorosis. Three aspartic proteases expressed higher in RSV-infected leaves than those in the control leaves, which were also implicated in RSV-induced cell death. Northern blot analyses of CHLI and p0026h03.19 confirmed the RT-qPCR results. Conclusions The magnesium chelatase and aspartic proteases may be associated with RSV-induced leaf chlorosis and cell death, respectively. The findings may yield new insights into mechanisms underlying rice stripe disease symptom formation. Electronic supplementary material The online version of this article (doi:10.1186/s12985-015-0328-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Biao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China.
| | - Jamal-U-Ddin Hajano
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China.
| | - Yingdang Ren
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, 450002, Zhengzhou, China.
| | - Chuantao Lu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, 450002, Zhengzhou, China.
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China.
| |
Collapse
|
144
|
Shimura H, Masuta C. Plant subviral RNAs as a long noncoding RNA (lncRNA): Analogy with animal lncRNAs in host-virus interactions. Virus Res 2015; 212:25-9. [PMID: 26116900 DOI: 10.1016/j.virusres.2015.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 12/16/2022]
Abstract
Satellite RNAs (satRNAs) and viroids belong to the group called subviral agents and are the smallest pathogens of plants. In general, small satRNAs and viroids are 300-400 nt in size and do not encode any functional proteins; they are thus regarded as so-called long noncoding RNAs (lncRNAs). These lncRNAs are receiving great attention as a new RNA class involved in gene regulation to control important biological processes such as gene transcription and epigenetic regulation. A substantial number of lncRNAs in animal cells have been found to play important roles in the interactions between a virus and its host. We here discuss the pathogenicity of subviral RNAs (especially satRNAs) in plant cells and their functions as lncRNAs associated with viral diseases, using animal lncRNAs as an analogy. Because, unlike animal lncRNAs, plant subviral RNAs can replicate and accumulate at very high levels in infected cells, we here considered the unique possibility that the RNA silencing machinery of plants, an important defense mechanism against virus infection, may have brought about the replication ability of subviral molecules. In addition, we also discuss the possibility that satRNAs may have arisen from plant-virus interactions in virus-infected cells. Understanding the molecular functions of these unique lncRNAs in plants will enable us to reveal the most plausible origins of these subviral RNAs.
Collapse
Affiliation(s)
- Hanako Shimura
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Kita 9, Nishi 9, Sapporo 060-8589, Japan.
| | - Chikara Masuta
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Kita 9, Nishi 9, Sapporo 060-8589, Japan.
| |
Collapse
|
145
|
Cloning and profiling of small RNAs from cucumber mosaic virus satellite RNA. Methods Mol Biol 2015; 1236:99-109. [PMID: 25287499 DOI: 10.1007/978-1-4939-1743-3_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RNA silencing is not only a gene regulation mechanism that is conserved in a broad range of eukaryotes but also an adaptive immune response against foreign nucleic acids including viruses in plants. A major feature of RNA silencing is the production of small RNA (sRNA) of 21-24 nucleotides (nt) in length from double-stranded (ds) or hairpin-like (hp) RNA by Dicer-like (DCL) proteins. These sRNAs guide the binding and cleavage of cognate single-stranded (ss) RNA by an RNA silencing complex. Like all plant viruses and subviral agents, replication of viral satellite RNAs (satRNAs) is associated with the accumulation of 21-24 nt viral small interfering RNA (vsiRNA) derived from the whole region of a satRNA genome in both plus and minus-strand polarities. These satRNA-derived siRNAs (satsiRNAs) have recently been shown to play an important role in the trilateral interactions among host plants, helper viruses and satRNAs. Here, we describe the cloning and profile analysis of satsiRNAs from satRNAs of Cucumber mosaic virus (CMV). We also describe a method to minimize the strand bias that often occurs during vsiRNA cloning and sequencing.
Collapse
|
146
|
Katsarou K, Rao ALN, Tsagris M, Kalantidis K. Infectious long non-coding RNAs. Biochimie 2015; 117:37-47. [PMID: 25986218 DOI: 10.1016/j.biochi.2015.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/07/2015] [Indexed: 02/06/2023]
Abstract
Long non protein coding RNAs (lncRNAs) constitute a large category of the RNA world, able to regulate different biological processes. In this review we are focusing on infectious lncRNAs, their classification, pathogenesis and impact on the infected organisms. Here they are presented in two separate groups: 'dependent lncRNAs' (comprising satellites RNA, Hepatitis D virus and lncRNAs of viral origin) which need a helper virus and 'independent lncRNAs' (viroids) that can self-replicate. Even though these lncRNA do not encode any protein, their structure and/or sequence comprise all the necessary information to drive specific interactions with host factors and regulate several cellular functions. These new data that have emerged during the last few years concerning lncRNAs modify the way we understand molecular biology's 'central dogma' and give new perspectives for applications and potential therapeutic strategies.
Collapse
Affiliation(s)
- Konstantina Katsarou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | - A L N Rao
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521-01222, USA
| | - Mina Tsagris
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Kriton Kalantidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece; Department of Biology, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
147
|
Symptom recovery in virus-infected plants: Revisiting the role of RNA silencing mechanisms. Virology 2015; 479-480:167-79. [DOI: 10.1016/j.virol.2015.01.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/02/2015] [Accepted: 01/08/2015] [Indexed: 01/11/2023]
|
148
|
Shen WX, Au PCK, Shi BJ, Smith NA, Dennis ES, Guo HS, Zhou CY, Wang MB. Satellite RNAs interfere with the function of viral RNA silencing suppressors. FRONTIERS IN PLANT SCIENCE 2015; 6:281. [PMID: 25964791 PMCID: PMC4408847 DOI: 10.3389/fpls.2015.00281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/08/2015] [Indexed: 05/05/2023]
Abstract
Viral satellite RNAs (satRNAs) are small subviral RNAs and depend on the helper virus for replication and spread. satRNAs can attenuate helper virus-induced symptoms, the mechanism of which remains unclear. Here, we show that two virus-encoded suppressors of RNA silencing (VSRs), Cucumber mosaic virus (CMV) 2b and Tombusvirus P19, suppress hairpin RNA (hpRNA)-induced silencing of a β-glucuronidase (GUS) gene in Nicotiana benthamiana. This suppression can be overcome by CMV Y-satellite RNA (Y-Sat) via the Y-Sat-derived small interfering RNAs (siRNAs), which bind to the VSRs and displace the bound hpGUS-derived siRNAs. We also show that microRNA target gene expression in N. tabacum was elevated by CMV infection, presumably due to function of the 2b VSR, but this upregulation of microRNA target genes was reversed in the presence of Y-Sat. These results suggest that satRNA infection minimizes the effect of VSRs on host siRNA and microRNA-directed silencing. Our results suggest that the high abundance of satRNA-derived siRNAs contributes to symptom attenuation by binding helper virus-encoded VSRs, minimizing the capacity of the VSRs to bind host siRNA and miRNA and interfere with their function.
Collapse
Affiliation(s)
- Wan-Xia Shen
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest UniversityChongqing, China
- Commonwealth Scientific and Industrial Research Organisation Plant IndustryCanberra, ACT, Australia
| | - Phil Chi Khang Au
- Commonwealth Scientific and Industrial Research Organisation Plant IndustryCanberra, ACT, Australia
| | - Bu-Jun Shi
- Department of Plant Science, Waite Institute, Adelaide UniversityGlen Osmond, SA, Australia
| | - Neil A. Smith
- Commonwealth Scientific and Industrial Research Organisation Plant IndustryCanberra, ACT, Australia
| | - Elizabeth S. Dennis
- Commonwealth Scientific and Industrial Research Organisation Plant IndustryCanberra, ACT, Australia
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Chang-Yong Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest UniversityChongqing, China
| | - Ming-Bo Wang
- Commonwealth Scientific and Industrial Research Organisation Plant IndustryCanberra, ACT, Australia
| |
Collapse
|
149
|
Viral factors involved in plant pathogenesis. Curr Opin Virol 2015; 11:21-30. [DOI: 10.1016/j.coviro.2015.01.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/06/2015] [Indexed: 12/31/2022]
|
150
|
Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Res 2015; 209:136-45. [PMID: 25738582 DOI: 10.1016/j.virusres.2015.02.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022]
Abstract
The discovery of viroids about 45 years ago heralded a revolution in Biology: small RNAs comprising around 350 nt were found to be able to replicate autonomously-and to incite diseases in certain plants-without encoding proteins, fundamental properties discriminating these infectious agents from viruses. The initial focus on the pathological effects usually accompanying infection by viroids soon shifted to their molecular features-they are circular molecules that fold upon themselves adopting compact secondary conformations-and then to how they manipulate their hosts to be propagated. Replication of viroids-in the nucleus or chloroplasts through a rolling-circle mechanism involving polymerization, cleavage and circularization of RNA strands-dealt three surprises: (i) certain RNA polymerases are redirected to accept RNA instead of their DNA templates, (ii) cleavage in chloroplastic viroids is not mediated by host enzymes but by hammerhead ribozymes, and (iii) circularization in nuclear viroids is catalyzed by a DNA ligase redirected to act upon RNA substrates. These enzymes (and ribozymes) are most probably assisted by host proteins, including transcription factors and RNA chaperones. Movement of viroids, first intracellularly and then to adjacent cells and distal plant parts, has turned out to be a tightly regulated process in which specific RNA structural motifs play a crucial role. More recently, the advent of RNA silencing has brought new views on how viroids may cause disease and on how their hosts react to contain the infection; additionally, viroid infection may be restricted by other mechanisms. Representing the lowest step on the biological size scale, viroids have also attracted considerable interest to get a tentative picture of the essential characteristics of the primitive replicons that populated the postulated RNA world.
Collapse
|