101
|
Tanaka Y, Kameoka M, Itaya A, Ota K, Yoshihara K. Regulation of HSF1-responsive gene expression by N-terminal truncated form of p73alpha. Biochem Biophys Res Commun 2004; 317:865-72. [PMID: 15081420 DOI: 10.1016/j.bbrc.2004.03.124] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Indexed: 01/22/2023]
Abstract
DNp73 is a transactivation domain (TAD)-truncated form of p73. The ability of DNp73alpha to regulate gene expression was examined using reporter assays with luciferase gene constructs. Among various promoter-regulated reporter genes tested, heat shock factor (HSF)-responsive gene expression was selectively activated by DNp73alpha, but not by other p73-isoforms with TAD and DNp73beta. Deletion of TAD endowed p73alpha with the ability to activate HSF-responsive gene expression, but deletion of N-terminal proline-rich domain (PRD) rendered both DNp73alpha and the TAD-deleted p73alpha inactive. Considering the inability of DNp73beta, which is the C-terminus-truncated form of DNp73alpha, to function, these results indicate that both the PRD and C-terminus are necessary for DNp73alpha to be able to activate the HSF-dependent gene expression. In addition to the reporter gene expression, both DNp73alpha and TAD-deleted p73alpha activated the expression of an endogenous gene, hsp70, corresponding with an increase in the active form of HSF1. Taken together, these results demonstrate that TAD-truncated p73alpha can activate HSF-dependent gene expression via induction of active HSF1.
Collapse
Affiliation(s)
- Yasuharu Tanaka
- Department of Biochemistry, Nara Medical University, Shijo-Cho 840, Kashihara, Nara 634-8521, Japan.
| | | | | | | | | |
Collapse
|
102
|
Wilson C, Henry S, Smith MA, Bowser R. The p53 homologue p73 accumulates in the nucleus and localizes to neurites and neurofibrillary tangles in Alzheimer disease brain. Neuropathol Appl Neurobiol 2004; 30:19-29. [PMID: 14720173 PMCID: PMC1540445 DOI: 10.1046/j.0305-1846.2003.00496.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular mechanisms that regulate neuronal survival vs. death during Alzheimer disease (AD) remain unclear. Nonetheless, a number of recent studies indicate that increased expression or altered subcellular distribution of numerous cell cycle proteins during AD may contribute to disease pathogenesis. Because homologues of p53, a key regulatory protein in the cell cycle, such as p73, have been identified and shown to participate in cellular differentiation and death pathways, we examined the expression and distribution of p73 in the hippocampus of eight control and 16 AD subjects. In control subjects, hippocampal pyramidal neurones exhibit p73 immunoreactivity that is distributed predominately in the cytoplasm. In AD hippocampus, increased levels of p73 are located in the nucleus of pyramidal neurones and p73 is located in dystrophic neurites and cytoskeletal pathology. Immunoblot analysis confirmed the presence of p73 in the hippocampus. These data indicate that p73 is expressed within hippocampal pyramidal neurones and exhibits altered subcellular distribution in AD.
Collapse
Affiliation(s)
- C Wilson
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
103
|
Abstract
p53, p63 and p73 are related transcription factors involved in the regulation of cell proliferation, survival and differentiation. Here, we report the isolation and characterization of p73 from zebrafish. While for zebrafish p63 only N-terminally truncated isoforms (DeltaNp63) have been reported, p73 appears to be predominantly or exclusively present in transactivating isoforms (TAp73). p73 shows a very restricted expression pattern during zebrafish development. Transcripts are found in a subset of cells of the olfactory system, the telencephalon, the dorsal diencephalon, and the pronephric ducts. In addition, p73 is expressed in differentiating slow muscle cells of the somites, and in the pharyngeal endoderm. We carried out TAp73 gain- and loss-of-function experiments, injecting either TAp73alpha mRNA, or antisense morpholino oligonucleotides to suppress translation of TAp73 transcripts. The overexpression studies indicate that in contrast to p53, TAp73alpha has no pro-apoptotic effect in zebrafish embryos. However, TAp73 appears to be required for specific processes during the development of the olfactory system, the telencephalon and the pharyngeal arches. Together, our data point to both conserved and class-specific roles of p73 during vertebrate development.
Collapse
Affiliation(s)
- Fabian Rentzsch
- Max-Planck-Institute for Immunobiology, Stuebeweg 51, D-79108, Freiburg, Germany
| | | | | |
Collapse
|
104
|
Billon N, Terrinoni A, Jolicoeur C, McCarthy A, Richardson WD, Melino G, Raff M. Roles for p53 and p73 during oligodendrocyte development. Development 2004; 131:1211-20. [PMID: 14960496 DOI: 10.1242/dev.01035] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oligodendrocytes make myelin in the vertebrate central nervous system (CNS). They develop from oligodendrocyte precursor cells (OPCs), most of which divide a limited number of times before they stop and differentiate. OPCs can be purified from the developing rat optic nerve and stimulated to proliferate in serum-free culture by PDGF. They can be induced to differentiate in vitro by either thyroid hormone (TH) or PDGF withdrawal. It was shown previously that a dominant-negative form of p53 could inhibit OPC differentiation induced by TH but not by PDGF withdrawal, suggesting that the p53 family of proteins might play a part in TH-induced differentiation. As the dominant-negative p53 used inhibited all three known p53 family members - p53, p63 and p73 - it was uncertain which family members are important for this process. Here, we provide evidence that both p53 and p73, but not p63, are involved in TH-induced OPC differentiation and that p73 also plays a crucial part in PDGF-withdrawal-induced differentiation. This is the first evidence for a role of p73 in the differentiation of a normal mammalian cell.
Collapse
Affiliation(s)
- Nathalie Billon
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, University College London, London WC1E 6BT, UK.
| | | | | | | | | | | | | |
Collapse
|
105
|
Vaghefi H, Hughes AL, Neet KE. Nerve growth factor withdrawal-mediated apoptosis in naive and differentiated PC12 cells through p53/caspase-3-dependent and -independent pathways. J Biol Chem 2004; 279:15604-14. [PMID: 14739302 DOI: 10.1074/jbc.m311500200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Programmed cell death is regulated in response to a variety of stimuli, including the tumor suppressor protein p53, that can mediate cell cycle arrest through p21/Waf1 and apoptosis through the Bcl-2/Bax equilibrium and caspases. Neuronal cell apoptosis has been reported to require p53, whereas other data suggest that neuronal cell death may be independent of p53. Comparison of wild type PC12 to a temperature-sensitive PC12 cell line that depresses the normal function of p53 has permitted investigation of the importance of p53 in a variety of cell functions. This study examined the role of p53 in trophic factor withdrawal-mediated apoptosis in both naïve and differentiated PC12 cells. Our data show that as PC12 cells differentiate they are more poised to undergo apoptosis than their undifferentiated counterparts. Survival assays with XTT (sodium 3'-1-(phenylaminocarbonyl)-3,4-tetrazolium-bis(4-methoxy-6-nitro)benzene sulfonic acid) and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) demonstrated that lack of p53 is initially protective against apoptosis. The window of protection is about 20 h for naïve and 36 h for differentiated cells. Apoptosis involved caspases 3, 6, and 9. However, caspase 3 activation was absent in cells lacking p53, concomitant with the delayed apoptosis. When the expression of caspase 3 was silenced with interference RNA, wild type PC12 cells revealed a morphology and biochemistry similar to PC12[p53ts] cells, indicating that caspase 3 accounts for the observed delay in apoptosis in p53 dysfunction. These results suggest that p53 is important, but not essential, in factor withdrawal-mediated apoptosis. Parallel pathways of caspase-mediated apoptosis are activated later in the absence of functional p53.
Collapse
Affiliation(s)
- Houman Vaghefi
- Department of Biochemistry and Molecular Biology, The Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, Illinois 60064, USA.
| | | | | |
Collapse
|
106
|
Becker EBE, Bonni A. Cell cycle regulation of neuronal apoptosis in development and disease. Prog Neurobiol 2004; 72:1-25. [PMID: 15019174 DOI: 10.1016/j.pneurobio.2003.12.005] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 12/16/2003] [Indexed: 10/26/2022]
Abstract
Apoptosis of neurons is indispensable to the normal development of the nervous system and contributes to neuronal loss in neurologic injury and disease. Life and death decisions are imposed upon neurons by extracellular and intracellular stimuli including the lack of trophic support, exposure to neurotoxins, oxidative stress, and DNA damage. These stimuli induce signaling pathways that are integrated at the mitochondrial apoptotic machinery culminating in cell survival or death. Growing evidence suggests that cell cycle proteins are expressed in dying neurons in the developing and adult brain. However, the role and mechanisms by which re-activation of cell cycle pathways in postmitotic neurons propagates an apoptotic signal to the cell death machinery are just beginning to be characterized. Here, we will review the molecular mechanisms of neuronal cell death and survival with a focus on recent findings on cell cycle regulation of neuronal apoptosis in primary cultures of neurons, mouse models of neuronal diseases, and human neurodegenerative diseases.
Collapse
Affiliation(s)
- Esther B E Becker
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
107
|
Petrenko O, Zaika A, Moll UM. deltaNp73 facilitates cell immortalization and cooperates with oncogenic Ras in cellular transformation in vivo. Mol Cell Biol 2003; 23:5540-55. [PMID: 12897129 PMCID: PMC166317 DOI: 10.1128/mcb.23.16.5540-5555.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
TP73, despite significant homology to TP53, is not a classic tumor suppressor gene, since it exhibits upregulation of nonmutated products in human tumors and lacks a tumor phenotype in p73-deficient mice. We recently reported that an N-terminally truncated isoform, DeltaNp73, is upregulated in breast and gynecological cancers. We further showed that DeltaNp73 is a potent transdominant inhibitor of wild-type p53 and TAp73 in cultured human tumor cells by efficiently counteracting their target gene transactivations, apoptosis, and growth suppression functions (A. I. Zaika et al., J. Exp. Med. 6:765-780, 2002). Although these data strongly suggest oncogenic properties of DeltaNp73, this can only be directly shown in primary cells. We report here that DeltaNp73 confers resistance to spontaneous replicative senescence of primary mouse embryo fibroblasts (MEFs) and immortalizes MEFs at a 1,000-fold-higher frequency than occurs spontaneously. DeltaNp73 cooperates with cMyc and E1A in promoting primary cell proliferation and colony formation and compromises p53-dependent MEF apoptosis. Importantly, DeltaNp73 rescues Ras-induced senescence. Moreover, DeltaNp73 cooperates with oncogenic Ras in transforming primary fibroblasts in vitro and in inducing MEF-derived fibrosarcomas in vivo in nude mice. Wild-type p53 is likely a major target of DeltaNp73 inhibition in primary fibroblasts since deletion of p53 or its requisite upstream activator ARF abrogates the growth-promoting effect of DeltaNp73. Taken together, DeltaNp73 behaves as an oncogene that targets p53 that might explain why DeltaNp73 upregulation may be selected for during tumorigenesis of human cancers.
Collapse
Affiliation(s)
- Oleksi Petrenko
- Department of Pathology, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
108
|
Pan H, Dung HN, Hsu HM, Hsiao KM, Chen LY. Cloning and developmental expression of p73 cDNA in zebrafish. Biochem Biophys Res Commun 2003; 307:395-400. [PMID: 12859970 DOI: 10.1016/s0006-291x(03)01209-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
p73 is one of the p53 family members which are transcription factors involved in the regulation of cell proliferation, apoptosis, and differentiation. In this study, we cloned the p73 cDNA from zebrafish ovary RNA. The consensus open reading frame (1923bp) encodes a polypeptide of 640 amino acids which shares 70-95% identity to the p73 of other vertebrates. Expression of zebrafish p73 mRNA is restricted to tissues such as skin, fin, brain, ovary, and testis, in contrast to the ubiquitous expression of zebrafish p53 and p63. During embryonic development, p73 transcripts are detected from the zygote period to the early larva stage. Whole-mount in situ hybridization reveals that p73 expression is in the brain, including olfactory bulbs, telencephalon, and hypothalamus, as well as in the pharyngeal arches and the nose. Moreover, p73 protein is found in the ovary and testis sections by immunohistochemical staining.
Collapse
Affiliation(s)
- Huichin Pan
- Department of Life Sciences, Chung Shan Medical University, Taichung, Taiwan.
| | | | | | | | | |
Collapse
|
109
|
Barnabé-Heider F, Miller FD. Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J Neurosci 2003; 23:5149-60. [PMID: 12832539 PMCID: PMC6741181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Cultured embryonic cortical progenitor cells will mimic the temporal differentiation pattern observed in vivo, producing neurons first and then glia. Here, we investigated the role of two endogenously produced growth factors, the neurotrophins brain-derived neurotrophic factor and neurotrophin-3 (NT-3), in the early progenitor-to-neuron transition. Cultured cortical progenitors express BDNF and NT-3, as well as their receptors TrkB (tyrosine kinase receptor B) and TrkC. Inhibition of these endogenously expressed neurotrophins using function-blocking antibodies resulted in a marked decrease in the survival of cortical progenitors, accompanied by decreased proliferation and inhibition of neurogenesis. Inhibition of neurotrophin function also suppressed the downstream Trk receptor signaling pathways, PI3-kinase (phosphatidyl inositol-3-kinase) and MEK-ERK (MAP kinase kinase-extracellular signal-regulated kinase), indicating the presence of autocrine-paracrine neurotrophin:Trk receptor signaling in these cells. Moreover, specific inhibition of these two Trk signaling pathways led to distinct biological effects; inhibition of PI3-kinase decreased progenitor cell survival, whereas inhibition of MEK selectively blocked the generation of neurons, with no effects on survival or proliferation. Thus, neurotrophins made by cortical progenitor cells themselves signal through the TrkB and TrkC receptors to mediate cortical progenitor cell survival and neurogenesis via two distinct downstream signaling pathways.
Collapse
Affiliation(s)
- Fanie Barnabé-Heider
- Center for Neuronal Survival and Brain Tumor Research Center, Montreal Neurological Institute, McGill University, Montreal, Canada H3A 2B4
| | | |
Collapse
|