101
|
Host factors for retroviral integration site selection. Trends Biochem Sci 2014; 40:108-16. [PMID: 25555456 DOI: 10.1016/j.tibs.2014.12.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/15/2014] [Accepted: 12/02/2014] [Indexed: 11/22/2022]
Abstract
To achieve productive infection, retroviruses such as HIV stably integrate their reverse transcribed RNA genome into a host chromosome. Each retroviral family preferentially integrates near a unique subset of genomic features. HIV integrase (IN) is targeted to the body of active transcription units through interaction with lens epithelium-derived growth factor (LEDGF/p75). We describe the successful effort to develop inhibitors of the interaction between IN and LEDGF/p75, referred to as LEDGINs. Gammaretroviruses display a distinct integration pattern. Recently, BET (bromo- and extraterminal domain) proteins were identified as the LEDGF/p75 counterparts that target the integration of gammaretroviruses. The identification of the chromatin-readers LEDGF/p75 and BET as cellular cofactors that orchestrate lentiviral or gammaretroviral integration opens new avenues to developing safer viral vectors for gene therapy.
Collapse
|
102
|
Slaughter A, Jurado KA, Deng N, Feng L, Kessl JJ, Shkriabai N, Larue RC, Fadel HJ, Patel PA, Jena N, Fuchs JR, Poeschla E, Levy RM, Engelman A, Kvaratskhelia M. The mechanism of H171T resistance reveals the importance of Nδ-protonated His171 for the binding of allosteric inhibitor BI-D to HIV-1 integrase. Retrovirology 2014; 11:100. [PMID: 25421939 PMCID: PMC4251946 DOI: 10.1186/s12977-014-0100-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/24/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are an important new class of anti-HIV-1 agents. ALLINIs bind at the IN catalytic core domain (CCD) dimer interface occupying the principal binding pocket of its cellular cofactor LEDGF/p75. Consequently, ALLINIs inhibit HIV-1 IN interaction with LEDGF/p75 as well as promote aberrant IN multimerization. Selection of viral strains emerging under the inhibitor pressure has revealed mutations at the IN dimer interface near the inhibitor binding site. RESULTS We have investigated the effects of one of the most prevalent substitutions, H171T IN, selected under increasing pressure of ALLINI BI-D. Virus containing the H171T IN substitution exhibited an ~68-fold resistance to BI-D treatment in infected cells. These results correlated with ~84-fold reduced affinity for BI-D binding to recombinant H171T IN CCD protein compared to its wild type (WT) counterpart. However, the H171T IN substitution only modestly affected IN-LEDGF/p75 binding and allowed HIV-1 containing this substitution to replicate at near WT levels. The x-ray crystal structures of BI-D binding to WT and H171T IN CCD dimers coupled with binding free energy calculations revealed the importance of the Nδ- protonated imidazole group of His171 for hydrogen bonding to the BI-D tert-butoxy ether oxygen and establishing electrostatic interactions with the inhibitor carboxylic acid, whereas these interactions were compromised upon substitution to Thr171. CONCLUSIONS Our findings reveal a distinct mechanism of resistance for the H171T IN mutation to ALLINI BI-D and indicate a previously undescribed role of the His171 side chain for binding the inhibitor.
Collapse
Affiliation(s)
- Alison Slaughter
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, 496 W. 12th Ave, 508 Riffe Building, Columbus, OH 43210 USA
| | - Kellie A Jurado
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02215 USA
| | - Nanjie Deng
- Department of Chemistry and Center for Biophysics and Computational Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122 USA
| | - Lei Feng
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, 496 W. 12th Ave, 508 Riffe Building, Columbus, OH 43210 USA
| | - Jacques J Kessl
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, 496 W. 12th Ave, 508 Riffe Building, Columbus, OH 43210 USA
| | - Nikoloz Shkriabai
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, 496 W. 12th Ave, 508 Riffe Building, Columbus, OH 43210 USA
| | - Ross C Larue
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, 496 W. 12th Ave, 508 Riffe Building, Columbus, OH 43210 USA
| | - Hind J Fadel
- Department of Molecular Medicine & Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Pratiq A Patel
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - Nivedita Jena
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 USA
| | - Eric Poeschla
- Department of Molecular Medicine & Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Ronald M Levy
- Department of Chemistry and Center for Biophysics and Computational Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122 USA
| | - Alan Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02215 USA
| | - Mamuka Kvaratskhelia
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, 496 W. 12th Ave, 508 Riffe Building, Columbus, OH 43210 USA
| |
Collapse
|
103
|
Abstract
UNLABELLED Genetic robustness (tolerance of mutation) may be a naturally selected property in some viruses, because it should enhance adaptability. Robustness should be especially beneficial to viruses like HIV-1 that exhibit high mutation rates and exist in immunologically hostile environments. Surprisingly, however, the HIV-1 capsid protein (CA) exhibits extreme fragility. To determine whether fragility is a general property of HIV-1 proteins, we created a large library of random, single-amino-acid mutants in HIV-1 integrase (IN), covering >40% of amino acid positions. Despite similar degrees of sequence variation in naturally occurring IN and CA sequences, we found that HIV-1 IN was significantly more robust than CA, with random nonsilent IN mutations only half as likely to cause lethal defects. Interestingly, IN and CA were similar in that a subset of mutations with high in vitro fitness were rare in natural populations. IN mutations of this type were more likely to occur in the buried interior of the modeled HIV-1 intasome, suggesting that even very subtle fitness effects suppress variation in natural HIV-1 populations. Lethal mutations, in particular those that perturbed particle production, proteolytic processing, and particle-associated IN levels, were strikingly localized at specific IN subunit interfaces. This observation strongly suggests that binding interactions between particular IN subunits regulate proteolysis during HIV-1 virion morphogenesis. Overall, use of the IN mutant library in conjunction with structural models demonstrates the overall robustness of IN and highlights particular regions of vulnerability that may be targeted in therapeutic interventions. IMPORTANCE The HIV-1 integrase (IN) protein is responsible for the integration of the viral genome into the host cell chromosome. To measure the capacity of IN to maintain function in the face of mutation, and to probe structure/function relationships, we created a library of random single-amino-acid IN mutations that could mimic the types of mutations that naturally occur during HIV-1 infection. Previously, we measured the robustness of HIV-1 capsid in this manner and determined that it is extremely intolerant of mutation. In contrast to CA, HIV-1 IN proved relatively robust, with far fewer mutations causing lethal defects. However, when we subsequently mapped the lethal mutations onto a model of the structure of the multisubunit IN-viral DNA complex, we found the lethal mutations that caused virus morphogenesis defects tended to be highly localized at subunit interfaces. This discovery of vulnerable regions of HIV-1 IN could inform development of novel therapeutics.
Collapse
|
104
|
Shkriabai N, Dharmarajan V, Slaughter A, Kessl JJ, Larue RC, Feng L, Fuchs JR, Griffin PR, Kvaratskhelia M. A critical role of the C-terminal segment for allosteric inhibitor-induced aberrant multimerization of HIV-1 integrase. J Biol Chem 2014; 289:26430-26440. [PMID: 25118283 DOI: 10.1074/jbc.m114.589572] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are a promising class of antiretroviral agents for clinical development. Although ALLINIs promote aberrant IN multimerization and inhibit IN interaction with its cellular cofactor LEDGF/p75 with comparable potencies in vitro, their primary mechanism of action in infected cells is through inducing aberrant multimerization of IN. Crystal structures have shown that ALLINIs bind at the IN catalytic core domain dimer interface and bridge two interacting subunits. However, how these interactions promote higher-order protein multimerization is not clear. Here, we used mass spectrometry-based protein footprinting to monitor surface topology changes in full-length WT and the drug-resistant A128T mutant INs in the presence of ALLINI-2. These experiments have identified protein-protein interactions that extend beyond the direct inhibitor binding site and which lead to aberrant multimerization of WT but not A128T IN. Specifically, we demonstrate that C-terminal residues Lys-264 and Lys-266 play an important role in the inhibitor induced aberrant multimerization of the WT protein. Our findings provide structural clues for exploiting IN multimerization as a new, attractive therapeutic target and are expected to facilitate development of improved inhibitors.
Collapse
Affiliation(s)
- Nikoloz Shkriabai
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | | | - Alison Slaughter
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Jacques J Kessl
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Ross C Larue
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Lei Feng
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Patrick R Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, and
| | - Mamuka Kvaratskhelia
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, Ohio 43210,.
| |
Collapse
|