101
|
Lin CY, Lee YS, Lin VW, Silver J. Fibronectin inhibits chronic pain development after spinal cord injury. J Neurotrauma 2012; 29:589-99. [PMID: 22022865 DOI: 10.1089/neu.2011.2059] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chronic pain following spinal cord injury (SCI) is a highly prevalent clinical condition that is difficult to treat. Using both von Frey filaments and radiant infrared heat to assess mechanical allodynia and thermal hyperalgesia, respectively, we have demonstrated that a one-time injection of fibronectin (50 μg/mL) into the spinal dorsal column (1 μL/min each injection for a total of 5 μL) immediately after SCI inhibits the development of mechanical allodynia (but not thermal hyperalgesia) over an 8-month observation period following spinal cord dorsal column crush (DCC). DCC will only induce mechanical Allodynia, but not thermal hyperalgesia or overt motor deficits. By applying various fibronectin fragments as well as competitive inhibitors, these effects were shown to be dependent on the connecting segment-1 (CS-1) motif of fibronectin. Furthermore, we found that acute fibronectin treatment diminished inflammation and blood-spinal cord barrier permeability, which in turn leads to enhanced fiber sparing and sprouting. In particular, the reduction of serotonin (5-HT) in the superficial dorsal horn, an important descending brainstem system in the modulation of pain, was blocked with fibronectin treatment. We conclude that treatment of SCI with fibronectin preserves sensory regulation and prevents the development of chronic allodynia, providing a potential therapeutic intervention to treat chronic pain following SCI.
Collapse
Affiliation(s)
- Ching-Yi Lin
- Department of Neuroscience, Lerner Research Institute, Cleveland, Ohio 44195, USA.
| | | | | | | |
Collapse
|
102
|
Martinez JA, Kasamatsu M, Rosales-Hernandez A, Hanson LR, Frey WH, Toth CC. Comparison of central versus peripheral delivery of pregabalin in neuropathic pain states. Mol Pain 2012; 8:3. [PMID: 22236461 PMCID: PMC3285045 DOI: 10.1186/1744-8069-8-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 01/11/2012] [Indexed: 11/10/2022] Open
Abstract
Background Although pregabalin therapy is beneficial for neuropathic pain (NeP) by targeting the CaVα2δ-1 subunit, its site of action is uncertain. Direct targeting of the central nervous system may be beneficial for the avoidance of systemic side effects. Results We used intranasal, intrathecal, and near-nerve chamber forms of delivery of varying concentrations of pregabalin or saline delivered over 14 days in rat models of experimental diabetic peripheral neuropathy and spinal nerve ligation. As well, radiolabelled pregabalin was administered to determine localization with different deliveries. We evaluated tactile allodynia and thermal hyperalgesia at multiple time points, and then analyzed harvested nervous system tissues for molecular and immunohistochemical changes in CaVα2δ-1 protein expression. Both intrathecal and intranasal pregabalin administration at high concentrations relieved NeP behaviors, while near-nerve pregabalin delivery had no effect. NeP was associated with upregulation of CACNA2D1 mRNA and CaVα2δ-1 protein within peripheral nerve, dorsal root ganglia (DRG), and dorsal spinal cord, but not brain. Pregabalin's effect was limited to suppression of CaVα2δ-1 protein (but not CACNA2D1 mRNA) expression at the spinal dorsal horn in neuropathic pain states. Dorsal root ligation prevented CaVα2δ-1 protein trafficking anterograde from the dorsal root ganglia to the dorsal horn after neuropathic pain initiation. Conclusions Either intranasal or intrathecal pregabalin relieves neuropathic pain behaviours, perhaps due to pregabalin's effect upon anterograde CaVα2δ-1 protein trafficking from the DRG to the dorsal horn. Intranasal delivery of agents such as pregabalin may be an attractive alternative to systemic therapy for management of neuropathic pain states.
Collapse
Affiliation(s)
- Jose A Martinez
- Department of Clinical Neurosciences and the University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | |
Collapse
|
103
|
Popp L, Häussler A, Olliges A, Nüsing R, Narumiya S, Geisslinger G, Tegeder I. Comparison of nociceptive behavior in prostaglandin E, F, D, prostacyclin and thromboxane receptor knockout mice. Eur J Pain 2012; 13:691-703. [DOI: 10.1016/j.ejpain.2008.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 08/08/2008] [Accepted: 09/07/2008] [Indexed: 11/30/2022]
|
104
|
Inhibition by dexmedetomidine of the activation of spinal dorsal horn glias and the intracellular ERK signaling pathway induced by nerve injury. Brain Res 2012; 1427:1-9. [DOI: 10.1016/j.brainres.2011.08.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 01/01/2023]
|
105
|
Tan AM, Chang YW, Zhao P, Hains BC, Waxman SG. Rac1-regulated dendritic spine remodeling contributes to neuropathic pain after peripheral nerve injury. Exp Neurol 2011; 232:222-33. [DOI: 10.1016/j.expneurol.2011.08.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/11/2011] [Accepted: 08/18/2011] [Indexed: 10/17/2022]
|
106
|
Gwak YS, Kang J, Unabia GC, Hulsebosch CE. Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats. Exp Neurol 2011; 234:362-72. [PMID: 22036747 DOI: 10.1016/j.expneurol.2011.10.010] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/05/2011] [Accepted: 10/13/2011] [Indexed: 01/27/2023]
Abstract
In the spinal cord, neuron and glial cells actively interact and contribute to neurofunction. Surprisingly, both cell types have similar receptors, transporters and ion channels and also produce similar neurotransmitters and cytokines. The neuroanatomical and neurochemical similarities work synergistically to maintain physiological homeostasis in the normal spinal cord. However, in trauma or disease states, spinal glia become activated, dorsal horn neurons become hyperexcitable contributing to sensitized neuronal-glial circuits. The maladaptive spinal circuits directly affect synaptic excitability, including activation of intracellular downstream cascades that result in enhanced evoked and spontaneous activity in dorsal horn neurons with the result that abnormal pain syndromes develop. Recent literature reported that spinal cord injury produces glial activation in the dorsal horn; however, the majority of glial activation studies after SCI have focused on transient and/or acute time points, from a few hours to 1 month, and peri-lesion sites, a few millimeters rostral and caudal to the lesion site. In addition, thoracic spinal cord injury produces activation of astrocytes and microglia that contributes to dorsal horn neuronal hyperexcitability and central neuropathic pain in above-level, at-level and below-level segments remote from the lesion in the spinal cord. The cellular and molecular events of glial activation are not simple events, rather they are the consequence of a combination of several neurochemical and neurophysiological changes following SCI. The ionic imbalances, neuroinflammation and alterations of cell cycle proteins after SCI are predominant components for neuroanatomical and neurochemical changes that result in glial activation. More importantly, SCI induced release of glutamate, proinflammatory cytokines, ATP, reactive oxygen species (ROS) and neurotrophic factors trigger activation of postsynaptic neuron and glial cells via their own receptors and channels that, in turn, contribute to neuronal-neuronal and neuronal-glial interaction as well as microglia-astrocytic interactions. However, a systematic review of temporal and spatial glial activation following SCI has not been done. In this review, we describe time and regional dependence of glial activation and describe activation mechanisms in various SCI models in rats. These data are placed in the broader context of glial activation mechanisms and chronic pain states. Our work in the context of work by others in SCI models demonstrates that dysfunctional glia, a condition called "gliopathy", is a key contributor in the underlying cellular mechanisms contributing to neuropathic pain.
Collapse
Affiliation(s)
- Young S Gwak
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, TX 77555, USA.
| | | | | | | |
Collapse
|
107
|
Windelborn JA, Mitchell GS. Glial activation in the spinal ventral horn caudal to cervical injury. Respir Physiol Neurobiol 2011; 180:61-8. [PMID: 22041654 DOI: 10.1016/j.resp.2011.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 10/14/2011] [Accepted: 10/17/2011] [Indexed: 01/24/2023]
Abstract
Microglia and astrocytes play complex roles following spinal cord injury (SCI), contributing to inflammatory processes that both exacerbate injury and promote functional recovery by supporting neuro-protection and neuroplasticity. The crossed phrenic phenomenon (CPP) is an example of respiratory plasticity in which C(2) cervical hemisection (C(2)HS) strengthens crossed-spinal synaptic pathways to phrenic motor neurons ipsilateral to injury. We hypothesized that microglia and astrocytes are activated in the phrenic motor nucleus caudal and ipsilateral to C(2)HS, suggesting their potential for involvement in the CPP. To test this hypothesis, an incomplete cervical spinal hemisection (C(2) lateral injury; C(2)LI) was performed, and rats were allowed to recover for 1, 3, 14 or 28 days before collecting perfused spinal tissues. Microglia (via OX42) and astrocytes [via glial fibrillary acidic protein (GFAP)] were visualized with immunofluorescence microscopy in the C(4)-C(5) ventral horn, the region encompassing most of the phrenic motor nucleus. OX42-occupied fractional area ipsilateral to injury increased with C(2)LI (vs. sham) at 1 (12.5±1.8%, p<0.001), 3 (29.0±1.9%, p<0.001), 14 (26.1±3.1%, p<0.001) and 28 (19.2±2.0%, p<0.001) days post-C(2)LI. GFAP-occupied fractional area also increased with C(2)LI at 3 (24.4±3.2%, p<0.001) and 14 (16.8±8.3%, p=0.012) days, but not at 1 (6.2±3.9%, p=0.262) or 28 (10.6±3.9%, p=0.059) days post-C(2)LI. Thus, microglia and astrocytes are activated in the phrenic motor nucleus caudal to C(2)LI, suggesting that they play a role in functional deficits and/or recovery following spinal injury.
Collapse
Affiliation(s)
- James A Windelborn
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr. West, Madison, WI 53706, USA.
| | | |
Collapse
|
108
|
Inoue K, Tsuda M. Purinergic systems, neuropathic pain and the role of microglia. Exp Neurol 2011; 234:293-301. [PMID: 21946271 DOI: 10.1016/j.expneurol.2011.09.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/01/2011] [Accepted: 09/09/2011] [Indexed: 01/23/2023]
Abstract
We have learned various data on the role of purinoceptors (P2X4, P2X7, P2Y6 and P2Y12) expressed in spinal microglia and several factors that presumably activate microglia in neuropathic pain after peripheral nerve injury. Purinergic receptor-mediated spinal microglial functions make a critical contribution to pathologically enhanced pain processing in the dorsal horn. Microglial purinoceptors might be promising targets for treating neuropathic pain. A predicted therapeutic benefit of interfering with microglial purinergic receptors may be that normal pain sensitivity would be unaffected since expression or activity of most of these receptors are upregulated or enhanced predominantly in activated microglia in the spinal cord where damaged sensory fibers project.
Collapse
Affiliation(s)
- Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
109
|
Acosta-Rua AJ, Cannon RL, Yezierski RP, Vierck CJ. Sex differences in effects of excitotoxic spinal injury on below-level pain sensitivity. Brain Res 2011; 1419:85-96. [PMID: 21943508 DOI: 10.1016/j.brainres.2011.08.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/24/2011] [Accepted: 08/30/2011] [Indexed: 11/26/2022]
Abstract
Effects of excitotoxic injury to the thoracic gray matter on sensitivity to below-level nociceptive stimulation were evaluated for female and male Long-Evans rats. Operant escape and lick/guard (L/G) reflex responses to thermal stimulation were evaluated before and for 13-15 weeks after: 1) injections of quisqualic acid (QUIS) into the thoracic gray matter (T8-9), 2) laminectomy and spinal exposure and penetration without injection (sham) or 3) no surgical procedure (control). L/G responding to heat stimulation (44 °C) was unaffected for females and males following thoracic QUIS injections. Similarly, male escape performance was not significantly altered for 44 °C or 10 °C stimulation after QUIS injections or sham surgery. However, escape testing following QUIS and sham injections revealed increased heat sensitivity (44 °C) and decreased cold sensitivity (10 °C) for females. This selective effect is indicative of altered sympathetic activation by the thoracic injections. The effect of sham surgery suggests that female rats are vulnerable to ischemic injury during exposure and manipulation of the spinal cord. Escape from nociceptive heat and cold sensitivity of control males and females was unchanged over 13-15 weeks of testing.
Collapse
Affiliation(s)
- Antonio J Acosta-Rua
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
110
|
Wieseler J, Ellis AL, McFadden A, Brown K, Starnes C, Maier SF, Watkins LR, Falci S. Below level central pain induced by discrete dorsal spinal cord injury. J Neurotrauma 2011; 27:1697-707. [PMID: 20649467 DOI: 10.1089/neu.2010.1311] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Central neuropathic pain occurs with multiple sclerosis, stroke, and spinal cord injury (SCI). Models of SCI are commonly used to study central neuropathic pain and are excellent at modeling gross physiological changes. Our goal was to develop a rat model of central neuropathic pain by traumatizing a discrete region of the dorsal spinal cord, thereby avoiding issues including paralysis, urinary tract infection, and autotomy. To this end, dorsal root avulsion was pursued. The model was developed by first determining the number of avulsed dorsal roots sufficient to induce below-level hindpaw mechanical allodynia. This was optimally achieved by unilateral T13 and L1 avulsion, which resulted in tissue damage confined to Lissauer's tract, dorsal horn, and dorsal columns, at the site of avulsion, with no gross physical changes at other spinal levels. Behavior following avulsion was compared to that following rhizotomy of the T13 and L1 dorsal roots, a commonly used model of neuropathic pain. Avulsion induced below-level allodynia that was more robust and enduring than that seen after rhizotomy. This, plus the lack of direct spinal cord damage associated with rhizotomy, suggests that avulsion is not synonymous with rhizotomy, and that avulsion (but not rhizotomy) is a model of central neuropathic pain. The new model described here is the first to use discrete dorsal horn damage by dorsal root avulsion to create below-level bilateral central neuropathic pain.
Collapse
Affiliation(s)
- Julie Wieseler
- Department of Psychology and Neuroscience and the Center for Neurosciences, Campus Box 345, University of Colorado at Boulder, Boulder, Colorado 80309-0345, USA.
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Kwon BK, Okon E, Hillyer J, Mann C, Baptiste D, Weaver LC, Fehlings MG, Tetzlaff W. A systematic review of non-invasive pharmacologic neuroprotective treatments for acute spinal cord injury. J Neurotrauma 2011; 28:1545-88. [PMID: 20146558 PMCID: PMC3143410 DOI: 10.1089/neu.2009.1149] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An increasing number of therapies for spinal cord injury (SCI) are emerging from the laboratory and seeking translation into human clinical trials. Many of these are administered as soon as possible after injury with the hope of attenuating secondary damage and maximizing the extent of spared neurologic tissue. In this article, we systematically review the available pre-clinical research on such neuroprotective therapies that are administered in a non-invasive manner for acute SCI. Specifically, we review treatments that have a relatively high potential for translation due to the fact that they are already used in human clinical applications, or are available in a form that could be administered to humans. These include: erythropoietin, NSAIDs, anti-CD11d antibodies, minocycline, progesterone, estrogen, magnesium, riluzole, polyethylene glycol, atorvastatin, inosine, and pioglitazone. The literature was systematically reviewed to examine studies in which an in-vivo animal model was utilized to assess the efficacy of the therapy in a traumatic SCI paradigm. Using these criteria, 122 studies were identified and reviewed in detail. Wide variations exist in the animal species, injury models, and experimental designs reported in the pre-clinical literature on the therapies reviewed. The review highlights the extent of investigation that has occurred in these specific therapies, and points out gaps in our knowledge that would be potentially valuable prior to human translation.
Collapse
Affiliation(s)
- Brian K Kwon
- University of British Columbia, Combined Neurosurgical and Orthopaedic Spine Program, Department of Orthopaedics, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Hutchinson MR, Shavit Y, Grace PM, Rice KC, Maier SF, Watkins LR. Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev 2011; 63:772-810. [PMID: 21752874 DOI: 10.1124/pr.110.004135] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vastly stimulated by the discovery of opioid receptors in the early 1970s, preclinical and clinical research was directed at the study of stereoselective neuronal actions of opioids, especially those played in their crucial analgesic role. However, during the past decade, a new appreciation of the non-neuronal actions of opioids has emerged from preclinical research, with specific appreciation for the nonclassic and nonstereoselective sites of action. Opioid activity at Toll-like receptors, newly recognized innate immune pattern recognition receptors, adds substantially to this unfolding story. It is now apparent from molecular and rodent data that these newly identified signaling events significantly modify the pharmacodynamics of opioids by eliciting proinflammatory reactivity from glia, the immunocompetent cells of the central nervous system. These central immune signaling events, including the release of cytokines and chemokines and the associated disruption of glutamate homeostasis, cause elevated neuronal excitability, which subsequently decreases opioid analgesic efficacy and leads to heightened pain states. This review will examine the current preclinical literature of opioid-induced central immune signaling mediated by classic and nonclassic opioid receptors. A unification of the preclinical pharmacology, neuroscience, and immunology of opioids now provides new insights into common mechanisms of chronic pain, naive tolerance, analgesic tolerance, opioid-induced hyperalgesia, and allodynia. Novel pharmacological targets for future drug development are discussed in the hope that disease-modifying chronic pain treatments arising from the appreciation of opioid-induced central immune signaling may become practical.
Collapse
Affiliation(s)
- Mark R Hutchinson
- Discipline of Pharmacology, School of Medical Science, University of Adelaide, South Australia, Australia, 5005.
| | | | | | | | | | | |
Collapse
|
113
|
Ng KY, Wong YH, Wise H. Glial cells isolated from dorsal root ganglia express prostaglandin E2 (EP4) and prostacyclin (IP) receptors. Eur J Pharmacol 2011; 661:42-8. [DOI: 10.1016/j.ejphar.2011.04.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/04/2011] [Accepted: 04/14/2011] [Indexed: 01/31/2023]
|
114
|
Inhibition of ERK phosphorylation by substance P N-terminal fragment decreases capsaicin-induced nociceptive response. Neuropharmacology 2011; 61:608-13. [PMID: 21601581 DOI: 10.1016/j.neuropharm.2011.04.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 04/09/2011] [Accepted: 04/20/2011] [Indexed: 11/21/2022]
Abstract
Previous research has demonstrated that substance P N-terminal fragments produced by the action of several different enzymes in the spinal cord could reduce nociception when injected intrathecally (i.t.) into mice. The present study examined the possible involvement of spinal extracellular signal-regulated protein kinase (ERK), a mitogen-activated protein kinase (MAPK), in i.t. substance P (1-7)-induced antinociception as assayed by the capsaicin test. The i.t. injection of substance P (1-7) (20-80 nmol) into mice resulted in a dose-dependent attenuation of paw-licking/biting behavior induced by intraplantar injection of capsaicin, which was reversed by co-injection of [D-Pro(2), D-Phe(7)]substance P (1-7), a D-isomer and antagonist of substance P (1-7). In Western blot analysis, intraplantar injection of capsaicin (400 and 1600 ng/paw) produced an increase of ERK phosphorylation in the dorsal spinal cord, whereas expression of p38 and c-Jun N-terminal kinase (JNK) phosphorylation was unchanged by capsaicin treatment. In parallel to the behavioral results, i.t. substance P (1-7) inhibited capsaicin-induced ERK phosphorylation, which was reversed by [D-Pro(2), D-Phe(7)]substance P (1-7), a substance P (1-7) antagonist. Both nociceptive behavioral response and spinal ERK activation induced by intraplantar capsaicin were reduced by U0126, an upstream inhibitor of ERK phosphorylation. Taken together, these findings suggest that the activation of ERK, but not p38 and JNK MAPKs in the spinal cord, contributes to intraplantar capsaicin-induced nociception, and that blocking ERK activation via substance P (1-7) binding sites may provide significant antinociception at the spinal cord level.
Collapse
|
115
|
Berger JV, Knaepen L, Janssen SPM, Jaken RJP, Marcus MAE, Joosten EAJ, Deumens R. Cellular and molecular insights into neuropathy-induced pain hypersensitivity for mechanism-based treatment approaches. ACTA ACUST UNITED AC 2011; 67:282-310. [PMID: 21440003 DOI: 10.1016/j.brainresrev.2011.03.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 02/16/2011] [Accepted: 03/18/2011] [Indexed: 12/15/2022]
Abstract
Neuropathic pain is currently being treated by a range of therapeutic interventions that above all act to lower neuronal activity in the somatosensory system (e.g. using local anesthetics, calcium channel blockers, and opioids). The present review highlights novel and often still largely experimental treatment approaches based on insights into pathological mechanisms, which impact on the spinal nociceptive network, thereby opening the 'gate' to higher brain centers involved in the perception of pain. Cellular and molecular mechanisms such as ectopia, sensitization of nociceptors, phenotypic switching, structural plasticity, disinhibition, and neuroinflammation are discussed in relation to their involvement in pain hypersensitivity following either peripheral neuropathies or spinal cord injury. A mechanism-based treatment approach may prove to be successful in effective treatment of neuropathic pain, but requires more detailed insights into the persistence of cellular and molecular pain mechanisms which renders neuropathic pain unremitting. Subsequently, identification of the therapeutic window-of-opportunities for each specific intervention in the particular peripheral and/or central neuropathy is essential for successful clinical trials. Most of the cellular and molecular pain mechanisms described in the present review suggest pharmacological interference for neuropathic pain management. However, also more invasive treatment approaches belong to current and/or future options such as neuromodulatory interventions (including spinal cord stimulation) and cell or gene therapies, respectively.
Collapse
Affiliation(s)
- Julie V Berger
- Department of Anesthesiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
116
|
White JPM, Ko CW, Fidalgo AR, Cibelli M, Paule CC, Anderson PJ, Cruz C, Gomba S, Matesz K, Veress G, Avelino A, Nagy I. Severe burn injury induces a characteristic activation of extracellular signal-regulated kinase 1/2 in spinal dorsal horn neurons. Eur J Pain 2011; 15:683-90. [PMID: 21371920 DOI: 10.1016/j.ejpain.2010.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 12/02/2010] [Accepted: 12/21/2010] [Indexed: 01/18/2023]
Abstract
We have studied scalding-type burn injury-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in the spinal dorsal horn, which is a recognised marker for spinal nociceptive processing. At 5min after severe scalding injury to mouse hind-paw, a substantial number of phosphorylated ERK1/2 (pERK1/2) immunopositive neurons were found in the ipsilateral dorsal horn. At 1h post-injury, the number of pERK1/2-labelled neurons remained substantially the same. However, at 3h post-injury, a further increase in the number of labelled neurons was found on the ipsilateral side, while a remarkable increase in the number of labelled neurons on the contralateral side resulted in there being no significant difference between the extent of the labelling on both sides. By 6h post-injury, the number of labelled neurons was reduced on both sides without there being significant difference between the two sides. A similar pattern of severe scalding injury-induced activation of ERK1/2 in spinal dorsal horn neurons over the same time-course was found in mice which lacked the transient receptor potential type 1 receptor (TRPV1) except that the extent to which ERK1/2 was activated in the ipsilateral dorsal horn at 5 min post-injury was significantly greater in wild-type animals when compared to TRPV1 null animals. This difference in activation of ERK1/2 in spinal dorsal horn neurons was abolished within 1h after injury, demonstrating that TRPV1 is not essential for the maintenance of ongoing spinal nociceptive processing in inflammatory pain conditions in mouse resulting from at least certain types of severe burn injury.
Collapse
Affiliation(s)
- John P M White
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, 369, Fulham Road, London SW10 9NH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Wang D, Lu Q, Shao B, Cui G, Wang Y, Liu Y, Wu Q, Zhao J, Cui Z, Xu J, Yang H, Shen A, Gu X. An Upregulation of SIAH1 After Spinal Cord Injury in Adult Rats. J Mol Neurosci 2011; 45:134-44. [PMID: 21336655 DOI: 10.1007/s12031-011-9501-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/08/2010] [Indexed: 11/25/2022]
Affiliation(s)
- Donglin Wang
- The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Sandhir R, Gregory E, He YY, Berman NEJ. Upregulation of inflammatory mediators in a model of chronic pain after spinal cord injury. Neurochem Res 2011; 36:856-62. [PMID: 21287269 DOI: 10.1007/s11064-011-0414-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2011] [Indexed: 11/24/2022]
Abstract
Chronic neuropathic pain is a disabling condition observed in large number of individuals following spinal cord injury (SCI). Recent progress points to an important role of neuroinflammation in the pathogenesis of central neuropathic pain. The focus of the present study is to investigate the role of proinflammatory molecules IL-1β, TNF-α, MCP-1, MMP-9 and TIMP-1 in chronic neuropathic pain in a rodent model of SCI. Rats were subjected to spinal cord contusion using a controlled linear motor device with an injury epicenter at T10. The SCI rats had severe impairment in locomotor function at 7 days post-injury as assessed by the BBB score. The locomotor scores showed significant improvement starting at day 14 and thereafter showed no further improvement. The Hargreaves' test was used to assess thermal hyperalgesia for hindpaw, forepaw and tail. A significant reduction in withdrawal latency was observed for forepaw and tail of SCI rats at days 21 and 28, indicating the appearance of thermal hyperalgesia. Changes in expression of mRNAs for IL-1β, TNF-α, MCP-1, MMP-9 and TIMP-1 were assessed using real-time polymerase chain reaction in spinal cord including the injury epicenter along with regions above and below the level of lesion at day 28 post-injury. A significant increase was observed in the expression of MCP-1, TNF-α, TIMP-1 and IL-1β in the injury epicenter, whereas only TIMP-1 was upregulated in the area below the injury epicenter. The results of the study suggest that prolonged upregulation of inflammatory mediators might be involved in chronic neuropathic pain in SCI, and that TIMP-1 may play a role in maintenance of chronic below level pain.
Collapse
Affiliation(s)
- Rajat Sandhir
- Steve Palermo Nerve Regeneration Laboratory, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
119
|
Xia M, Zhu Y. Signaling pathways of ATP-induced PGE2 release in spinal cord astrocytes are EGFR transactivation-dependent. Glia 2011; 59:664-74. [PMID: 21294165 DOI: 10.1002/glia.21138] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 12/09/2010] [Indexed: 01/29/2023]
Abstract
Traumatic spinal cord injury is characterized by an immediate, irreversible loss of tissue at the lesion site, as well as a secondary expansion of tissue damage over time. Although secondary injury should, in principle, be preventable, no effective treatment options currently exist for patients with acute spinal cord injury (SCI). Excessive release of ATP by the traumatized tissue, triggers the rapid release of arachidonic acid (AA) and prostaglandin E2 (PGE2), and has beenimplicated in acute and chronic neuropathic pain and inflammation. But the intracellular pathways between ATP and PGE2 remain largely unknown. We have explored the signaling events involved in this synthesis by primarily culturing spinal cord astrocytes: (1) we determined significant PGE2 production increased by ATP is mainly via Subtype 1 of P2 purinoceptors (P2Y1) but not P2Y2; (2) we found that ATP strongly increased the level of intracellular Ca(2+) via P2Y1 receptor; (3) we indicated that ATP stimulates the definitely release of AA and PGE2 which involved the transactivation of epidermal growth factor (EGF) receptor, the phosphorylation of extracellular-regulated protein kinases 1 and 2 (ERK(1/2) ) and the activation of cytosolic phospholipase A(2) (cPLA(2) ); (4) we examined ATP could increase the phosphorylation of Akt via P2Y1 receptor which also depend on the transactivation of EGFR, but the activation of Akt has no effect on the downstream of cPLA(2) phosphorylation. ATP induced by SCI could mobilize the release of AA and PGE2. And inhibition of PGE2 release reduces behavioral signs of pain after SCI and peripheral nerve injury.
Collapse
Affiliation(s)
- Maosheng Xia
- Department of Orthopaedics, The First Hospital of China Medical University, Heping District, Shenyang, People's Republic of China
| | | |
Collapse
|
120
|
Calvo M, Zhu N, Grist J, Ma Z, Loeb JA, Bennett DLH. Following nerve injury neuregulin-1 drives microglial proliferation and neuropathic pain via the MEK/ERK pathway. Glia 2011; 59:554-68. [PMID: 21319222 PMCID: PMC3222694 DOI: 10.1002/glia.21124] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/22/2010] [Indexed: 12/16/2022]
Abstract
Following peripheral nerve injury microglia accumulate within the spinal cord and adopt a proinflammatory phenotype a process which contributes to the development of neuropathic pain. We have recently shown that neuregulin-1, a growth factor released following nerve injury, activates erbB 2, 3, and 4 receptors on microglia and stimulates proliferation, survival and chemotaxis of these cells. Here we studied the intracellular signaling pathways downstream of neuregulin-1-erbB activation in microglial cells. We found that neuregulin-1 in vitro induced phosphorylation of ERK1/2 and Akt without activating p38MAPK. Using specific kinase inhibitors we found that the mitogenic effect of neuregulin-1 on microglia was dependant on MEK/ERK1/2 pathway, the chemotactic effect was dependant on PI3K/Akt signaling and survival was dependant on both pathways. Intrathecal treatment with neuregulin-1 was associated with microgliosis and development of mechanical and cold pain related hypersensitivity which was dependant on ERK1/2 phosphorylation in microglia. Spinal nerve ligation results in a robust microgliosis and sustained ERK1/2 phosphorylation within these cells. This pathway is downstream of neuregulin-1/erbB signaling since its blockade resulted in a significant reduction in microglial ERK1/2 phosphorylation. Inhibition of the MEK/ERK1/2 pathway resulted in decreased spinal microgliosis and in reduced mechanical and cold hypersensitivity after peripheral nerve damage. We conclude that neuregulin-1 released after nerve injury activates microglial erbB receptors which consequently stimulates the MEK/ERK1/2 pathway that drives microglial proliferation and contributes to the development of neuropathic pain.
Collapse
Affiliation(s)
- Margarita Calvo
- Wolfson CARD, Kings College London, Hodgkin Building, Guys Campus, SE1 1UL, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
121
|
Hains B, Vera-Portocarrero LP. Animal Models of Central Neuropathic Pain. ANIMAL MODELS OF PAIN 2011. [DOI: 10.1007/978-1-60761-880-5_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
122
|
Brenneis C, Coste O, Altenrath K, Angioni C, Schmidt H, Schuh CD, Zhang DD, Henke M, Weigert A, Brüne B, Rubin B, Nusing R, Scholich K, Geisslinger G. Anti-inflammatory role of microsomal prostaglandin E synthase-1 in a model of neuroinflammation. J Biol Chem 2010; 286:2331-42. [PMID: 21075851 DOI: 10.1074/jbc.m110.157362] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A major immunological response during neuroinflammation is the activation of microglia, which subsequently release proinflammatory mediators such as prostaglandin E(2) (PGE(2)). Besides its proinflammatory properties, cyclooxygenase-2 (COX-2)-derived PGE(2) has been shown to exhibit anti-inflammatory effects on innate immune responses. Here, we investigated the role of microsomal PGE(2) synthase-1 (mPGES-1), which is functionally coupled to COX-2, in immune responses using a model of lipopolysaccharide (LPS)-induced spinal neuroinflammation. Interestingly, we found that activation of E-prostanoid (EP)2 and EP4 receptors, but not EP1, EP3, PGI(2) receptor (IP), thromboxane A(2) receptor (TP), PGD(2) receptor (DP), and PGF(2) receptor (FP), efficiently blocked LPS-induced tumor necrosis factor α (TNFα) synthesis and COX-2 and mPGES-1 induction as well as prostaglandin synthesis in spinal cultures. In vivo, spinal EP2 receptors were up-regulated in microglia in response to intrathecally injected LPS. Accordingly, LPS priming reduced spinal synthesis of TNFα, interleukin 1β (IL-1β), and prostaglandins in response to a second intrathecal LPS injection. Importantly, this reduction was only seen in wild-type but not in mPGES-1-deficient mice. Furthermore, intrathecal application of EP2 and EP4 agonists as well as genetic deletion of EP2 significantly reduced spinal TNFα and IL-1β synthesis in mPGES-1 knock-out mice after LPS priming. These data suggest that initial inflammation prepares the spinal cord for a negative feedback regulation by mPGES-1-derived PGE(2) followed by EP2 activation, which limits the synthesis of inflammatory mediators during chronic inflammation. Thus, our data suggest a role of mPGES-1-derived PGE(2) in resolution of neuroinflammation.
Collapse
Affiliation(s)
- Christian Brenneis
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, ZAFES, Hospital of the Goethe-University, 60590 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Bedi SS, Yang Q, Crook RJ, Du J, Wu Z, Fishman HM, Grill RJ, Carlton SM, Walters ET. Chronic spontaneous activity generated in the somata of primary nociceptors is associated with pain-related behavior after spinal cord injury. J Neurosci 2010; 30:14870-82. [PMID: 21048146 PMCID: PMC3073589 DOI: 10.1523/jneurosci.2428-10.2010] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 08/24/2010] [Accepted: 09/10/2010] [Indexed: 02/08/2023] Open
Abstract
Mechanisms underlying chronic pain that develops after spinal cord injury (SCI) are incompletely understood. Most research on SCI pain mechanisms has focused on neuronal alterations within pain pathways at spinal and supraspinal levels associated with inflammation and glial activation. These events might also impact central processes of primary sensory neurons, triggering in nociceptors a hyperexcitable state and spontaneous activity (SA) that drive behavioral hypersensitivity and pain. SCI can sensitize peripheral fibers of nociceptors and promote peripheral SA, but whether these effects are driven by extrinsic alterations in surrounding tissue or are intrinsic to the nociceptor, and whether similar SA occurs in nociceptors in vivo are unknown. We show that small DRG neurons from rats (Rattus norvegicus) receiving thoracic spinal injury 3 d to 8 months earlier and recorded 1 d after dissociation exhibit an elevated incidence of SA coupled with soma hyperexcitability compared with untreated and sham-treated groups. SA incidence was greatest in lumbar DRG neurons (57%) and least in cervical neurons (28%), and failed to decline over 8 months. Many sampled SA neurons were capsaicin sensitive and/or bound the nociceptive marker, isolectin B4. This intrinsic SA state was correlated with increased behavioral responsiveness to mechanical and thermal stimulation of sites below and above the injury level. Recordings from C- and Aδ-fibers revealed SCI-induced SA generated in or near the somata of the neurons in vivo. SCI promotes the entry of primary nociceptors into a chronic hyperexcitable-SA state that may provide a useful therapeutic target in some forms of persistent pain.
Collapse
Affiliation(s)
- Supinder S. Bedi
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, Texas 77030, and
| | - Qing Yang
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, Texas 77030, and
| | - Robyn J. Crook
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, Texas 77030, and
| | - Junhui Du
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Zizhen Wu
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, Texas 77030, and
| | - Harvey M. Fishman
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, Texas 77030, and
| | - Raymond J. Grill
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, Texas 77030, and
| | - Susan M. Carlton
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, Houston, Texas 77030, and
| |
Collapse
|
124
|
Minocycline Attenuates Mechanical Allodynia and Central Sensitization Following Peripheral Second-Degree Burn Injury. THE JOURNAL OF PAIN 2010; 11:1146-54. [DOI: 10.1016/j.jpain.2010.02.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 02/03/2010] [Accepted: 02/12/2010] [Indexed: 12/30/2022]
|
125
|
Extracellular signal-regulated kinases in pain of peripheral origin. Eur J Pharmacol 2010; 650:8-17. [PMID: 20950608 DOI: 10.1016/j.ejphar.2010.09.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/01/2010] [Accepted: 09/23/2010] [Indexed: 12/17/2022]
Abstract
Activation of members of the family of enzymes known as extracellular signal-regulated kinases (ERKs) is now known to be involved in the development and/or maintenance of the pain associated with many inflammatory conditions, such as herniated spinal disc pain, chronic inflammatory articular pain, and the pain associated with bladder inflammation. Moreover, ERKs are implicated in the development of neuropathic pain signs in animals which are subjected to the lumbar 5 spinal nerve ligation model and the chronic constriction injury model of neuropathic pain. The position has now been reached where all scientists working on pain subjects ought to be aware of the importance of ERKs, if only because certain of these enzymes are increasingly employed as experimental markers of nociceptive processing. Here, we introduce the reader, first, to the intracellular context in which these enzymes function. Thereafter, we consider the involvement of ERKs in mediating nociceptive signalling to the brain resulting from noxious stimuli at the periphery which will be interpreted by the brain as pain of peripheral origin.
Collapse
|
126
|
van Neerven S, Joosten EA, Brook GA, Lambert CA, Mey J, Weis J, Marcus MA, Steinbusch HW, van Kleef M, Patijn J, Deumens R. Repetitive Intrathecal VEGF165 Treatment Has Limited Therapeutic Effects after Spinal Cord Injury in the Rat. J Neurotrauma 2010; 27:1781-91. [DOI: 10.1089/neu.2010.1484] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Sabien van Neerven
- Department of Anesthesiology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Institute of Biology II, Medical Faculty, RWTH Aachen University, Aachen, Germany
- European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| | - Elbert A.J. Joosten
- Department of Anesthesiology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| | - Gary A. Brook
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
- European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| | - Charles A. Lambert
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Sart-Tilman, Belgium
| | - Jörg Mey
- Institute of Biology II, Medical Faculty, RWTH Aachen University, Aachen, Germany
- European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
- European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| | - Marco A. Marcus
- Department of Anesthesiology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Harry W. Steinbusch
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| | - Maarten van Kleef
- Department of Anesthesiology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jaap Patijn
- Department of Anesthesiology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ronald Deumens
- Department of Anesthesiology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
- European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| |
Collapse
|
127
|
Li H, Hu J, Ma L, Yuan Z, Wang Y, Wang X, Xing D, Lei F, Du L. Comprehensive study of baicalin down-regulating NOD2 receptor expression of neurons with oxygen-glucose deprivation in vitro and cerebral ischemia-reperfusion in vivo. Eur J Pharmacol 2010; 649:92-9. [PMID: 20863826 DOI: 10.1016/j.ejphar.2010.09.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/31/2010] [Accepted: 09/07/2010] [Indexed: 11/24/2022]
Abstract
Cerebral ischemia-reperfusion can activate several transcription factors and lead to inflammatory reactions, which related to pattern recognition receptors with immune activating functions. NOD2 (nucleotide-binding oligomerization domain protein 2) is one of the receptors involved in innate immune response and is genetically associated with several inflammatory reactions. Since baicalin has the pharmacological effects of anti-inflammation and protection of brain from cerebral ischemia-reperfusion, we studied baicalin's effect on NOD2/TNFα in the cell of oxygen-glucose deprivation (OGD) in vitro and the mice of cerebral ischemia-reperfusion in vivo. The results showed that NOD2 and TNFα were up regulated in the cells with oxygen-glucose deprivation, not only in BV2 cells, but also in both of PC12 cells and primary neuron cells, which suggested NOD2 could express directly in neuron while OGD treatment. Baicalin (10 μg/ml) could effectively down regulate the expression of NOD2 and TNFα in both mRNA and protein levels. Meanwhile, baicalin (50 mg/kg, i.p.) could also down regulate the expression of NOD2 and TNFα in protein levels significantly, in which agreed with its effect in vitro study. These data demonstrated that targeting on NOD2 especially in neurons directly was possibly attributed to the neural-protective effect of baicalin in the injury of cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Huiying Li
- Protein Science Laboratory of the Ministry of Education, Laboratory of Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Ma L, Nagai J, Ueda H. Microglial activation mediates de novo lysophosphatidic acid production in a model of neuropathic pain. J Neurochem 2010; 115:643-53. [PMID: 20722972 DOI: 10.1111/j.1471-4159.2010.06955.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We recently demonstrated that de novo lysophosphatidic acid (LPA) production in the spinal cord occurs in the early phase after nerve injury or LPA injection, and underlies the peripheral mechanisms of neuropathic pain. In this study, we examined the possible involvement of spinal cord microglia in such LPA-mediated functions. Intrathecal LPA injection rapidly increased the gene expression of CD11b and protein expression of phosphor-p38, accompanied by a morphological change of microglia from a ramified to amoeboid shape. Although early treatment with minocycline significantly inhibited LPA-induced neuropathic pain-like behavior and microglial activation, late treatment did not. Early treatment with minocycline also blocked LPA-evoked de novo LPA production and the increased activation of cytosolic phospholipase A(2), an LPA synthesis-related enzyme. Similar results were observed when the sciatic nerve was partially injured: early, but not late, treatment with minocycline significantly inhibited the injury-induced neuropathic pain, microglial activation, de novo LPA production and the underlying increased activation of cytosolic phospholipase A(2) as well as calcium-independent phospholipase A(2), another LPA synthesis-related enzyme. These findings suggest that the early phase of microglial activation is involved in de novo LPA production, and that this underlies the initial mechanisms of nerve injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Lin Ma
- Division of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, Bunkyo-machi, Nagasaki, Japan
| | | | | |
Collapse
|
129
|
Gong K, Yue Y, Zou X, Li D, Lin Q. Minocycline inhibits the enhancement of antidromic primary afferent stimulation-evoked vasodilation following intradermal capsaicin injection. Neurosci Lett 2010; 482:177-81. [PMID: 20654697 DOI: 10.1016/j.neulet.2010.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/06/2010] [Accepted: 07/13/2010] [Indexed: 02/07/2023]
Abstract
Neurogenic inflammation is induced by inflammatory mediators released in peripheral tissue from primary afferent nociceptors. Our previous studies suggest that neurogenic inflammation induced by intradermal injection of capsaicin results from the enhancement of dorsal root reflexes (DRRs), which involve antidromic activation of dorsal root ganglion (DRG) neurons. Numerous studies have reported the important role of glial modulation in pain. However, it remains unclear whether glial cells participate in the process of neurogenic inflammation-induced pain. Here we tested the role of DRG satellite glial cells (SGCs) in this process in anesthetized rats by administration of a glial inhibitor, minocycline. Electrical stimuli (ES, frequency 10 Hz; duration 1 ms; strength 3 mA) were applied to the cut distal ends of the L4-5 dorsal roots. The stimuli evoked antidromic action potentials designed to mimic DRRs. Local cutaneous blood flow in the hindpaw was measured using a Doppler flow meter. Antidromic ES for 10 min evoked a significant vasodilation that could be inhibited dose-dependently by local administration of the calcitonin gene-related peptide receptor antagonist, CGRP8-37. Pretreatment with capsaicin intradermally injected into the hindpaw 2h before the ES enhanced greatly the vasodilation evoked by antidromic ES, and this enhancement could be reversed by minocycline pretreatment. Our findings support the view that neurogenic inflammation following capsaicin injection involves antidromic activation of DRG neurons via the generation of DRRs. Inhibition of neurogenic inflammation by minocycline is suggested to be associated with its inhibitory effect on SGCs that are possibly activated following capsaicin injection.
Collapse
Affiliation(s)
- Kerui Gong
- Department of Psychology, University of Texas at Arlington, TX 76019, USA
| | | | | | | | | |
Collapse
|
130
|
Validity of acute and chronic tactile sensory testing after spinal cord injury in rats. Exp Neurol 2010; 225:366-76. [PMID: 20643128 DOI: 10.1016/j.expneurol.2010.07.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 07/10/2010] [Accepted: 07/13/2010] [Indexed: 11/22/2022]
Abstract
Spinal cord injury (SCI) impairs sensory systems causing allodynia. Measuring the development of allodynia in rodent models of SCI is challenging due to spinal shock and marked motor impairments. Assessment of SCI-induced allodynia is not standardized across labs, making interpretation of results difficult. Therefore, we validated sensory threshold assessment after SCI and developed a novel assessment of allodynia prior to motor recovery in a rat SCI model. One hundred fifty-six Sprague-Dawley rats received T8 laminectomy or mild to moderate SCI using the OSU SCI device (0.3 mm to 1.3 mm cord displacement). To determine tactile thresholds, von Frey hairs (VFH) were applied in Up-Down or ascending order to the dorsal or plantar hindpaw. The most efficient and valid procedures that maintain high sensitivity and specificity were identified. Ten Up-Down VFH applications yielded stable thresholds; reducing the risk of threshold decay and unnecessary exposure to painful stimuli. Importantly, distraction of SCI-rats with food revealed differential decay of thresholds than when distraction is not provided. The new test uses dorsal VFH stimulation and is independent of trunk or hindlimb control. Acute dorsal VFH thresholds collected before recovery of hindlimb weight support accurately predicted plantar VFH thresholds measured at late timepoints (chi(2)=8.479; p<0.05). Thus, standardized testing early after SCI using the dorsal VFH test or later using 10 stimuli in the Up-Down test produces valid measures of tactile sensation across many SCI severities. Early detection of allodynia in experimental SCI will allow identification of mechanisms responsible for pain development and determine targets for therapeutic interventions.
Collapse
|
131
|
|
132
|
Morsy MD, Mostafa OA, Hassan WN. A potential protective effect of alpha-tocopherol on vascular complication in spinal cord reperfusion injury in rats. J Biomed Sci 2010; 17:55. [PMID: 20609232 PMCID: PMC2909177 DOI: 10.1186/1423-0127-17-55] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 07/07/2010] [Indexed: 12/02/2022] Open
Abstract
Background Paraplegia remains a potential complication of spinal cord ischemic reperfusion injury (IRI) in which oxidative stress induced cyclooxygenase activities may contribute to ischemic neuronal damage. Prolonged administration of vitamin E (α-TOL), as a potent biological antioxidant, may have a protective role in this oxidative inflammatory ischemic cascade to reduce the incidence of paraplegia. The present study was designed to evaluate the preventive value of α-TOL in IRI of spinal cord. Methods For this study, 50 male Sprague-Dawley rats were used and divided into five experimental groups (n = 10): Control group (C); α-TOL control group (CE) which received intramuscular (i.m.) α-TOL injections (600 mg/kg); Sham operated group (S), IRI rats were subjected to laparotomy and clamping of the aorta just above the bifurcation for 45 min, then the clamp was released for 48 hrs for reperfusion; and IRIE rats group, received 600 mg/kg of α-TOL i.m. twice weekly for 6 weeks, followed by induction of IRI similar to the IRI group. At the end of the experimental protocol; motor, sensory and placing/stepping reflex evaluation was done. Plasma nitrite/nitrate (NOx) was measured. Then animals' spinal cord lumbar segments were harvested and homogenized for measurement of the levels of prostaglandin E2 (PGE2), malondialdehyde (MDA) and advanced oxidation products (AOPP), while superoxide dismutase (SOD) and catalase (CAT) activity were evaluated. Results Induction of IRI in rats resulted in significant increases in plasma levels of nitrite/nitrate (p < 0.001) and spinal cord homogenate levels of PGE2, MDA, advanced oxidation protein products AOPP and SOD with significant reduction (p < 0.001) in CAT homogenate levels. Significant impairment of motor, sensory functions and placing/stepping reflex was observed with IRI induction in the spinal cord (p < 0.001). α-TOL administration in IRIE group significantly improved all the previously measured parameters compared with IRI group. Conclusions α-TOL administration significantly prevents the damage caused by spinal cord IRI in rats with subsequent recovery of both motor and sensory functions. Alpha-tocopherol improves the oxidative stress level with subsequent reduction of the incidence of neurological deficits due to spinal cord IRI conditions.
Collapse
Affiliation(s)
- Mohamed D Morsy
- Physiology Department, College of Medicine, Menoufiya University, Egypt.
| | | | | |
Collapse
|
133
|
Abstract
Over the past few years, the control of pain exerted by glial cells has emerged as a promising target against pathological pain. Indeed, changes in glial phenotypes have been reported throughout the entire nociceptive pathway, from peripheral nerves to higher integrative brain regions, and pharmacological inhibition of such glial reactions reduces the manifestation of pain in animal models. This complex interplay between glia and neurons relies on various mechanisms depending both on glial cell types considered (astrocytes, microglia, satellite cells, or Schwann cells), the anatomical location of the regulatory process (peripheral nerve, spinal cord, or brain), and the nature of the chronic pain paradigm. Intracellularly, recent advances have pointed to the activation of specific cascades, such as mitogen-associated protein kinases (MAPKs) in the underlying processes behind glial activation. In addition, given the large number of functions accomplished by glial cells, various mechanisms might sensitize nociceptive neurons including a release of pronociceptive cytokines and neurotrophins or changes in neurotransmitter-scavenging capacity. The authors review the conceptual advances made in the recent years about the implication of central and peripheral glia in animal models of chronic pain and discuss the possibility to translate it into human therapies in the future.
Collapse
Affiliation(s)
- Romain-Daniel Gosselin
- Pain Research Unit, Department of Anesthesiology, University Hospital Center, University of Lausanne, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
134
|
Toth CC, Jedrzejewski NM, Ellis CL, Frey WH. Cannabinoid-mediated modulation of neuropathic pain and microglial accumulation in a model of murine type I diabetic peripheral neuropathic pain. Mol Pain 2010; 6:16. [PMID: 20236533 PMCID: PMC2845559 DOI: 10.1186/1744-8069-6-16] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 03/17/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite the frequency of diabetes mellitus and its relationship to diabetic peripheral neuropathy (DPN) and neuropathic pain (NeP), our understanding of underlying mechanisms leading to chronic pain in diabetes remains poor. Recent evidence has demonstated a prominent role of microglial cells in neuropathic pain states. One potential therapeutic option gaining clinical acceptance is the cannabinoids, for which cannabinoid receptors (CB) are expressed on neurons and microglia. We studied the accumulation and activation of spinal and thalamic microglia in streptozotocin (STZ)-diabetic CD1 mice and the impact of cannabinoid receptor agonism/antagonism during the development of a chronic NeP state. We provided either intranasal or intraperitoneal cannabinoid agonists/antagonists at multiple doses both at the initiation of diabetes as well as after establishment of diabetes and its related NeP state. RESULTS Tactile allodynia and thermal hypersensitivity were observed over 8 months in diabetic mice without intervention. Microglial density increases were seen in the dorsal spinal cord and in thalamic nuclei and were accompanied by elevation of phosphorylated p38 MAPK, a marker of microglial activation. When initiated coincidentally with diabetes, moderate-high doses of intranasal cannabidiol (cannaboid receptor 2 agonist) and intraperitoneal cannabidiol attenuated the development of an NeP state, even after their discontinuation and without modification of the diabetic state. Cannabidiol was also associated with restriction in elevation of microglial density in the dorsal spinal cord and elevation in phosphorylated p38 MAPK. When initiated in an established DPN NeP state, both CB1 and CB2 agonists demonstrated an antinociceptive effect until their discontinuation. There were no pronociceptive effects demonstated for either CB1 or CB2 antagonists. CONCLUSIONS The prevention of microglial accumulation and activation in the dorsal spinal cord was associated with limited development of a neuropathic pain state. Cannabinoids demonstrated antinociceptive effects in this mouse model of DPN. These results suggest that such interventions may also benefit humans with DPN, and their early introduction may also modify the development of the NeP state.
Collapse
Affiliation(s)
- Cory C Toth
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | |
Collapse
|
135
|
Wu J, Wrathall JR, Schachner M. Phosphatidylinositol 3-kinase/protein kinase Cdelta activation induces close homolog of adhesion molecule L1 (CHL1) expression in cultured astrocytes. Glia 2010; 58:315-28. [PMID: 19672967 DOI: 10.1002/glia.20925] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Upregulation of expression of the close homolog of adhesion molecule L1 (CHL1) by reactive astrocytes in the glial scar reduces axonal regeneration and inhibits functional recovery after spinal cord injury (SCI). Here, we investigate the molecular mechanisms underlying upregulation of CHL1 expression by analyzing the signal transduction pathways in vitro. We show that astrogliosis stimulated by bacterial lipopolysaccharide (LPS) upregulates CHL1 expression in primary cultures of mouse cerebral astrocytes, coinciding with elevated protein synthesis and translocation of protein kinase delta (PKCdelta) from cytosol to the membrane fraction. Blocking PKCdelta activity pharmacologically and genetically attenuates LPS-induced elevation of CHL1 protein expression through a phosphatidylinositol 3-kinase (PI3K) dependent pathway. LPS induces extracellular signal-regulated kinases (ERK1/2) phosphorylation through PKCdelta and blockade of ERK1/2 activation abolishes upregulation of CHL1 expression. LPS-triggered upregulation of CHL1 expression mediated through translocation of nuclear factor kappaB (NF-kappaB) to the nucleus is blocked by a specific NF-kappaB inhibitor and by inhibition of PI3K, PKCdelta, and ERK1/2 activities, implicating NF-kappaB as a downstream target for upregulation of CHL1 expression. Furthermore, the LPS-mediated upregulation of CHL1 expression by reactive astrocytes is inhibitory for hippocampal neurite outgrowth in cocultures. Although the LPS-triggered NO-guanylate cyclase-cGMP pathway upregulates glial fibrillary acid protein expression in cultured astrocytes, we did not observe this pathway to mediate LPS-induced upregulation of CHL1 expression. Our results indicate that elevated CHL1 expression by reactive astrocytes requires activation of PI3K/PKCdelta-dependent pathways and suggest that reduction of PI3K/PKCdelta activity represents a therapeutic target to downregulate CHL1 expression and thus benefit axonal regeneration after SCI.
Collapse
Affiliation(s)
- Junfang Wu
- W. M. Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University in the State of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
136
|
Yu CG, Yezierski RP, Joshi A, Raza K, Li Y, Geddes JW. Involvement of ERK2 in traumatic spinal cord injury. J Neurochem 2010; 113:131-42. [PMID: 20067580 DOI: 10.1111/j.1471-4159.2010.06579.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Activation of extracellular signal-regulated protein kinase 1/2 (ERK1/2) are implicated in the pathophysiology of spinal cord injury (SCI). However, the specific functions of individual ERK isoforms in neurodegeneration are largely unknown. We investigated the hypothesis that ERK2 activation may contribute to pathological and functional deficits following SCI and that ERK2 knockdown using RNA interference may provide a novel therapeutic strategy for SCI. Lentiviral ERK2 shRNA and siRNA were utilized to knockdown ERK2 expression in the spinal cord following SCI. Pre-injury intrathecal administration of ERK2 siRNA significantly reduced excitotoxic injury-induced activation of ERK2 (p < 0.001) and caspase 3 (p < 0.01) in spinal cord. Intraspinal administration of lentiviral ERK2 shRNA significantly reduced ERK2 expression in the spinal cord (p < 0.05), but did not alter ERK1 expression. Administration of the lentiviral ERK2 shRNA vector 1 week prior to severe spinal cord contusion injury resulted in a significant improvement in locomotor function (p < 0.05), total tissue sparing (p < 0.05), white matter sparing (p < 0.05), and gray matter sparing (p < 0.05) 6 weeks following severe contusive SCI. Our results suggest that ERK2 signaling is a novel target associated with the deleterious consequences of spinal injury.
Collapse
Affiliation(s)
- Chen-Guang Yu
- Spinal Cord and Brain Injury Research Center and Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0509, USA.
| | | | | | | | | | | |
Collapse
|
137
|
Pain and purinergic signaling. ACTA ACUST UNITED AC 2009; 63:222-32. [PMID: 19931560 DOI: 10.1016/j.brainresrev.2009.11.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 01/12/2023]
Abstract
A growing body of evidence indicates that extracellular nucleotides play important roles in the regulation of neuronal and glial functions in the nervous system through P2 purinoceptors. P2 purinoceptors are divided into two families, ionotropic receptors (P2X) and metabotropic receptors (P2Y). P2X receptors (seven types; P2X1-P2X7) contain intrinsic pores that open by binding with ATP, and P2Y receptors (eight types; P2Y1, 2, 4, 6, 11, 12, 13 and 14) are activated by nucleotides and couple to intracellular second-messenger systems through heterotrimeric G-proteins. Nucleotides are released or leaked from non-excitable cells as well as neurons in physiological and pathophysiological conditions. Studies have shown that microglia, a type of glial cells known as resident macrophages in the CNS, express several subtypes of P2X and P2Y receptors, and these receptors play a key role in pain signaling in the spinal cord under pathological conditions such as by peripheral nerve injury (called neuropathic pain). Within the spinal dorsal horn, peripheral nerve injury leads to a progressive series of changes in microglia including morphological hypertrophy of the cell body and proliferation, which are considered indicative of activation. These activated microglia upregulate expression of P2X/Y receptors (e.g., P2X4 and P2Y12). Importantly, pharmacological, molecular and genetic manipulations of the function or expression of these microglial molecules strongly suppress neuropathic pain. We expect that further investigation to determine how ATP signaling via P2X receptors participates in the pathogenesis of chronic pain will lead to a better understanding of the molecular mechanisms of pathological pain and provide clues for the development of new therapeutic drugs.
Collapse
|
138
|
|
139
|
Oh MJ, Seo TB, Kwon KB, Yoon SJ, Elzi DJ, Kim BG, Namgung U. Axonal Outgrowth and Erk1/2 Activation by Training after Spinal Cord Injury in Rats. J Neurotrauma 2009; 26:2071-82. [DOI: 10.1089/neu.2008.0800] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Myung-Jin Oh
- Department of Oriental Medicine, Daejeon University, Daejeon, Korea
| | - Tae Beom Seo
- Department of Oriental Medicine, Daejeon University, Daejeon, Korea
| | - Ku-Birm Kwon
- Department of Oriental Medicine, Daejeon University, Daejeon, Korea
| | - Sung-Jin Yoon
- Department of Physical Education, Korea University, Seoul, Korea
| | - David J. Elzi
- Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, Texas
| | - Byung G. Kim
- Brain Disease Research Center, Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Uk Namgung
- Department of Oriental Medicine, Daejeon University, Daejeon, Korea
| |
Collapse
|
140
|
Fukuda T, Hisano S, Tanaka M. Licking Decreases Phosphorylation of Extracellular Signal-Regulated Kinase in the Dorsal Horn of the Spinal Cord After a Formalin Test. Anesth Analg 2009; 109:1318-22. [DOI: 10.1213/ane.0b013e3181b0fe05] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
141
|
Romero-Sandoval EA, Horvath R, Landry RP, DeLeo JA. Cannabinoid receptor type 2 activation induces a microglial anti-inflammatory phenotype and reduces migration via MKP induction and ERK dephosphorylation. Mol Pain 2009; 5:25. [PMID: 19476641 PMCID: PMC2704199 DOI: 10.1186/1744-8069-5-25] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 05/28/2009] [Indexed: 12/30/2022] Open
Abstract
Background Cannabinoid receptor type 2 (CBR2) inhibits microglial reactivity through a molecular mechanism yet to be elucidated. We hypothesized that CBR2 activation induces an anti-inflammatory phenotype in microglia by inhibiting extracellular signal-regulated kinase (ERK) pathway, via mitogen-activated protein kinase-phosphatase (MKP) induction. MKPs regulate mitogen activated protein kinases, but their role in the modulation of microglial phenotype is not fully understood. Results JWH015 (a CBR2 agonist) increased MKP-1 and MKP-3 expression, which in turn reduced p-ERK1/2 in LPS-stimulated primary microglia. These effects resulted in a significant reduction of tumor necrosis factor-α (TNF) expression and microglial migration. We confirmed the causative link of these findings by using MKP inhibitors. We found that the selective inhibition of MKP-1 by Ro-31-8220 and PSI2106, did not affect p-ERK expression in LPS+JWH015-treated microglia. However, the inhibition of both MKP-1 and MKP-3 by triptolide induced an increase in p-ERK expression and in microglial migration using LPS+JWH015-treated microglia. Conclusion Our results uncover a cellular microglial pathway triggered by CBR2 activation. These data suggest that the reduction of pro-inflammatory factors and microglial migration via MKP-3 induction is part of the mechanism of action of CBR2 agonists. These findings may have clinical implications for further drug development.
Collapse
Affiliation(s)
- Edgar Alfonso Romero-Sandoval
- Department of Anesthesiology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Dartmouth College, Lebanon, New Hampshire 03756-1000, USA.
| | | | | | | |
Collapse
|
142
|
Activation of the neuronal extracellular signal-regulated kinase 2 in the spinal cord dorsal horn is required for complete Freund's adjuvant-induced pain hypersensitivity. J Neurosci 2009; 28:14087-96. [PMID: 19109491 DOI: 10.1523/jneurosci.2406-08.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Extracellular signal-regulated kinase 1 (ERK1) and ERK2 signaling in the spinal cord dorsal horn (SCDH) has been implicated in injury-induced pain hypersensitivity. Available ERK pathway inhibitors cannot distinguish between ERK1 and ERK2, nor can they differentially target the expression of neuronal or glial ERK1/2. We selectively inhibited the expression of ERK2 in neurons of the adult mouse SCDH by use of an ERK2 small interfering RNA (siRNA) delivered by a neurotropic adenoassociated viral vector. In situ hybridization revealed a siRNA vector-induced decrease in ERK2 mRNA in the ipsilateral SCDH. Immunohistochemistry showed a decreased neuronal phospho-ERK1/2 (pERK1/2), and Western blot analysis revealed that both ERK2 expression and phosphorylation were reduced by the siRNA vector. In contrast, basal ERK1 expression was not affected, although pERK1 was slightly increased. The siRNA vector-induced knockdown of ERK2 expression in the SCDH did not alter the baseline mechanical or thermal paw withdrawal thresholds. Hindpaw intraplantar injection of complete Freund's adjuvant (CFA) produced peripheral inflammation, mechanical allodynia, and thermal hyperalgesia in vector control animals that persisted for at least 96 h. It also caused an increase in SCDH ERK1 and ERK2 levels at 96 h and pERK1 and pERK2 levels at 1 and 96 h. The ERK2 siRNA vector prevented changes in ERK1, ERK2, and pERK2. In addition, the siRNA vector protected the animals from developing mechanical allodynia and thermal hyperalgesia throughout the 96 h after CFA. These findings indicate that ERK2 in the SCDH neurons is critical for the development of inflammatory pain hypersensitivity.
Collapse
|
143
|
Choi MS, Kwon KJ, Jeon SJ, Go HS, Kim KC, Ryu JR, Lee JM, Han SH, Cheong JH, Ryu JH, Bae KH, Shin CY, Ko KH. Schizandra chinensis Alkaloids Inhibit Lipopolysaccharide-Induced Inflammatory Responses in BV2 Microglial Cells. Biomol Ther (Seoul) 2009. [DOI: 10.4062/biomolther.2009.17.1.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
144
|
Saab CY, Hains BC. Remote neuroimmune signaling: a long-range mechanism of nociceptive network plasticity. Trends Neurosci 2009; 32:110-7. [PMID: 19135730 DOI: 10.1016/j.tins.2008.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/28/2008] [Accepted: 11/04/2008] [Indexed: 01/19/2023]
Abstract
Chronic pain secondary to neuronal injury is actively and continuously modulated at multiple locations along the sensory neuraxis. Here, we describe how nociceptive neurons of the spinal cord and thalamus process and communicate nociceptive information in terms of precisely calibrated firing patterns. We then discuss how several cell types with immunogenic properties (e.g. blood cells and glia) cause system-wide interference in nociceptive processing through novel signaling schema, thus contributing to nociceptive network plasticity and chronic pain.
Collapse
Affiliation(s)
- Carl Y Saab
- Department of Surgery, Rhode Island Hospital, Brown Alpert Medical School and Department of Neuroscience, Brown University, Providence, RI 02903, USA.
| | | |
Collapse
|
145
|
Abstract
PURPOSE OF REVIEW Central neuropathic pain is an important and disabling but often neglected problem following central nervous system lesions. The present review highlights recent advances in the understanding of the underlying mechanisms and in the diagnosis and treatment of central pain. RECENT FINDINGS Within the past year, the field of central pain has moved toward a more integrative understanding of central pain. The involvement of nonneuronal cells and interaction between multiple areas of the central nervous system has been recognized as important in the underlying mechanisms. The interest for conditions other than spinal cord injury, multiple sclerosis, and stroke has increased, and continued discussions on clear clinical diagnostic criteria are needed. The treatment of central pain is still a great challenge, but recent evidence points to tricyclic antidepressants, gabapentin and pregabalin, and selective serotonin-noradrenaline reuptake inhibitors as first-line drugs in central pain. An increased understanding of the psychosocial aspects of central pain also has implications for the treatment. SUMMARY Increased insight into the mechanisms of central pain will hopefully lead to increased efforts to study mechanism-based treatment of central pain.
Collapse
|
146
|
Jung JI, Kim J, Hong SK, Yoon YW. Long-term Follow-up of Cutaneous Hypersensitivity in Rats with a Spinal Cord Contusion. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2008; 12:299-306. [PMID: 19967071 DOI: 10.4196/kjpp.2008.12.6.299] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sometimes, spinal cord injury (SCI) results in various chronic neuropathic pain syndromes that occur diffusely below the level of the injury. It has been reported that behavioral signs of neuropathic pain are expressed in the animal models of contusive SCI. However, the observation period is relatively short considering the natural course of pain in human SCI patients. Therefore, this study was undertaken to examine the time course of mechanical and cold allodynia in the hindpaw after a spinal cord contusion in rats for a long period of time (30 weeks). The hindpaw withdrawal threshold to mechanical stimulation was applied to the plantar surface of the hindpaw, and the withdrawal frequency to the application of acetone was measured before and after a spinal contusion. The spinal cord contusion was produced by dropping a 10 g weight from a 6.25 and 12.5 mm height using a NYU impactor. After the injury, rats showed a decreased withdrawal threshold to von Frey stimulation, indicating the development of mechanical allodynia which persisted for 30 weeks. The withdrawal threshold between the two experimental groups was similar. The response frequencies to acetone increased after the SCI, but they were developed slowly. Cold allodynia persisted for 30 weeks in 12.5 mm group. The sham animals did not show any significant behavioral changes. These results provide behavioral evidence to indicate that the below-level pain was well developed and maintained in the contusion model for a long time, suggesting a model suitable for pain research, especially in the late stage of SCI or for long term effects of analgesic intervention.
Collapse
Affiliation(s)
- Ji-In Jung
- Department of Physiology and Neuroscience Research Center, Korea University College of Medicine, Seoul 136-705, Korea
| | | | | | | |
Collapse
|
147
|
Hulsebosch CE, Hains BC, Crown ED, Carlton SM. Mechanisms of chronic central neuropathic pain after spinal cord injury. ACTA ACUST UNITED AC 2008; 60:202-13. [PMID: 19154757 DOI: 10.1016/j.brainresrev.2008.12.010] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 12/25/2022]
Abstract
Not all spinal contusions result in mechanical allodynia, in which non-noxious stimuli become noxious. The studies presented use the NYU impactor at 12.5 mm drop or the Infinite Horizons Impactor (150 kdyn, 1 s dwell) devices to model spinal cord injury (SCI). Both of these devices and injury parameters, if done correctly, will result in animals with above level (forelimb), at level (trunk) and below level (hindlimb) mechanical allodynia that model the changes in evoked somatosensation experienced by the majority of people with SCI. The sections are as follows: 1) Mechanisms of remote microglial activation and pain signaling in "below-level" central pain 2) Intracellular signaling mechanisms in central sensitization in "at-level" pain 3) Peripheral sensitization contributes to "above level" injury pain following spinal cord injury and 4) Role of reactive oxygen species in central sensitization in regional neuropathic pain following SCI. To summarize, differential regional mechanisms contribute to the regional chronic pain states. We propose the importance of understanding the mechanisms in the differential regional pain syndromes after SCI in the chronic condition. Targeting regional mechanisms will be of enormous benefit to the SCI population that suffer chronic pain, and will contribute to better treatment strategies for other chronic pain syndromes.
Collapse
Affiliation(s)
- Claire E Hulsebosch
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1043, USA.
| | | | | | | |
Collapse
|
148
|
Abstract
Mitogen-activated protein kinases (MAPKs) are important for intracellular signal transduction and play critical roles in regulating neural plasticity and inflammatory responses. The MAPK family consists of three major members: extracellular signal-regulated kinases (ERK), p38, and c-Jun N-terminal kinase (JNK), which represent three separate signaling pathways. Accumulating evidence shows that all three MAPK pathways contribute to pain sensitization after tissue and nerve injury via distinct molecular and cellular mechanisms. Activation (phosphorylation) of MAPKs under different persistent pain conditions results in the induction and maintenance of pain hypersensitivity via non-transcriptional and transcriptional regulation. In particular, ERK activation in spinal cord dorsal horn neurons by nociceptive activity, via multiple neurotransmitter receptors, and using different second messenger pathways plays a critical role in central sensitization by regulating the activity of glutamate receptors and potassium channels and inducing gene transcription. ERK activation in amygdala neurons is also required for inflammatory pain sensitization. After nerve injury, ERK, p38, and JNK are differentially activated in spinal glial cells (microglia vs astrocytes), leading to the synthesis of proinflammatory/pronociceptive mediators, thereby enhancing and prolonging pain. Inhibition of all three MAPK pathways has been shown to attenuate inflammatory and neuropathic pain in different animal models. Development of specific inhibitors for MAPK pathways to target neurons and glial cells may lead to new therapies for pain management. Although it is well documented that MAPK pathways can increase pain sensitivity via peripheral mechanisms, this review will focus on central mechanisms of MAPKs, especially ERK.
Collapse
Affiliation(s)
- Ru-Rong Ji
- Pain Research Center, Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, MRB 604, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
149
|
Marchand F, Tsantoulas C, Singh D, Grist J, Clark AK, Bradbury EJ, McMahon SB. Effects of Etanercept and Minocycline in a rat model of spinal cord injury. Eur J Pain 2008; 13:673-81. [PMID: 18849175 DOI: 10.1016/j.ejpain.2008.08.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/15/2008] [Accepted: 08/10/2008] [Indexed: 10/21/2022]
Abstract
Loss of function is usually considered the major consequence of spinal cord injury (SCI). However, pain severely compromises the quality of life in nearly 70% of SCI patients. The principal aim of this study was to assess the contribution of Tumor necrosis factor alpha (TNF-alpha) to SCI pain. TNF-alpha blockers have already been successfully used to treat inflammatory disorders but there are few studies on its effect on neuropathic pain, especially following SCI. Following T13 spinal cord hemisection, we examined the effects on mechanical allodynia and microglial activation of immediate and delayed chronic intrathecal treatment with etanercept, a fusion protein blocker of TNF-alpha. Immediate treatment (starting at the time of injury) with etanercept resulted in markedly reduced mechanical allodynia 1, 2, 3 and 4 weeks after SCI. Delayed treatment had no effect. Immediate etanercept treatment also reduced spinal microglial activation assessed by OX-42 immunostaining, a putative marker of activated microglia. To assess whether the effects of etanercept were mediated via decreased microglial activation, we examined the effects of the microglial inhibitor, minocycline which significantly reduced the development of pain behaviours at 1 and 2 weeks after SCI compared to saline treatment. Minocycline also significantly reduced microglial OX-42 expression. Furthermore, minocycline decreased the expression of noxious-stimulation-induced c-Fos, suggesting an effect on evoked neuronal activity. This study demonstrates that TNF-alpha plays an important role in the establishment of neuropathic pain following SCI, seemingly dependent on microglial activation. Pharmacological targeting of TNF-alpha may offer therapeutic opportunities for treating SCI pain.
Collapse
Affiliation(s)
- Fabien Marchand
- Neurorestoration Group, King's College London, Wolfson Wing, Wolfson Centre for Age Related Diseases, Hodgkin Building, Guy's Campus, London SE1 1UL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
150
|
Bedi SS, Cai D, Glanzman DL. Effects of axotomy on cultured sensory neurons of Aplysia: long-term injury-induced changes in excitability and morphology are mediated by different signaling pathways. J Neurophysiol 2008; 100:3209-24. [PMID: 18842953 DOI: 10.1152/jn.90539.2008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To facilitate an understanding of injury-induced changes within the nervous system, we used a single-cell, in vitro model of axonal injury. Sensory neurons were individually dissociated from the CNS of Aplysia and placed into cell culture. The major neurite of some neurons was then transected (axotomized neurons). Axotomy in hemolymph-containing culture medium produced long-term hyperexcitability (LTH-E) and enhanced neuritic sprouting (long-term hypermorphogenesis [LTH-M]). Axotomy in the absence of hemolymph induced LTH-E, but not LTH-M. Hemolymph-derived growth factors may activate tyrosine receptor kinase (Trk) receptors in sensory neurons. To examine this possibility, we treated uninjured (control) and axotomized sensory neurons with K252a, an inhibitor of Trk receptor activity. K252a depressed the excitability of both axotomized and control neurons. K252a also produced a distinct pattern of arborizing outgrowth of neurites in both axotomized and control neurons. Protein kinase C (PKC) is an intracellular signal downstream of Trk; accordingly, we tested the effects of bisindolylmaleimide I (Bis-I), a specific inhibitor of PKC, on the axotomy-induced cellular changes. Bis-I blocked LTH-E, but did not disrupt LTH-M. Finally, because Trk activates the extracellular signal regulated kinase pathway in Aplysia sensory neurons, we examined whether this pathway mediates the injury-induced changes. Sensory neurons were axotomized in the presence of U0126, an inhibitor of mitogen-activated/extracellular receptor-regulated kinase. U0126 blocked the LTH-M due to axotomy, but did not impair LTH-E. Therefore distinct cellular signaling pathways mediate the induction of LTH-E and LTH-M in the sensory neurons.
Collapse
Affiliation(s)
- Supinder S Bedi
- Department of Neurobiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095-1761, USA
| | | | | |
Collapse
|