101
|
Chao XD, Ma YH, Luo P, Cao L, Lau WB, Zhao BC, Han F, Liu W, Ning WD, Su N, Zhang L, Zhu J, Fei Z, Qu Y. Up-regulation of heme oxygenase-1 attenuates brain damage after cerebral ischemia via simultaneous inhibition of superoxide production and preservation of NO bioavailability. Exp Neurol 2012; 239:163-9. [PMID: 23059458 DOI: 10.1016/j.expneurol.2012.09.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/18/2012] [Accepted: 09/27/2012] [Indexed: 11/29/2022]
Abstract
Cerebral ischemia exacerbates neuronal death and neurological dysfunction. Evidence supports the involvement of oxidative/nitrative stress in the pathophysiology of cerebral ischemia. Heme oxygenase-1 (HO-1) is a rate-limiting enzyme in heme catabolism, possessing potent anti-oxidant and anti-apoptosis effects. In transgenic mice, HO-1 overproduction is neuroprotective against cerebral ischemia injury, but by unclear mechanisms. The present study determined whether treatment with adenoviral vector overexpressing HO-1 (Ad-HO-1) attenuates post-ischemic brain damage via reduction of oxidative/nitrative stress. After focal cerebral ischemia, Ad-HO-1 reduced lipid peroxidation and protein nitration, decreased infarct volume, and attenuated neurologic deficits. Zinc protoporphyrin IX (ZnPP IX, a specific HO-1 inhibitor) blocked Ad-HO-1 mediated effects against ischemic brain damage. Although Ad-HO-1 slightly reduced ischemic brain NO concentrations, Ad-HO-1 treatment significantly inhibited cerebral expression of iNOS protein expression, without significant effect upon nNOS or eNOS expression compared to vehicle after focal cerebral ischemia. Ad-HO-1 preserved NO bioavailability by increasing eNOS phosphorylation during ischemia compared to vehicle. Together, our results suggest that Ad-HO-1 attenuates post-ischemic brain damage via simultaneous reduction of oxidative/nitrative stress and preservation of NO bioavailability.
Collapse
Affiliation(s)
- Xiaodong D Chao
- The Department of Neurosurgery, Xinjiang Military General Hospital, Urumqi, 830000, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Gan Y, Ji X, Hu X, Luo Y, Zhang L, Li P, Liu X, Yan F, Vosler P, Gao Y, Stetler RA, Chen J. Transgenic overexpression of peroxiredoxin-2 attenuates ischemic neuronal injury via suppression of a redox-sensitive pro-death signaling pathway. Antioxid Redox Signal 2012; 17:719-32. [PMID: 22356734 PMCID: PMC3387778 DOI: 10.1089/ars.2011.4298] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AIMS Peroxiredoxins (PRXs) are a newly characterized family of peroxide scavenging enzymes that not only help maintain cellular redox homeostasis but also may directly engage in a variety of intracellular signaling pathways. PRX2 is a neuronal-specific PRX believed to participate in cerebral antioxidant responses in several neurodegenerative diseases. This study investigates the potential neuroprotective effect and the underlying mechanism of PRX2 in models of ischemic neuronal injury. RESULTS Transgenic mice overexpressing PRX2 showed reduced brain injury and improved neurological recovery up to 3 weeks after transient focal cerebral ischemia compared to wild-type littermates. In primary cultures of cortical neurons, transfection of PRX2 but not the loss-of-catalytic-site PRX2 mutant conferred neuroprotection against cell death induced by oxygen glucose deprivation. PRX2 exhibited potent pro-survival effects in ischemic neurons by maintaining thioredoxin (Trx) in its reduced state, thereby preventing oxidative stress-mediated activation of apoptosis signal-regulating kinase 1 (ASK1) and the downstream MKK/JNK pro-death signaling pathway. PRX2 failed to provide additional neuroprotection against ischemic injury in Trx- or ASK1-knockdown neuron cultures and in mice treated with a JNK inhibitor. INNOVATION This study provides evidence that neuronal overexpression of PRX2 confers prolonged neuroprotection against ischemic/reperfusion brain injury. Moreover, the results suggest a signaling pathway by which PRX2 suppresses ischemia-induced neuronal apoptosis. CONCLUSIONS Enhanced neuronal expression and activity of PRX2 protect against ischemic neuronal injury by directly modulating the redox-sensitive Trx-ASK1 signaling complex.
Collapse
Affiliation(s)
- Yu Gan
- Department of Neurosurgery and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Dal-Cim T, Molz S, Egea J, Parada E, Romero A, Budni J, Martín de Saavedra MD, Barrio LD, Tasca CI, López MG. Guanosine protects human neuroblastoma SH-SY5Y cells against mitochondrial oxidative stress by inducing heme oxigenase-1 via PI3K/Akt/GSK-3β pathway. Neurochem Int 2012; 61:397-404. [DOI: 10.1016/j.neuint.2012.05.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 05/17/2012] [Accepted: 05/23/2012] [Indexed: 12/20/2022]
|
104
|
Yu Z, Liu N, Liu J, Yang K, Wang X. Neuroglobin, a novel target for endogenous neuroprotection against stroke and neurodegenerative disorders. Int J Mol Sci 2012; 13:6995-7014. [PMID: 22837676 PMCID: PMC3397508 DOI: 10.3390/ijms13066995] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 05/25/2012] [Accepted: 05/31/2012] [Indexed: 11/16/2022] Open
Abstract
Brain neurons and tissues respond to sublethal injury by activating endogenous protective pathways. Recently, following the failure of a large number of clinical trials for protective strategies against stroke that aim to inhibit a specific ischemia response pathway, endogenous neuroprotection has emerged as a more promising and hopeful strategy for development of therapeutics against stroke and neurodegenerative disorders. Neuroglobin (Ngb) is an oxygen-binding globin protein that is highly and specifically expressed in brain neurons. Accumulating evidence have clearly demonstrated that Ngb is an endogenous neuroprotective molecule against hypoxic/ischemic and oxidative stress-related insults in cultured neurons and animals, as well as neurodegenerative disorders such as Alzheimer’s disease, thus any pharmacological strategy that can up-regulate endogenous Ngb expression may lead to novel therapeutics against these brain disorders. In this review, we summarize recent studies about the biological function, regulation of gene expression, and neuroprotective mechanisms of Ngb. Furthermore, strategies for identification of chemical compounds that can up-regulate endogenous Ngb expression for neuroprotection against stroke and neurodegenerative disorders are discussed.
Collapse
Affiliation(s)
- Zhanyang Yu
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Room 2401/2411A, 149 13th Street, Charlestown Boston, MA 02129, USA; E-Mails: (N.L.); (K.Y.)
- Authors to whom correspondence should be addressed; E-Mails: (Z.Y.); (X.W.); Tel.: +1-617-724-9503 (Z.Y.); +1-617-724-9513 (X.W.); Fax: +1-617-726-7830 (Z.Y.); +1-617-726-7830 (X.W.)
| | - Ning Liu
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Room 2401/2411A, 149 13th Street, Charlestown Boston, MA 02129, USA; E-Mails: (N.L.); (K.Y.)
| | - Jianxiang Liu
- National Institute for Radiological Protection, China Center for Disease Control and Prevention, Beijing 100088, China; E-Mail:
| | - Kevin Yang
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Room 2401/2411A, 149 13th Street, Charlestown Boston, MA 02129, USA; E-Mails: (N.L.); (K.Y.)
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Room 2401/2411A, 149 13th Street, Charlestown Boston, MA 02129, USA; E-Mails: (N.L.); (K.Y.)
- Authors to whom correspondence should be addressed; E-Mails: (Z.Y.); (X.W.); Tel.: +1-617-724-9503 (Z.Y.); +1-617-724-9513 (X.W.); Fax: +1-617-726-7830 (Z.Y.); +1-617-726-7830 (X.W.)
| |
Collapse
|
105
|
Ma Y, Su N, Chao X, Zhang Y, Zhang L, Han F, Luo P, Fei Z, Qu Y. Thioredoxin-1 attenuates post-ischemic neuronal apoptosis via reducing oxidative/nitrative stress. Neurochem Int 2012; 60:475-83. [DOI: 10.1016/j.neuint.2012.01.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/13/2012] [Accepted: 01/27/2012] [Indexed: 10/14/2022]
|
106
|
Xu M, Yang L, Hong LZ, Zhao XY, Zhang HL. Direct protection of neurons and astrocytes by matrine via inhibition of the NF-κB signaling pathway contributes to neuroprotection against focal cerebral ischemia. Brain Res 2012; 1454:48-64. [PMID: 22503072 DOI: 10.1016/j.brainres.2012.03.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 03/05/2012] [Accepted: 03/08/2012] [Indexed: 02/02/2023]
Abstract
Matrine (Mat) and oxymatrine are two major alkaloids of the Chinese herb Sophora flavescens Ait. (Leguminosae). Previous study has demonstrated that Mat reduces brain edema induced by focal cerebral ischemia. More recently, oxymatrine has been reported to produce neuroprotective effects against focal cerebral ischemia via inhibiting the activation of NF-κB in the ischemic brain tissue. In the current study, we investigated whether direct protection on neurons and astrocytes via inhibition of NF-κB signaling pathway is associated with Mat's neuroprotective effects against cerebral ischemia. In a model of permanent middle cerebral artery occlusion (pMCAO), Mat (12.5, 25 and 50 mg/kg) reduced the infarction volume and improved the neurological deficits in a dose-dependent manner, administered 10 min, 3h and even 6h following pMCAO. Mat 50 mg/kg also decreased the hemispheric water content. The number of GFAP-positive cells was markedly decreased in the ischemic cortex at 12h after ischemia. In contrast, Mat increased the number of GFAP-positive cells. Mat 50mg/kg has no effect on the cerebral blood flow (CBF). Primary neuron or astrocyte cultures were exposed to a paradigm of ischemic insult by using an oxygen-glucose deprivation (OGD), Mat (50-200 μM) reduced LDH leakage and the number of neuronal and astrocytic apoptosis, and increased the number of MAP2-positive and GFAP-positive cells. Further observations revealed that Mat increased the protein levels of IκBα, and blocked the translocation of NF-κB p65 from the cytosol to the nucleus in the ischemic cortex and injured neurons and astrocytes induced by in vitro OGD. Moreover, Mat could down-regulate NF-κB p65 downstream pro-apoptotic gene p53 and/or c-Myc in the injured neurons and astrocytes induced by OGD. The present findings suggest that Mat, even when administrated 6h after ischemia, has neuroprotective effects against focal cerebral ischemia and directly protects neurons and astrocytes via inhibition of NF-κB signaling pathway, contributing to matrine's neuroprotection against focal cerebral ischemia.
Collapse
Affiliation(s)
- Min Xu
- Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | | | | | | | | |
Collapse
|
107
|
Ramalingam M, Kim SJ. Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases. J Neural Transm (Vienna) 2012; 119:891-910. [PMID: 22212484 DOI: 10.1007/s00702-011-0758-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 12/20/2011] [Indexed: 12/11/2022]
Abstract
The continuous production and efflux of reactive oxygen/nitrogen species from endogenous and exogenous sources can damage biological molecules and initiate a cascade of events. Mitochondria are pivotal in controlling cell survival and death. Cumulative oxidative stress, disrupted mitochondrial respiration, and mitochondrial damage are related with various neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and others. Biochemical cascades of apoptosis are mediated in signaling molecules, including protein kinases and transcription factors. The expressions in the pro-apoptotic signal transduction networks may indeed promote cell death and degeneration in brain cells. The regulation of that protein phosphorylation by kinases and phosphatases is emerging as a prerequisite mechanism in the control of the apoptotic cell death program. In this review, we attempt to put forth the evidence for possible mechanistic explanations for involvement of free radicals in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mahesh Ramalingam
- Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University, #1 Hoegi-dong, Dongdaemun-gu, Seoul, Republic of Korea
| | | |
Collapse
|
108
|
Neuroglobin: A Novel Target for Endogenous Neuroprotection. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
109
|
Talbot JD, David G, Barrett EF, Barrett JN. Calcium dependence of damage to mouse motor nerve terminals following oxygen/glucose deprivation. Exp Neurol 2011; 234:95-104. [PMID: 22206924 DOI: 10.1016/j.expneurol.2011.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 12/06/2011] [Accepted: 12/11/2011] [Indexed: 11/28/2022]
Abstract
Motor nerve terminals are especially sensitive to an ischemia/reperfusion stress. We applied an in vitro model of this stress, oxygen/glucose deprivation (OGD), to mouse neuromuscular preparations to investigate how Ca(2+) contributes to stress-induced motor terminal damage. Measurements using an ionophoretically-injected fluorescent [Ca(2+)] indicator demonstrated an increase in intra-terminal [Ca(2+)] following OGD onset. When OGD was terminated within 20-30min of the increase in resting [Ca(2+)], these changes were sometimes reversible; in other cases [Ca(2+)] remained high and the terminal degenerated. Endplate innervation was assessed morphometrically following 22min OGD and 120min reoxygenation (32.5°C). Stress-induced motor terminal degeneration was Ca(2+)-dependent. Median post-stress endplate occupancy was only 26% when the bath contained the normal 1.8mM Ca(2+), but increased to 81% when Ca(2+) was absent. Removal of Ca(2+) only during OGD was more protective than removal of Ca(2+) only during reoxygenation. Post-stress endplate occupancy was partially preserved by pharmacological inhibition of various routes of Ca(2+) entry into motor terminals, including voltage-dependent Ca(2+) channels (ω-agatoxin-IVA, nimodipine) and the plasma membrane Na(+)/Ca(2+) exchanger (KB-R7943). Inhibition of a Ca(2+)-dependent protease with calpain inhibitor VI was also protective. These results suggest that most of the OGD-induced motor terminal damage is Ca(2+)-dependent, and that inhibition of Ca(2+) entry or Ca(2+)-dependent proteolysis can reduce this damage. There was no significant difference between the response of wild-type and presymptomatic superoxide dismutase 1 G93A mutant terminals to OGD, or in their response to the protective effect of the tested drugs.
Collapse
Affiliation(s)
- Janet D Talbot
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, P.O. Box 016430, Miami, FL 33101, USA.
| | | | | | | |
Collapse
|
110
|
Hata M, Kobayashi K, Yoshino F, Yoshida A, Sugiyama S, Miyamoto C, Tokutomi F, Maehata Y, Wada-Takahashi S, Takahashi SS, Komatsu T, Yoshida KI, Lee MCI. Direct assessment of the antioxidant properties of midazolam by electron spin resonance spectroscopy. J Anesth 2011; 25:765-9. [PMID: 21688076 DOI: 10.1007/s00540-011-1184-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 05/30/2011] [Indexed: 12/01/2022]
Abstract
Some antioxidant anesthetics directly inhibit lipid peroxidation mediated via the generation of reactive oxygen species (ROS). To date, the scavenging effects of midazolam on ROS have not been directly assessed. We investigated the inhibitory effect of midazolam on ROS [hydroxyl radical (HO(·)) and superoxide (O (2) (·-) )] by in vitro X-band electron spin resonance with the spin-trapping agent 5,5-dimethyl-1-pyrroline-N-oxide. Our results indicated that HO(·) and O (2) (·-) were not affected by midazolam at clinically relevant concentrations, but were directly scavenged by midazolam at high concentrations (i.e., >4.6 and >1.5 mM, respectively).
Collapse
Affiliation(s)
- Mitsuuru Hata
- Division of Pharmacology and ESR Laboratories, Department of Clinical Care Medicine, Kanagawa Dental College, 82 Inaoka-cho, Yokosuka, Kanagawa, 238-8580, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Kilbaugh TJ, Bhandare S, Lorom DH, Saraswati M, Robertson CL, Margulies SS. Cyclosporin A preserves mitochondrial function after traumatic brain injury in the immature rat and piglet. J Neurotrauma 2011; 28:763-74. [PMID: 21250918 DOI: 10.1089/neu.2010.1635] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cyclosporin A (CsA) has been shown to be neuroprotective in mature animal models of traumatic brain injury (TBI), but its effects on immature animal models of TBI are unknown. In mature animal models, CsA inhibits the opening of the mitochondrial permeability transition pore (MPTP), thereby maintaining mitochondrial homeostasis following injury by inhibiting calcium influx and preserving mitochondrial membrane potential. The aim of the present study was to evaluate CsA's ability to preserve mitochondrial bioenergetic function following TBI (as measured by mitochondrial respiration and cerebral microdialysis), in two immature models (focal and diffuse), and in two different species (rat and piglet). Three groups were studied: injured+CsA, injured+saline vehicle, and uninjured shams. In addition, we evaluated CsA's effects on cerebral hemodynamics as measured by a novel thermal diffusion probe. The results demonstrate that post-injury administration of CsA ameliorates mitochondrial dysfunction, preserves cerebral blood flow (CBF), and limits neuropathology in immature animals 24 h post-TBI. Mitochondria were isolated 24 h after controlled cortical impact (CCI) in rats and rapid non-impact rotational injury (RNR) in piglets, and CsA ameliorated cerebral bioenergetic crisis with preservation of the respiratory control ratio (RCR) to sham levels. Results were more dramatic in RNR piglets than in CCI rats. In piglets, CsA also preserved lactate pyruvate ratios (LPR), as measured by cerebral microdialysis and CBF at sham levels 24 h after injury, in contrast to the significant alterations seen in injured piglets compared to shams (p<0.01). The administration of CsA to piglets following RNR promoted a 42% decrease in injured brain volume (p<0.01). We conclude that CsA exhibits significant neuroprotective activity in immature models of focal and diffuse TBI, and has exciting translational potential as a therapeutic agent for neuroprotection in children.
Collapse
Affiliation(s)
- Todd J Kilbaugh
- University of Pennsylvania School of Medicine, Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
112
|
Anti-inflammatory mechanism of taurine against ischemic stroke is related to down-regulation of PARP and NF-κB. Amino Acids 2011; 42:1735-47. [PMID: 21409386 DOI: 10.1007/s00726-011-0885-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 03/05/2011] [Indexed: 10/18/2022]
Abstract
Taurine is reported to reduce tissue damage induced by inflammation and to protect the brain against experimental stroke. The objective of this study was to investigate whether taurine reduced ischemic brain damage through suppressing inflammation related to poly (ADP-ribose) polymerase (PARP) and nuclear factor-kappaB (NF-κB) in a rat model of stroke. Rats received 2 h ischemia by intraluminal filament and were then reperfused. Taurine (50 mg/kg) was administered intravenously 1 h after ischemia. Treatment with taurine markedly reduced neurological deficits, lessened brain swelling, attenuated cell death, and decreased the infarct volume 72 h after ischemia. Our data showed the up-regulation of PARP and NF-κB p65 in cytosolic fractions in the core and nuclear fractions in the penumbra and core, and the increases in the nuclear poly (ADP-ribose) levels and the decreases in the intracellular NAD+ levels in the penumbra and core at 22 h of reperfusion; these changes were reversed by taurine. Moreover, taurine significantly reduced the levels of tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase, and intracellular adhesion molecule-1, lessened the activities of myeloperoxidase and attenuated the infiltration of neutrophils in the penumbra and core at 22 h of reperfusion. These data demonstrate that suppressing the inflammatory reaction related to PARP and NF-κB-driven expression of inflammatory mediators may be one mechanism of taurine against ischemic stroke.
Collapse
|
113
|
Normoxic versus hyperoxic resuscitation in pediatric asphyxial cardiac arrest: effects on oxidative stress. Crit Care Med 2011; 39:335-43. [PMID: 21057313 DOI: 10.1097/ccm.0b013e3181ffda0e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To determine the effects of normoxic vs. hyperoxic resuscitation on oxidative stress in a model of pediatric asphyxial cardiac arrest. DESIGN Prospective, interventional study. SETTING University research laboratory. SUBJECTS Postnatal day 16-18 rats (n = 5 per group). INTERVENTIONS Rats underwent asphyxial cardiac arrest for 9 min. Rats were randomized to receive 100% oxygen, room air, or 100% oxygen with polynitroxyl albumin (10 mL·kg⁻¹ intravenously, 0 and 30 min after resuscitation) for 1 hr from the start of cardiopulmonary resuscitation. Shams recovered in 100% oxygen or room air after surgery. MEASUREMENTS AND MAIN RESULTS Physiological variables were recorded at baseline to 1 hr after resuscitation. At 6 hrs after asphyxial cardiac arrest, levels of reduced glutathione and protein-thiols (fluorescent assay), activities of total superoxide dismutase and mitochondrial manganese superoxide dismutase (cytochrome c reduction method), manganese superoxide dismutase expression (Western blot), and lipid peroxidation (4-hydroxynonenal Michael adducts) were evaluated in brain tissue homogenates. Hippocampal 3-nitrotyrosine levels were determined by immunohistochemistry 72 hrs after asphyxial cardiac arrest. Survival did not differ among groups. At 1 hr after resuscitation, Pao2, pH, and mean arterial pressure were decreased in room air vs. 100% oxygen rats (59 ± 3 vs. 465 ± 46 mm Hg, 7.36 ± 0.05 vs. 7.42 ± 0.03, 35 ± 4 vs. 45 ± 5 mm Hg; p < .05). Rats resuscitated with 100% oxygen had decreased hippocampal reduced glutathione levels vs. sham (15.3 ± 0.4 vs. 20.9 ± 4.1 nmol·mg protein⁻¹; p < .01). Hippocampal manganese superoxide dismutase activity was significantly increased in 100% oxygen rats vs. sham (14 ± 2.4 vs. 9.5 ± 1.6 units·mg protein⁻¹, p < .01), with no difference in protein expression of manganese superoxide dismutase. Room air and 100% oxygen plus polynitroxyl albumin groups had hippocampal reduced glutathione and manganese superoxide dismutase activity levels comparable with sham. Protein thiol levels were unchanged across groups. Compared with all other groups, rats receiving 100% oxygen had increased immunopositivity for 3-nitrotyrosine in the hippocampus and increased lipid peroxidation in the cortex. CONCLUSIONS Resuscitation with 100% oxygen leads to increased oxidative stress in a model that mimics pediatric cardiac arrest. This may be prevented by using room air or giving an antioxidant with 100% oxygen resuscitation.
Collapse
|
114
|
Shi LL, Chen BN, Gao M, Zhang HA, Li YJ, Wang L, Du GH. The characteristics of therapeutic effect of pinocembrin in transient global brain ischemia/reperfusion rats. Life Sci 2011; 88:521-8. [DOI: 10.1016/j.lfs.2011.01.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 11/18/2010] [Accepted: 12/30/2010] [Indexed: 01/15/2023]
|
115
|
Genovese T, Mazzon E, Paterniti I, Esposito E, Bramanti P, Cuzzocrea S. Modulation of NADPH oxidase activation in cerebral ischemia/reperfusion injury in rats. Brain Res 2010; 1372:92-102. [PMID: 21138737 DOI: 10.1016/j.brainres.2010.11.088] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/19/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022]
Abstract
NADPH oxidase is a major complex that produces reactive oxygen species (ROSs) during the ischemic period and aggravates brain damage and cell death after ischemic injury. Although many approaches have been tested for preventing production of ROSs by NADPH oxidase in ischemic brain injury, the regulatory mechanisms of NADPH oxidase activity after cerebral ischemia are still unclear. The aim of this study is identifying apocynin as a critical modulator of NADPH oxidase and elucidating its role as a neuroprotectant in an experimental model of brain ischemia in rat. Treatment of apocynin 5min before of reperfusion attenuated cerebral ischemia in rats. Administration of apocynin showed marked reduction in infarct size compared with that of control rats. Medial carotid artery occlusion (MCAo)-induced cerebral ischemia was also associated with an increase in, nitrotyrosine formation, as well as IL-1β expression, IκB degradation and ICAM expression in ischemic regions. These expressions were markedly inhibited by the treatment of apocynin. We also demonstrated that apocynin reduces levels of apoptosis (TUNEL, Bax and Bcl-2 expression) resulting in a reduction in the infarct volume in ischemia-reperfusion brain injury. This new understanding of apocynin induced adaptation to ischemic stress and inflammation could suggest novel avenues for clinical intervention during ischemic and inflammatory diseases.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy
| | | | | | | | | | | |
Collapse
|
116
|
Iron overload triggers redox-sensitive signals in human IMR-32 neuroblastoma cells. Neurotoxicology 2010; 32:75-82. [PMID: 21130806 DOI: 10.1016/j.neuro.2010.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 11/25/2010] [Accepted: 11/25/2010] [Indexed: 12/28/2022]
Abstract
Excessive neuronal iron has been proposed to contribute to the pathology of several neurodegenerative diseases including Alzheimer's and Parkinson's diseases. This work characterized human neuroblastoma IMR-32 cells exposure to ferric ammonium citrate (FAC) as a model of neuronal iron overload and neurodegeneration. The consequences of FAC treatment on neuronal oxidative stress and on the modulation of the oxidant-sensitive transcription factors AP-1 and NF-κB were investigated. Incubation with FAC (150μM) resulted in a time (3-72h)-dependent increase in cellular iron content, and was associated with cell oxidant increase. FAC caused a time-dependent (3-48h) increase in nuclear AP-1- and NF-κB-DNA binding. This was associated with the upstream activation of the mitogen activated kinases ERK1/2, p38 and JNK and of IκBα phosphorylation and degradation. After 72h incubation with FAC, cell viability was 40% lower than in controls. Iron overload caused apoptotic cell death. After 48-72h of incubation with FAC, caspase 3 activity was increased, and chromatin condensation and nuclear fragmentation were observed. In summary, the exposure of IMR-32 cells to FAC is associated with increased oxidant cell levels, activation of redox-sensitive signals, and apoptosis.
Collapse
|
117
|
Uchida H, Fujita Y, Matsueda M, Umeda M, Matsuda S, Kato H, Kasahara J, Araki T. Damage to neurons and oligodendrocytes in the hippocampal CA1 sector after transient focal ischemia in rats. Cell Mol Neurobiol 2010; 30:1125-34. [PMID: 20625811 DOI: 10.1007/s10571-010-9545-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
Abstract
Focal brain lesions such as transient focal cerebral ischemia can lead to neuronal damage in remote areas, including the ipsilateral substantia nigra and hippocampus, as well as in the ischemic core. In this study, we investigated acute changes in the ipsilateral hippocampus from 1 up to 7 days after 90 min of transient focal cerebral ischemia in rats, using anti-NeuN (neuronal nuclei), anti-Cu/Zn-superoxide dismutase (Cu/Zn-SOD), anti-Mn-SOD, anti-neuronal nitric oxide synthase (nNOS), anti-inducible NOS (iNOS), anti-glial fibrillary acidic protein (GFAP), anti-ionized calcium-binding adaptor molecule 1(Iba 1) and anti-2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) antibodies. In our western blot and histochemical analyses, present results show that transient focal cerebral ischemia in rats can cause a severe and acute damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector. The present findings also demonstrate that the expression of iNOS produced by Iba 1-immunopositive microglia precedes the damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector after transient focal cerebral ischemia. In contrast, our results suggest that increased reactive oxygen species (ROS) production during reperfusion cannot lead to damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector after transient focal cerebral ischemia, because of an insufficient expression of Cu/Zn-SOD and Mn-SOD. Our double-labeled immunohistochemical study demonstrates that the overexpression of iNOS produced by Iba 1-immunopositive microglia may play a pivotal role in the damage of neurons and oligodendrocytes in the ipsilateral hippocampal CA1 sector at an acute stage after transient focal cerebral ischemia.
Collapse
Affiliation(s)
- Hiroto Uchida
- Department of Neurobiology and Therapeutics, Institute of Health Biosciences, The University of Tokushima Graduate School, Sho-machi, Tokushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Turkkan A, Alkan T, Goren B, Kocaeli H, Akar E, Korfali E. Citicoline and postconditioning provides neuroprotection in a rat model of ischemic spinal cord injury. Acta Neurochir (Wien) 2010; 152:1033-42. [PMID: 20112033 DOI: 10.1007/s00701-010-0598-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 01/05/2010] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ischemic spinal cord injury is a chain of events caused by the reduction and/or cessation of spinal cord blood flow, which results in neuronal degeneration and loss. Ischemic postconditioning is defined as a series of intermittent interruptions of blood flow in the early phase of reperfusion and has been shown to reduce the infarct size in cerebral ischemia. Our study aimed to characterize the relationship between the neuronal injury-decreasing effects of citicoline and ischemic postconditioning, which were proven to be effective against the apoptotic process. METHOD Spinal cord ischemia was produced in rats using an intrathoracic approach to implement the synchronous arcus aorta and subclavian artery clipping method. In our study, 42 male Sprague-Dawley rats (309 +/- 27 g) were used. Animals were divided into sham operated, spinal ischemia, citicoline, postconditioning, and postconditioning citicoline groups. Postconditioning was generated by six cycles of 1 min occlusion/5 min reperfusion. A 600 mmol/kg dose of citicoline was given intraperitoneally before ischemia in the citicoline and postconditioning citicoline groups. All rats were sacrificed 96 h after reperfusion. For immunohistochemical analysis, bcl-2, caspase 3, caspase 9, and bax immune staining were performed. Caspase 3, caspase 9, bax, and bcl-2 were used as apoptotic and antiapoptotic markers, respectively. FINDINGS The blood pressure values obtained at the onset of reperfusion were significantly lower than the preischemic values. A difference in immunohistochemical scoring was detected between the caspase 3, caspase 9, bax, and bcl-2 groups. When comparisons between the ischemia (groups 2, 3, 4, and 5) and sham groups (group 1) were performed, a significant increase in caspase 3, caspase 9, bax, and bcl-2 was detected. When comparing the subgroups, the average score of caspase 9 was found to be significantly higher in ischemia group 2. The average score of bcl-2 was also found to be significantly higher in postconditioning and citicoline group 5. CONCLUSIONS It is thus thought that combining citicoline with postconditioning provides protection by inhibiting the caspase pathway and by increasing the antiapoptotic proteins.
Collapse
|
119
|
Jung JE, Kim GS, Chen H, Maier CM, Narasimhan P, Song YS, Niizuma K, Katsu M, Okami N, Yoshioka H, Sakata H, Goeders CE, Chan PH. Reperfusion and neurovascular dysfunction in stroke: from basic mechanisms to potential strategies for neuroprotection. Mol Neurobiol 2010; 41:172-9. [PMID: 20157789 DOI: 10.1007/s12035-010-8102-z] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 01/11/2010] [Indexed: 12/11/2022]
Abstract
Effective stroke therapies require recanalization of occluded cerebral blood vessels. However, reperfusion can cause neurovascular injury, leading to cerebral edema, brain hemorrhage, and neuronal death by apoptosis/necrosis. These complications, which result from excess production of reactive oxygen species in mitochondria, significantly limit the benefits of stroke therapies. We have developed a focal stroke model using mice deficient in mitochondrial manganese-superoxide dismutase (SOD2-/+) to investigate neurovascular endothelial damage that occurs during reperfusion. Following focal stroke and reperfusion, SOD2-/+ mice had delayed blood-brain barrier breakdown, associated with activation of matrix metalloproteinase and high brain hemorrhage rates, whereas a decrease in apoptosis and hemorrhage was observed in SOD2 overexpressors. Thus, induction and activation of SOD2 is a novel strategy for neurovascular protection after ischemia/reperfusion. Our recent study identified the signal transducer and activator of transcription 3 (STAT3) as a transcription factor of the mouse SOD2 gene. During reperfusion, activation of STAT3 and its recruitment into the SOD2 gene were blocked, resulting in increased oxidative stress and neuronal apoptosis. In contrast, pharmacological activation of STAT3 induced SOD2 expression, which limits ischemic neuronal death. Our studies point to antioxidant-based neurovascular protective strategies as potential treatments to expand the therapeutic window of currently approved therapies.
Collapse
Affiliation(s)
- Joo Eun Jung
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305-5487, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Kim GS, Jung JE, Niizuma K, Chan PH. CK2 is a novel negative regulator of NADPH oxidase and a neuroprotectant in mice after cerebral ischemia. J Neurosci 2009; 29:14779-89. [PMID: 19940173 PMCID: PMC2786083 DOI: 10.1523/jneurosci.4161-09.2009] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/06/2009] [Accepted: 10/09/2009] [Indexed: 02/08/2023] Open
Abstract
NADPH oxidase is a major complex that produces reactive oxygen species (ROSs) during the ischemic period and aggravates brain damage and cell death after ischemic injury. Although many approaches have been tested for preventing production of ROSs by NADPH oxidase in ischemic brain injury, the regulatory mechanisms of NADPH oxidase activity after cerebral ischemia are still unclear. In this study, we identified casein kinase 2 (CK2) as a critical modulator of NADPH oxidase and elucidated the role of CK2 as a neuroprotectant after oxidative insults to the brain. We found that the protein levels of the catalytic subunits CK2alpha and CK2alpha', as well as the total activity of CK2, are significantly reduced after transient focal cerebral ischemia (tFCI). We also found this deactivation of CK2 caused by ischemia/reperfusion increases expression of Nox2 and translocation of p67(phox) and Rac1 to the membrane after tFCI. Interestingly, we found that the inactive status of Rac1 was captured by the catalytic subunit CK2alpha under normal conditions. However, binding between CK2alpha and Rac1 was immediately diminished after tFCI, and Rac1 activity was markedly increased after CK2 inhibition. Moreover, we found that deactivation of CK2 in the mouse brain enhances production of ROSs and neuronal cell death via increased NADPH oxidase activity. The increased brain infarct volume caused by CK2 inhibition was restored by apocynin, a NADPH oxidase inhibitor. This study suggests that CK2 can be a direct molecular target for modulation of NADPH oxidase activity after ischemic brain injury.
Collapse
Affiliation(s)
- Gab Seok Kim
- Departments of Neurosurgery and
- Neurology and Neurological Sciences, and
- Program in Neurosciences, Stanford University School of Medicine, Stanford, California 94305
| | - Joo Eun Jung
- Departments of Neurosurgery and
- Neurology and Neurological Sciences, and
- Program in Neurosciences, Stanford University School of Medicine, Stanford, California 94305
| | - Kuniyasu Niizuma
- Departments of Neurosurgery and
- Neurology and Neurological Sciences, and
- Program in Neurosciences, Stanford University School of Medicine, Stanford, California 94305
| | - Pak H. Chan
- Departments of Neurosurgery and
- Neurology and Neurological Sciences, and
- Program in Neurosciences, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
121
|
Park SJ, Nam KW, Lee HJ, Cho EY, Koo U, Mar W. Neuroprotective effects of an alkaloid-free ethyl acetate extract from the root of Sophora flavescens Ait. against focal cerebral ischemia in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2009; 16:1042-1051. [PMID: 19427179 DOI: 10.1016/j.phymed.2009.03.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 02/03/2009] [Accepted: 03/24/2009] [Indexed: 05/27/2023]
Abstract
Large amounts of brain nitric oxide are produced over several hours after a stroke. This probably causes DNA strand nicks, nitration of cytosolic components of neurons, and ultimately neuronal death. Oxymatrine and matrine are two major alkaloids of the Chinese herb Sophora flavescens Ait. (Leguminosae); they have been demonstrated to inhibit liver injury during warm ischemia and reperfusion and to induce apoptosis, respectively, in vivo and in vitro. However, the neuroprotective efficacy of the EtOAc extract of S. flavescens (ESF) without the alkaloids has not been explored. This study investigated the inhibitory efficacy of ESF, which contain two major flavonoids kurarinone (45.5%) and sophoraflavone G (14.7%), in focal cerebral ischemia. Focal cerebral ischemia was induced using the middle cerebral artery occlusion (MCAO) method. After 1.5h of MCAO and 24h of reperfusion, the extent of neurological deficits and the infarct volume were measured in Sprague-Dawley rats. Compared with carnosine (50mg/kg), as positive control ESF (20mg/kg) significantly reduced infarct volume and neurological deficits. Treatment of human SH-SY5Y cells with sodium nitroprusside (SNP), a nitric oxide donor, decreased cell viability by causing apoptosis-like cell death. ESF significantly inhibited caspase-3-like enzyme activity and DNA fragmentation. The level of active caspase-3 was maximal 6h after SNP treatment. However, active caspase-3 and apoptosis were dose-dependently inhibited by ESF treatment. Flow cytometry analysis showed that ESF significantly inhibited cell apoptosis (p<0.05) and reduced the apoptotic index by 79.9% (p<0.01). These results indicate that ESF is neuroprotective in focal cerebral ischemia and the flavonoids in ESF might be responsible for its neuroprotective activity in rats, alone or in part.
Collapse
Affiliation(s)
- S J Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
122
|
Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci 2009; 12:1300-7. [PMID: 19734892 DOI: 10.1038/nn.2395] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 08/11/2009] [Indexed: 11/09/2022]
Abstract
Cardiac arrest victims may experience transient brain hypoperfusion leading to delayed death of hippocampal CA1 neurons and cognitive impairment. We prevented this in adult rats by inhibiting the expression of transient receptor potential melastatin 7 (TRPM7), a transient receptor potential channel that is essential for embryonic development, is necessary for cell survival and trace ion homeostasis in vitro, and whose global deletion in mice is lethal. TRPM7 was suppressed in CA1 neurons by intrahippocampal injections of viral vectors bearing shRNA specific for TRPM7. This had no ill effect on animal survival, neuronal and dendritic morphology, neuronal excitability, or synaptic plasticity, as exemplified by robust long-term potentiation (LTP). However, TRPM7 suppression made neurons resistant to ischemic death after brain ischemia and preserved neuronal morphology and function. Also, it prevented ischemia-induced deficits in LTP and preserved performance in fear-associated and spatial-navigational memory tasks. Thus, regional suppression of TRPM7 is feasible, well tolerated and inhibits delayed neuronal death in vivo.
Collapse
|
123
|
Elevation of jugular venous superoxide anion radical is associated with early inflammation, oxidative stress, and endothelial injury in forebrain ischemia–reperfusion rats. Brain Res 2009; 1292:180-90. [DOI: 10.1016/j.brainres.2009.07.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 07/13/2009] [Accepted: 07/16/2009] [Indexed: 11/23/2022]
|
124
|
Kravcukova P, Danielisova V, Nemethova M, Burda J, Gottlieb M. Transient forebrain ischemia impact on lymphocyte DNA damage, glutamic acid level, and SOD activity in blood. Cell Mol Neurobiol 2009; 29:887-94. [PMID: 19259803 DOI: 10.1007/s10571-009-9371-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 02/16/2009] [Indexed: 10/21/2022]
Abstract
AIMS Brain ischemia-reperfusion injury remains incompletely understood but appears to involve a complex series of interrelated biochemical pathways caused mainly by a burst of reactive oxygen species (ROS). In the present work we studied the impact of postischemic condition in the early phase of reperfusion on plasma and blood cells. METHODS Transient forebrain ischemia was induced in Wistar rats by four-vessel occlusion model. Blood samples collected during postischemic reperfusion 20, 40, 60, 90, and 120 min after ischemia were used for assessing breaks of lymphocyte DNA, fluorimetric measurement of whole blood glutamate concentration, and spectrophotometrical determination of SOD activity in plasma and blood cells. RESULTS Our results showed the most interesting changes of all observed parameters mainly at 40 and 120 min of reperfusion, when we observed peak DNA damage of lymphocytes and highest glutamate level and total and Cu/Zn SOD activity. At those time points, Mn SOD activity was low in plasma, as well as in blood cells. On the contrary, at 60 and 90 min, all studied parameters were approximately at the level of control. CONCLUSION Ischemia/reperfusion injury has influence on blood cells and has at least two waves of impact on DNA damage of peripheral lymphocytes, affects activity of major antioxidant enzymes SODs, as well as blood glutamic acid level. Elevation of Mn SOD activity probably plays an important role in the processes of elimination of postischemic damage in blood cells.
Collapse
Affiliation(s)
- Petra Kravcukova
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice,040 01, Slovak Republic.
| | | | | | | | | |
Collapse
|
125
|
Higgins GC, Beart PM, Nagley P. Oxidative stress triggers neuronal caspase-independent death: endonuclease G involvement in programmed cell death-type III. Cell Mol Life Sci 2009; 66:2773-87. [PMID: 19582370 PMCID: PMC11115579 DOI: 10.1007/s00018-009-0079-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 05/26/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022]
Abstract
To characterize neuronal death, primary cortical neurons (C57/Black 6 J mice) were exposed to hydrogen peroxide (H2O2) and staurosporine. Both caused cell shrinkage, nuclear condensation, DNA fragmentation and loss of plasma membrane integrity. Neither treatment induced caspase-7 activity, but caspase-3 was activated by staurosporine but not H2O2. Each treatment caused redistribution from mitochondria of both endonuclease G (Endo G) and cytochrome c. Neurons knocked down for Endo G expression using siRNA showed reduction in both nuclear condensation and DNA fragmentation after treatment with H2O2, but not staurosporine. Endo G suppression protected cells against H2O2-induced cell death, while staurosporine-induced death was merely delayed. We conclude that staurosporine induces apoptosis in these neurons, but severe oxidative stress leads to Endo G-dependent death, in the absence of caspase activation (programmed cell death-type III). Therefore, oxidative stress triggers in neurons a form of necrosis that is a systematic cellular response subject to molecular regulation.
Collapse
Affiliation(s)
- Gavin C. Higgins
- Department of Biochemistry and Molecular Biology, Monash University, Building 13D, Clayton Campus, Clayton, VIC 3800 Australia
| | - Philip M. Beart
- Florey Neuroscience Institutes and Department of Pharmacology, University of Melbourne, Parkville, VIC Australia
| | - Phillip Nagley
- Department of Biochemistry and Molecular Biology, Monash University, Building 13D, Clayton Campus, Clayton, VIC 3800 Australia
| |
Collapse
|
126
|
Panchision DM. The role of oxygen in regulating neural stem cells in development and disease. J Cell Physiol 2009; 220:562-8. [PMID: 19441077 DOI: 10.1002/jcp.21812] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxygen (O2) is a substrate for energy production in the cell and is a rapid regulator of cellular metabolism. Recent studies have also implicated O2 and its signal transduction pathways in controlling cell proliferation, fate, and morphogenesis during the development of many tissues, including the nervous system. O2 tensions in the intact brain are much lower than in room air, and there is evidence that dynamic control of O2 availability may be a component of the in vivo neural stem cell (NSC) niche. At lower O2 tensions, hypoxia-inducible factor 1alpha (HIF1alpha) facilitates signal transduction pathways that promote self-renewal (e.g., Notch) and inhibits pathways that promote NSC differentiation or apoptosis (e.g., bone morphogenetic proteins). Increasing O2 tension degrades HIF1alpha, thus promoting differentiation or apoptosis of NSCs and progenitors. These dynamic changes in O2 tension can be mimicked to optimize ex vivo production methods for cell replacement therapies. Conversely, disrupted O2 availability may play a critical role in disease states such as stroke or brain tumor progression. Hypoxia during stroke activates precursor proliferation in vivo, while glioblastoma stem cells proliferate maximally in a more hypoxic environment than normal stem cells, which may make them resistant to certain anti-neoplastic therapies. These findings suggest that O2 response is central to the normal architecture and dynamics of NSC regulation and in the etiology and treatment of brain diseases.
Collapse
Affiliation(s)
- David M Panchision
- Division of Neuroscience and Basic Behavioral Science, National Institute of Mental Health, National Institutes of Health, 6001 Executive Blvd, MSC 9641, Bethesda, MD 20892-9641, USA.
| |
Collapse
|
127
|
Schild L, Makarow P, Haroon F, Krautwald K, Keilhoff G. Distinct H2O2concentration promotes proliferation of tumour cells after transient oxygen/glucose deprivation. Free Radic Res 2009; 42:237-43. [DOI: 10.1080/10715760801902093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
128
|
Xu Y, Liachenko SM, Tang P, Chan PH. Faster recovery of cerebral perfusion in SOD1-overexpressed rats after cardiac arrest and resuscitation. Stroke 2009; 40:2512-8. [PMID: 19461023 DOI: 10.1161/strokeaha.109.548453] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Protracted hypoperfusion is one of the hallmarks of secondary cerebral derangement after cardiac arrest and resuscitation (CAR), and reactive oxygen species have been implicated in reperfusion abnormalities. METHODS Using transgenic (Tg) rats overexpressing copper zinc superoxide dismutase (SOD1), we investigated the role of this intrinsic antioxidant in the restoration of cerebral blood flow (CBF) after CAR. Nine Tg and 11 wild-type (WT) rats were subjected to a nominal 15-minute cardiac arrest, and CBF was measured using the noninvasive arterial spin labeling MRI method before and during cardiac arrest, and 0 to 2 hours and 1 to 5 days after resuscitation. RESULTS The SOD1-Tg rats showed rapid normalization of CBF 1 day after the insult, whereas CBF in WT animals remained abnormal for at least 5 days, showing a progressive increase in CBF from hypo- to hyperperfusion on postresuscitation days 1 to 5. The long-term outcome, as measured by survival time, change in body weight, and mapping of apparent diffusion coefficient (ADC) for ion/water homeostasis, was significantly better in the SOD1-Tg rats. CONCLUSIONS Our results support the notion that reactive oxygen species are at least partially responsible for microvascular reperfusion disorders.
Collapse
Affiliation(s)
- Yan Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| | | | | | | |
Collapse
|
129
|
Abstract
OBJECTIVE The objectives of this work were to update and summarize recent experimental works on neuroglobin, mainly focus on its neuroprotective effects and the mechanisms. METHODS The literature was reviewed using PubMed database, and some of the recent findings from our laboratory were included. RESULTS Neuroglobin is a recently discovered tissue globin with a high affinity for oxygen and is widely and specifically expressed in neurons of vertebrate's central and peripheral nervous systems. Investigations in the past several years have advanced our knowledge on the functions and mechanisms of neuroglobin, but many issues remain unclear. Emerging reports have shown that overexpression of neuroglobin confers neuroprotection against neuronal hypoxia or ischemia-induced damage in cultured neurons and in cerebral ischemic animal models. Accumulating findings suggest several possible neuroprotective roles and mechanisms including ligand binding and oxygen sensing, modulation of cell signaling pathways and maintenance of mitochondria function. CONCLUSION Emerging experimental works suggest that neuroglobin is neuroprotective against hypoxic/ischemic insults, probably via ligand binding and oxygen sensing, modulation of cell signaling pathways and maintenance of mitochondria function.
Collapse
Affiliation(s)
- Zhanyang Yu
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Boston, MA, USA.
| | | | | | | |
Collapse
|
130
|
Liu J, Yu Z, Guo S, Lee SR, Xing C, Zhang C, Gao Y, Nicholls DG, Lo EH, Wang X. Effects of neuroglobin overexpression on mitochondrial function and oxidative stress following hypoxia/reoxygenation in cultured neurons. J Neurosci Res 2009; 87:164-70. [PMID: 18711728 DOI: 10.1002/jnr.21826] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuroglobin (Ngb) is a recently discovered tissue globin with a high affinity for oxygen that is widely and specifically expressed in neurons of vertebrate central and peripheral nervous systems. Our laboratory and others have shown Ngb overexpression can protect neurons against hypoxic/ischemic insults, but the underlying mechanisms remain poorly understood. In this study, we examined the effects of Ngb overexpression on mitochondrial function, oxidative stress, and neurotoxicity in primary cortical neurons following hypoxia/reoxygenation (H/R). Ngb-overexpressing transgenic neurons (Ngb-Tg) were significantly protected against H/R-induced cell death. Rates of decline in ATP levels, MTT reduction, and mitochondrial membrane potential were significantly ameliorated in Ngb-Tg neurons. Furthermore, Ngb overexpression reduced superoxide anion generation after H/R, whereas glutathione levels were significantly improved compared with WT controls. Taken together, these data suggest that Ngb is neuroprotective against hypoxia, in part by improving mitochondria function and decreasing oxidative stress.
Collapse
Affiliation(s)
- Jianxiang Liu
- Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02129, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Zhou F, Gomi M, Fujimoto M, Hayase M, Marumo T, Masutani H, Yodoi J, Hashimoto N, Nozaki K, Takagi Y. Attenuation of neuronal degeneration in thioredoxin-1 overexpressing mice after mild focal ischemia. Brain Res 2009; 1272:62-70. [PMID: 19328186 DOI: 10.1016/j.brainres.2009.03.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 03/12/2009] [Accepted: 03/12/2009] [Indexed: 10/21/2022]
Abstract
Thioredoxin (Trx) is a 12-kDa protein ubiquitously expressed in all living cells that fulfills a variety of biological functions related to cell proliferation and apoptosis. It is characterized by the highly conserved reduction/oxidation (redox)-active site sequence Trp-Cys-Gly-Pro-Cys-Lys. Trx acts as a powerful antioxidant and plays an important role in maintaining critical protein thiols in the reduced state. Moreover, it has been shown to scavenge reactive oxygen species (ROS) and to protect against oxidative stress. We have reported that Trx-1 protects against neuronal damage during focal ischemia. However, the mechanisms underlying this protective effect and the effect of Trx-1 on neuronal apoptosis during ischemia have not been fully clarified. In this study, we analyzed the effect of Trx-1 overexpression against neuronal degeneration after a short duration of transient brain ischemia. Mild focal ischemia was reported to induce neuronal death through apoptosis. We employed Fluorojade-B staining to detect neuronal degeneration. In Trx transgenic mice, a smaller number of Fluorojade-B-positive neurons were detected after ischemia-reperfusion than in wild-type mice. In addition, we detected cleaved caspase-3- and TUNEL-positive cells, which indicated caspase-dependent apoptosis. Fewer caspase-3- and TUNEL-positive neurons were detected after ischemia-reperfusion in Trx transgenic mice than in wild-type mice. Furthermore, Akt signaling was reported to play a role in neuronal survival in Trx-1 overexpressing mice. After ischemia-reperfusion, Western blot and immunohistochemical analysis indicated that phosphorylation of Akt was enhanced in Trx transgenic mice after ischemia-reperfusion. Intraventricular injection of LY294002,which is a phosphoinositide 3-kinase (PI3K), vanished the neuroprotective effect in Trx-1 transgenic mice. These results indicate that Trx-1 overexpression protects neurons from apoptosis after ischemia-reperfusion.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Xu L, Voloboueva LA, Ouyang Y, Emery JF, Giffard RG. Overexpression of mitochondrial Hsp70/Hsp75 in rat brain protects mitochondria, reduces oxidative stress, and protects from focal ischemia. J Cereb Blood Flow Metab 2009; 29:365-74. [PMID: 18985056 PMCID: PMC3676940 DOI: 10.1038/jcbfm.2008.125] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria are known to be central to the cell's response to ischemia, because of their role in energy generation, in free radical generation, and in the regulation of apoptosis. Heat shock protein 75 (Hsp75/Grp75/mortalin/TRAP1) is a member of the HSP70 chaperone family, which is targeted to mitochondria. Overexpression of Hsp75 was achieved in rat brain by DNA transfection, and expression was observed in both astrocytes and neurons. Rats were subjected to 100 mins middle cerebral artery occlusion followed by assessment of infarct volume, neurological score, mitochondrial function, and levels of oxidative stress at 24 h reperfusion. Overexpression of Hsp75 reduced infarct area from 44.6%+/-21.1% to 25.7%+/-12.1% and improved neurological outcome significantly. This was associated with improved mitochondrial function as shown by protection of complex IV activity, marked reduction of free radical generation detected by hydroethidine fluorescence, reduction of lipid peroxidation detected by 4-hydroxy-2-nonenol immunoreactivity, and increased preservation of ATP levels. This suggests that targeting mitochondria for protection may be a useful strategy to reduce ischemic brain injury.
Collapse
Affiliation(s)
- Lijun Xu
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California 94305-5117, USA
| | | | | | | | | |
Collapse
|
133
|
Song YS, Narasimhan P, Kim GS, Jung JE, Park EH, Chan PH. The role of Akt signaling in oxidative stress mediates NF-kappaB activation in mild transient focal cerebral ischemia. J Cereb Blood Flow Metab 2008; 28:1917-26. [PMID: 18628779 PMCID: PMC2605287 DOI: 10.1038/jcbfm.2008.80] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species, derived from hypoxia and reoxygenation during transient focal cerebral ischemia (tFCI), are associated with the signaling pathway that leads to neuronal survival or death, depending on the severity and duration of the ischemic insult. The Akt survival signaling pathway is regulated by oxidative stress and is implicated in activation of nuclear factor-kappaB (NF-kappaB). Mild cerebral ischemia in mice was used to induce increased levels of Akt phosphorylation in the cortex and striatum. To clarify the role of Akt activation by NF-kappaB after tFCI, we injected the specific Akt inhibitor IV that inhibits Akt phosphorylation/activation. Inhibition of Akt phosphorylation induced decreases in sequential NF-kappaB signaling after 30 mins of tFCI at 1 h. Furthermore, the downstream survival signals of the Akt pathway were also decreased. Akt inhibitor IV increased ischemic infarct volume and apoptotic-related DNA fragmentation. Superoxide production in the ischemic brains of mice pretreated with the Akt inhibitor was higher than in vehicle-treated mice. In addition, those pretreated mice showed a reduction of approximately 33% in copper/zinc-superoxide dismutase expression. We propose that Akt signaling exerts its neuroprotective role by NF-kappaB activation in oxidative cerebral ischemia in mice.
Collapse
Affiliation(s)
- Yun Seon Song
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305-5487, USA.
| | | | | | | | | | | |
Collapse
|
134
|
Sun AY, Wang Q, Simonyi A, Sun GY. Botanical phenolics and brain health. Neuromolecular Med 2008; 10:259-74. [PMID: 19191039 PMCID: PMC2682367 DOI: 10.1007/s12017-008-8052-z] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 10/02/2008] [Indexed: 12/16/2022]
Abstract
The high demand for molecular oxygen, the enrichment of polyunsaturated fatty acids in membrane phospholipids, and the relatively low abundance of antioxidant defense enzymes are factors rendering cells in the central nervous system (CNS) particularly vulnerable to oxidative stress. Excess production of reactive oxygen species (ROS) in the brain has been implicated as a common underlying factor for the etiology of a number of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. While ROS are generated by enzymatic and nonenzymatic reactions in the mitochondria and cytoplasm under normal conditions, excessive production under pathological conditions is associated with activation of Ca(2+)-dependent enzymes including proteases, phospholipases, nucleases, and alterations of signaling pathways which subsequently lead to mitochondrial dysfunction, release of inflammatory factors, and apoptosis. In recent years, there is considerable interest to investigate antioxidative and anti-inflammatory effects of phenolic compounds from different botanical sources. In this review, we describe oxidative mechanisms associated with AD, PD, and stroke, and evaluate neuroprotective effects of phenolic compounds, such as resveratrol from grape and red wine, curcumin from turmeric, apocynin from Picrorhiza kurroa, and epi-gallocatechin from green tea. The main goal is to provide a better understanding of the mode of action of these compounds and assess their use as therapeutics to ameliorate age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Albert Y. Sun
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65211
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, 65211
| | - Qun Wang
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65211
| | - Agnes Simonyi
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211
| | - Grace Y. Sun
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, 65211
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211
| |
Collapse
|
135
|
Weil ZM, Norman GJ, DeVries AC, Nelson RJ. The injured nervous system: a Darwinian perspective. Prog Neurobiol 2008; 86:48-59. [PMID: 18602443 DOI: 10.1016/j.pneurobio.2008.06.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 04/28/2008] [Accepted: 06/09/2008] [Indexed: 12/11/2022]
Abstract
Much of the permanent damage that occurs in response to nervous system damage (trauma, infection, ischemia, etc.) is mediated by endogenous secondary processes that can contribute to cell death and tissue damage (excitotoxicity, oxidative damage and inflammation). For humans to evolve mechanisms to minimize secondary pathophysiological events following CNS injuries, selection must occur for individuals who survive such insults. Two major factors limit the selection for beneficial responses to CNS insults: for many CNS disease states the principal risk factor is advanced, post-reproductive age and virtually all severe CNS traumas are fatal in the absence of modern medical intervention. An alternative hypothesis for the persistence of apparently maladaptive responses to CNS damage is that the secondary exacerbation of damage is the result of unavoidable evolutionary constraints. That is, the nervous system could not function under normal conditions if the mechanisms that caused secondary damage (e.g., excitotoxicity) in response to injury were decreased or eliminated. However, some vertebrate species normally inhabit environments (e.g., hypoxia in underground burrows) that could potentially damage their nervous systems. Yet, neuroprotective mechanisms have evolved in these animals indicating that natural selection can occur for traits that protect animals from nervous system damage. Many of the secondary processes and regeneration-inhibitory factors that exacerbate injuries likely persist because they have been adaptive over evolutionary time in the healthy nervous system. Therefore, it remains important that researchers consider the role of the processes in the healthy or developing nervous system to understand how they become dysregulated following injury.
Collapse
Affiliation(s)
- Zachary M Weil
- Departments of Psychology and Neuroscience, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
136
|
Wahl AS, Buchthal B, Rode F, Bomholt SF, Freitag HE, Hardingham GE, Rønn LCB, Bading H. Hypoxic/ischemic conditions induce expression of the putative pro-death gene Clca1 via activation of extrasynaptic N-methyl-D-aspartate receptors. Neuroscience 2008; 158:344-52. [PMID: 18616988 DOI: 10.1016/j.neuroscience.2008.06.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 03/13/2008] [Accepted: 06/08/2008] [Indexed: 10/24/2022]
Abstract
The stimulation of extrasynaptic N-methyl-D-aspartate (NMDA) receptors triggers cell death pathways and has been suggested to play a key role in cell degeneration and neuron loss associated with glutamate-induced excitotoxicity. In contrast, synaptic NMDA receptors promote neuronal survival. One mechanism through which extrasynaptic NMDA receptors damage neurons may involve Clca1, which encodes a putative calcium-activated chloride channel. Here we show that Clca1 expression is induced in cultured rat hippocampal neurons exposed to oxygen/glucose-free media; this induction is mediated by a signaling pathway activated by extrasynaptic NMDA receptors. Clca1 mRNA levels also increased in the gerbil hippocampus following a transient forebrain ischemia caused by bilateral carotid occlusion. Microelectrode array recordings revealed that oxygen-glucose deprivation enhances hippocampal network firing rates, which induces c-fos transcription through a signaling pathway that, in contrast to Clca1, is activated by synaptic but not extrasynaptic NMDA receptors. Thus, conditions of low oxygen/glucose lead to the activation of both extrasynaptic and synaptic NMDA receptors that regulate distinct target genes. Clca1 may be part of the genomic death program triggered by extrasynaptic NMDA receptors; it could be a marker for ischemic brain damage and a possible target for therapeutic interventions.
Collapse
Affiliation(s)
- A-S Wahl
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Wang X, Liu J, Zhu H, Tejima E, Tsuji K, Murata Y, Atochin DN, Huang PL, Zhang C, Lo EH. Effects of neuroglobin overexpression on acute brain injury and long-term outcomes after focal cerebral ischemia. Stroke 2008; 39:1869-74. [PMID: 18403737 DOI: 10.1161/strokeaha.107.506022] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Emerging data suggest that neuroglobin (Ngb) may protect against hypoxic/ischemic neuronal insults. However, the underlying mechanisms in vivo and implications for long-term outcomes are still not well understood. METHODS Using our newly created Ngb overexpressing transgenic (Ngb-Tg) mice, we measured brain infarction on day 1 and day 14 after transient focal cerebral ischemia and performed neurobehavioral assessments in sensorimotor deficits on days 1, 3, 7, and 14. To test the hypothesis that Ngb may play a role in reducing oxidative stress after stroke, intracellular malondialdehyde levels were measured and compared in Ngb-Tg and wild-type mice. RESULTS Increased Ngb mRNA and protein levels were identified in Ngb-Tg brains. Malondialdehyde levels in ischemic hemispheres of Ngb-Tg were significantly reduced compared with wild-type controls at 8 hours and 22 hours after transient focal cerebral ischemia. Compared with wild-type controls, brain infarction volumes 1 day and 14 days after transient focal cerebral ischemia were significantly reduced in Ngb-Tg mice. However, there were no significant improvements in sensorimotor deficits for up to 14 days after stroke in Ngb-Tg mice compared with wild-type controls. CONCLUSIONS Ngb reduces tissue infarction and markers of oxidative stress after stroke. Tissue protection by overexpressing Ngb can be sustained for up to 2 weeks.
Collapse
Affiliation(s)
- Xiaoying Wang
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, 149 13th Street, Room 2411A, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Co-application of ischemic preconditioning and postconditioning provides additive neuroprotection against spinal cord ischemia in rabbits. Life Sci 2008; 82:608-14. [DOI: 10.1016/j.lfs.2007.12.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 11/19/2007] [Accepted: 12/09/2007] [Indexed: 11/30/2022]
|
139
|
Hau S, Reich DM, Scholz M, Naumann W, Emmrich F, Kamprad M, Boltze J. Evidence for neuroprotective properties of human umbilical cord blood cells after neuronal hypoxia in vitro. BMC Neurosci 2008; 9:30. [PMID: 18312640 PMCID: PMC2294131 DOI: 10.1186/1471-2202-9-30] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 02/29/2008] [Indexed: 01/05/2023] Open
Abstract
Background One of the most promising options for treatment of stroke using adult stem cells are human umbilical cord blood (HUCB) cells that were already approved for therapeutic efficacy in vivo. However, complexity of animal models has thus far limited the understanding of beneficial cellular mechanisms. To address the influence of HUCB cells on neuronal tissue after stroke we established and employed a human in vitro model of neuronal hypoxia using fully differentiated vulnerable SH-SY5Y cells. These cells were incubated under an oxygen-reduced atmosphere (O2< 1%) for 48 hours. Subsequently, HUCB mononuclear cells (MNC) were added to post-hypoxic neuronal cultures. These cultures were characterized regarding to the development of apoptosis and necrosis over three days. Based on this we investigated the therapeutic influence of HUCB MNC on the progression of apoptotic cell death. The impact of HUCB cells and hypoxia on secretion of neuroprotective and inflammatory cytokines, chemokines and expression of adhesion molecules was proved. Results Hypoxic cultivation of neurons initially induced a rate of 26% ± 13% of apoptosis. Hypoxia also caused an enhanced expression of Caspase-3 and cleaved poly(ADP-ribose) polymerase (PARP). Necrosis was only detected in low amounts. Within the next three days rate of apoptosis in untreated hypoxic cultures cumulated to 85% ± 11% (p ≤ 0.001). Specific cytokine (VEGF) patterns also suggest anti-apoptotic strategies of neuronal cells. Remarkably, the administration of MNC showed a noticeable reduction of apoptosis rates to levels of normoxic control cultures (7% ± 3%; p ≤ 0.001). In parallel, clustering of administered MNC next to axons and somata of neuronal cells was observed. Furthermore, MNC caused a pronounced increase of chemokines (CCL5; CCL3 and CXCL10). Conclusion We established an in vitro model of neuronal hypoxia that affords the possibility to investigate both, apoptotic neuronal cell death and neuroprotective therapies. Here we employed the therapeutic model to study neuroprotective properties of HUCB cells. We hypothesize that the neuroprotective effect of MNC was due to anti-apoptotic mechanisms related to direct cell-cell contacts with injured neuronal cells and distinct changes in neuroprotective, inflammatory cytokines as well as to the upregulation of chemokines within the co-cultures.
Collapse
Affiliation(s)
- Susann Hau
- Fraunhofer-Institute for Cell Therapy and Immunology, Deutscher Platz 5e, 04103 Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
140
|
Sköld K, Svensson M, Norrman M, Sjögren B, Svenningsson P, Andrén PE. The significance of biochemical and molecular sample integrity in brain proteomics and peptidomics: stathmin 2-20 and peptides as sample quality indicators. Proteomics 2008; 7:4445-56. [PMID: 18072205 DOI: 10.1002/pmic.200700142] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Comparisons of transcriptional and translational expression in normal and abnormal states are important to reach an understanding of pathogenesis and pathophysiology. Maintaining the biochemical, molecular, and structural sample integrity is essential for correct sample comparisons. We demonstrate that both proteins and neuropeptides, including their PTMs, are subjected to massive degradation in the brain already 1 min postmortem. Further, markers for determining the integrity and status of a biological sample were identified. The protein fragment stathmin 2-20 correlated well with the general level of postmortem degradation and may serve as a sample quality indicator for future work, both in animal and human postmortem brains. Finally, a novel method for preventing degradation of proteins and peptides in postmortem tissue is presented using rapid and uniform conductive heat transfer on tissue prior to the actual sample preparation procedures, which enables the relatively low-abundant neuropeptides to remain intact, minimizes degradation of proteins by proteolysis, and conserves the PTMs of the neuropeptides.
Collapse
Affiliation(s)
- Karl Sköld
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
141
|
Ang HL, Tergaonkar V. Notch and NFkappaB signaling pathways: Do they collaborate in normal vertebrate brain development and function? Bioessays 2007; 29:1039-47. [PMID: 17876798 DOI: 10.1002/bies.20647] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Both Notch and NFkappaB signaling pathways are well-known for regulating proliferation, differentiation and apoptosis. Recent studies have presented several lines of evidence supporting an integration of the Notch and NFkappaB signaling pathways in differentiation/maturation of a diverse range of cell types. It is notable that Notch and NFkappaB signaling pathways share many common features: (i) both are activated by common stimuli such as TNF-alpha and hypoxia, (ii) activated Notch (NICD) and NFkappaB mediate transcription by regulating corepressors such as SMRT/N-COR, and (iii) both regulate similar target genes such as Hes-1 and IkappaBalpha. This review expands on how the collaboration between these pathways may play an important role in the CNS. We will speculate on the mechanisms by which Notch and NFkappaB signaling may collaborate to regulate stem cell renewal and differentiation during brain development and function.
Collapse
Affiliation(s)
- Hwee-Luan Ang
- Laboratory of NFkappaB Signaling and Human Ailments, Institute of Molecular and Cell Biology, 61 Biopolis Drive (Proteos), Singapore 138673
| | | |
Collapse
|
142
|
Swartz HM, Khan N, Khramtsov VV. Use of electron paramagnetic resonance spectroscopy to evaluate the redox state in vivo. Antioxid Redox Signal 2007; 9:1757-71. [PMID: 17678441 PMCID: PMC2702846 DOI: 10.1089/ars.2007.1718] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this article is to provide an overview of how electron paramagnetic resonance (EPR) can be used to measure redox-related parameters in vivo. The values of this approach include that the measurements are made under fully physiological conditions, and some of the measurements cannot be made by other means. Three complementary approaches are used with in vivo EPR: the rate of reduction or reactions of nitroxides, spin trapping of free radicals, and measurements of thiols. All three approaches already have produced unique and useful information. The measurement of the rate of decrease of nitroxides technically is the simplest, but difficult to interpret because the measured parameter, reduction in the intensity of the nitroxide signal, can occur by several different mechanisms. In vivo spin trapping can provide direct evidence for the occurrence of specific free radicals in vivo and reflect relative changes, but accurate absolute quantification remains challenging. The measurement of thiols in vivo also appears likely to be useful, but its development as an in vivo technique is at an early stage. It seems likely that the use of in vivo EPR to measure redox processes will become an increasingly utilized and valuable tool.
Collapse
Affiliation(s)
- Harold M Swartz
- Department of Radiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| | | | | |
Collapse
|
143
|
Cañas N, Valero T, Villarroya M, Montell E, Vergés J, García AG, López MG. Chondroitin sulfate protects SH-SY5Y cells from oxidative stress by inducing heme oxygenase-1 via phosphatidylinositol 3-kinase/Akt. J Pharmacol Exp Ther 2007; 323:946-53. [PMID: 17885094 DOI: 10.1124/jpet.107.123505] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We investigated the mechanism of the neuroprotective properties of chondroitin sulfate (CS), an endogenous perineuronal net glycosaminoglycan, in human neuroblastoma SH-SY5Y cells subjected to oxidative stress. Preincubation with CS for 24 h afforded concentration-dependent protection against H2O2-induced toxicity (50 microM for 24 h) measured as lactic dehydrogenase released to the incubation media; cell death was prevented at the concentrations of 600 and 1000 microM. Cell death caused by a combination of 10 microM rotenone plus 1 microM oligomycin-A (Rot/oligo) was also reduced by CS at concentrations ranging from 0.3 to 100 microM; in this toxicity model, maximum protection was achieved at 3 microM (48%). No significant protection was observed in a cell death model of Ca2+ overload (70 mM K+, for 24 h). H2O2 and Rot/oligo generated reactive oxygen species (ROS) measured as an increase in the fluorescence of dichlorofluorescein diacetate-loaded cells. CS drastically reduced ROS generation induced by both H2O2 (extracellular ROS) and Rot/oligo (intracellular ROS). CS also increased the expression of phosphorylated Akt and heme oxygenase-1 by 2-fold. The protective effects of CS were prevented by chelerythrine, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), cycloheximide, and Sn(IV)-protoporphyrin IX. Taken together, these results show that CS can protect SH-SY5Y cells under oxidative stress conditions by activating protein kinase C, which phosphorylates Akt that, via the phosphatidylinositol 3-kinase/Akt pathway, induces the synthesis of the antioxidant protein heme oxygenase-1.
Collapse
Affiliation(s)
- Noelia Cañas
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
144
|
Wu XJ, Zheng YJ, Cui YY, Zhu L, Lu Y, Chen HZ. Propofol attenuates oxidative stress-induced PC12 cell injury via p38 MAP kinase dependent pathway. Acta Pharmacol Sin 2007; 28:1123-8. [PMID: 17640472 DOI: 10.1111/j.1745-7254.2007.00610.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIM To investigate the neuroprotective effect of propofol and its intracellular mechanism on neurons in vitro. METHODS Cell viability was determined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide reduction. Apoptotic cell death was determined by Hoechst 33258 staining and a fluorescence-activated cell sorter. The caspase-3 activity was measured by fluorometric assay. Mitogen-activated protein (MAP) kinase phosphorylation was detected with Western blotting. RESULTS The pretreatment of rat pheochromocytoma cell line PC12 with propofol (1-10 micromol/L) resulted in a significant recovery from hydrogen peroxide (H2O2)-induced cell death and the inhibition of H2O2 induced caspase-3 activation and PC12 cell apoptosis. Propofol inhibited the H2O2-induced p38 MAP kinase, but not c-Jun N-terminal kinase or extracellular signal-regulated kinase 1 and 2 activations. CONCLUSION Propofol might attenuate H2O2-induced PC12 cell death through the inhibition of signaling pathways mediated by the p38 MAP kinase.
Collapse
Affiliation(s)
- Xing-jun Wu
- Department of Pharmacy, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
145
|
Luo J, Kintner DB, Shull GE, Sun D. ERK1/2-p90RSK-mediated phosphorylation of Na+/H+ exchanger isoform 1. A role in ischemic neuronal death. J Biol Chem 2007; 282:28274-84. [PMID: 17664275 DOI: 10.1074/jbc.m702373200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function and regulation of Na(+)/H(+) exchanger isoform 1 (NHE1) following cerebral ischemia are not well understood. In this study, we demonstrate that extracellular signal-related kinases (ERK1/2) play a role in stimulation of neuronal NHE1 following in vitro ischemia. NHE1 activity was significantly increased during 10-60 min reoxygenation (REOX) after 2-h oxygen and glucose deprivation (OGD). OGD/REOX not only increased the V(max) for NHE1 but also shifted the K(m) toward decreased [H(+)](i). These changes in NHE1 kinetics were absent when MAPK/ERK kinase (MEK) was inhibited by the MEK inhibitor U0126. There were no changes in the levels of phosphorylated ERK1/2 (p-ERK1/2) after 2 h OGD. The p-ERK1/2 level was significantly increased during 10-60 min REOX, which was accompanied by nuclear translocation. U0126 abolished REOX-induced elevation and translocation of p-ERK1/2. We further examined the ERK/90-kDa ribosomal S6 kinase (p90(RSK)) signaling pathways. At 10 min REOX, phosphorylated NHE1 was increased with a concurrent elevation of phosphorylation of p90(RSK), a known NHE1 kinase. Inhibition of MEK activity with U0126 abolished phosphorylation of both NHE1 and p90(RSK). Moreover, neuroprotection was observed with U0126 or genetic ablation or pharmacological inhibition of NHE1 following OGD/REOX. Taken together, these results suggest that activation of ERK1/2-p90(RSK) pathways following in vitro ischemia phosphorylates NHE1 and increases its activity, which subsequently contributes to neuronal damage.
Collapse
Affiliation(s)
- Jing Luo
- Department of Physiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA
| | | | | | | |
Collapse
|
146
|
Pistollato F, Chen HL, Schwartz PH, Basso G, Panchision DM. Oxygen tension controls the expansion of human CNS precursors and the generation of astrocytes and oligodendrocytes. Mol Cell Neurosci 2007; 35:424-35. [PMID: 17498968 DOI: 10.1016/j.mcn.2007.04.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 03/30/2007] [Accepted: 04/06/2007] [Indexed: 01/16/2023] Open
Abstract
Human neural precursor proliferation and potency is limited by senescence and loss of oligodendrocyte potential. We found that in vitro expansion of human postnatal brain CD133(+) nestin(+) precursors is enhanced at 5% oxygen, while raising oxygen tension to 20% depletes precursors and promotes astrocyte differentiation even in the presence of mitogens. Higher cell densities yielded more astrocytes regardless of oxygen tension. This was reversed by noggin at 5%, but not 20%, oxygen due to a novel repressive effect of low oxygen on bone morphogenetic protein (BMP) signaling. When induced to differentiate by mitogen withdrawal, 5% oxygen-expanded precursors generated 17-fold more oligodendrocytes than cells expanded in 20% oxygen. When precursors were expanded at 5% oxygen and then differentiated at 20% oxygen, oligodendrocyte maturation was further enhanced 2.5-fold. These results indicate that dynamic control of oxygen tension regulates different steps in fate and maturation and may be crucial for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Francesca Pistollato
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, 5th Floor, Suite 5340, 111 Michigan Avenue, N.W., Washington, DC 20010, USA
| | | | | | | | | |
Collapse
|
147
|
Chen HL, Pistollato F, Hoeppner DJ, Ni HT, McKay RDG, Panchision DM. Oxygen tension regulates survival and fate of mouse central nervous system precursors at multiple levels. Stem Cells 2007; 25:2291-301. [PMID: 17556599 DOI: 10.1634/stemcells.2006-0609] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite evidence that oxygen regulates neural precursor fate, the effects of changing oxygen tensions on distinct stages in precursor differentiation are poorly understood. We found that 5% oxygen permitted clonal and long-term expansion of mouse fetal cortical precursors. In contrast, 20% oxygen caused a rapid decrease in hypoxia-inducible factor 1alpha and nucleophosmin, followed by the induction of p53 and apoptosis of cells. This led to a decrease in overall cell number and particularly a loss of astrocytes and oligodendrocytes. Clonal analysis revealed that apoptosis in 20% oxygen was due to a complete loss of CD133(lo)CD24(lo) multipotent precursors, a substantial loss of CD133(hi)CD24(lo) multipotent precursors, and a failure of remaining CD133(hi)CD24(lo) cells to generate glia. In contrast, committed neuronal progenitors were not significantly affected. Switching clones from 5% to 20% oxygen only after mitogen withdrawal led to a decrease in total clone numbers but an even greater decrease in oligodendrocyte-containing clones. During this late exposure to 20% oxygen, bipotent glial (A2B5+) and early (platelet-derived growth factor receptor alpha) oligodendrocyte progenitors appeared and disappeared more quickly, relative to 5% oxygen, and late stage O4+ oligodendrocyte progenitors never appeared. These results indicate that multipotent cells and oligodendrocyte progenitors are more susceptible to apoptosis at 20% oxygen than committed neuronal progenitors. This has important implications for optimizing ex vivo production methods for cell replacement therapies.
Collapse
Affiliation(s)
- Hui-Ling Chen
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC, USA
| | | | | | | | | | | |
Collapse
|
148
|
Egea J, Rosa AO, Cuadrado A, García AG, López MG. Nicotinic receptor activation by epibatidine induces heme oxygenase-1 and protects chromaffin cells against oxidative stress. J Neurochem 2007; 102:1842-1852. [PMID: 17540012 DOI: 10.1111/j.1471-4159.2007.04665.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation of neuronal nicotinic acetylcholine receptors (nAChR) provides neuroprotection against different toxic stimuli that often lead to overproduction of reactive oxygen species (ROS) and cell death. ROS production has been related with disease progression in several neurodegenerative pathologies such as Alzheimer's or Parkinson's diseases. In this context, we investigated here if the exposure of bovine chromaffin cells to the potent nAChR agonist epibatidine protected against rotenone (30 micromol/L) plus oligomycin (10 micromol/L) (rot/oligo) toxicity, an in vitro model of mitochondrial ROS production. Epibatidine induced a concentration- and time-dependent protection, which was maximal at 3 mumol/L after 24 h. Pre-incubation with dantrolene (100 micromol/L) (a blocker of the ryanodine receptor channel), chelerythrine (1 micromol/L) (a protein kinase C inhibitor), or PD98059 (50 micromol/L) (a MEK inhibitor), aborted epibatidine-elicited cytoprotection. Mitochondrial depolarization, ROS, and caspase 3 active produced by rot/oligo were also prevented by epibatidine. Epibatidine doubled the amount of heme oxygenase-1 (HO-1), a critical cell defence enzyme against oxidative stress. Furthermore, the HO-1 inhibitor Sn(IV) protoporphyrin IX dichloride reversed the epibatidine protecting effects and HO-1 inducer Co (III) protoporphyrin IX dichloride exhibited neuroprotective effects by itself. The results of this study point to HO-1 as the cytoprotective target of nAChR activation through the following pathway: endoplasmic reticulum Ca(2+)-induced Ca(2+)-release activates the protein kinase C/extracellular regulated kinase/HO-1 axis to mitigate mitochondrial depolarization and ROS production. This study provides a mechanistic insight on how nAChR activation translates into an antioxidant and antiapoptotic signal through up-regulation of HO-1.
Collapse
Affiliation(s)
- Javier Egea
- Intituto Teofilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, SpainDepartamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, SpainServicio de Farmacología Clínica and Instituto Universitario de Investigación Gerontológica y metabólica, Hospital Universitario de la Princesa, Madrid, Spain
| | - Angelo O Rosa
- Intituto Teofilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, SpainDepartamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, SpainServicio de Farmacología Clínica and Instituto Universitario de Investigación Gerontológica y metabólica, Hospital Universitario de la Princesa, Madrid, Spain
| | - Antonio Cuadrado
- Intituto Teofilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, SpainDepartamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, SpainServicio de Farmacología Clínica and Instituto Universitario de Investigación Gerontológica y metabólica, Hospital Universitario de la Princesa, Madrid, Spain
| | - Antonio G García
- Intituto Teofilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, SpainDepartamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, SpainServicio de Farmacología Clínica and Instituto Universitario de Investigación Gerontológica y metabólica, Hospital Universitario de la Princesa, Madrid, Spain
| | - Manuela G López
- Intituto Teofilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, SpainDepartamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, SpainServicio de Farmacología Clínica and Instituto Universitario de Investigación Gerontológica y metabólica, Hospital Universitario de la Princesa, Madrid, Spain
| |
Collapse
|
149
|
Abstract
The SAINT II Trial, a large randomized multicenter clinical trial of the putative neuroprotectant, NXY-059, failed to demonstrate a treatment benefit in acute ischemic stroke. The further development of this agent was suspended. The implications of this outcome are considered from several perspectives, including: (1) the marginally positive antecedent trial, SAINT I, and the critical commentary stimulated by it, which called attention to its interpretively challenging primary outcome measure—a shift in the full-scale modified Rankin scale score—and to other statistical shortcomings; (2) the cogency of the STAIR recommendations, to which the development of NXY-059 closely adhered; and (3) the inherent physiochemical shortcomings of NXY-059 as a neuroprotective agent—its polar, nonlipophilic nature, poor blood–brain barrier penetrability, nonphysiological oxidation potential, and low potency. Caution is urged, however, regarding the unwarranted adoption of a nihilistic view toward neuroprotection on the part of the stroke community in view of the abundant preclinical evidence demonstrating proof-of-principle of the feasibility of neuroprotection, as well as the multiplicity of biochemical and molecular neuroprotective targets. The author offers the personal example of a translational journey in which a promising neuroprotectant agent targeting multiple injury mechanisms, high-dose albumin therapy, has proceeded successfully from preclinical studies that established efficacy through a pilot clinical trial that demonstrated safety and offered strong suggestions of clinical efficacy, leading to a large multicenter clinical trial currently in progress.
Collapse
Affiliation(s)
- Myron D Ginsberg
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33101, USA.
| |
Collapse
|
150
|
Abstract
When properly controlled, Ca2+ fluxes across the plasma membrane and between intracellular compartments play critical roles in fundamental functions of neurons, including the regulation of neurite outgrowth and synaptogenesis, synaptic transmission and plasticity, and cell survival. During aging, and particularly in neurodegenerative disorders, cellular Ca2+-regulating systems are compromised resulting in synaptic dysfunction, impaired plasticity and neuronal degeneration. Oxidative stress, perturbed energy metabolism and aggregation of disease-related proteins (amyloid beta-peptide, alpha-synuclein, huntingtin, etc.) adversely affect Ca2+ homeostasis by mechanisms that have been elucidated recently. Alterations of Ca2+-regulating proteins in the plasma membrane (ligand- and voltage-gated Ca2+ channels, ion-motive ATPases, and glucose and glutamate transporters), endoplasmic reticulum (presenilin-1, Herp, and ryanodine and inositol triphosphate receptors), and mitochondria (electron transport chain proteins, Bcl-2 family members, and uncoupling proteins) are implicated in age-related neuronal dysfunction and disease. The adverse effects of aging on neuronal Ca2+ regulation are subject to modification by genetic (mutations in presenilins, alpha-synuclein, huntingtin, or Cu/Zn-superoxide dismutase; apolipoprotein E isotype, etc.) and environmental (dietary energy intake, exercise, exposure to toxins, etc.) factors that may cause or affect the risk of neurodegenerative disease. A better understanding of the cellular and molecular mechanisms that promote or prevent disturbances in cellular Ca2+ homeostasis during aging may lead to novel approaches for therapeutic intervention in neurological disorders such as Alzheimer's and Parkinson's diseases and stroke.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA.
| |
Collapse
|