101
|
Osenkowski P, Li H, Ye W, Li D, Aeschbach L, Fraering PC, Wolfe MS, Selkoe DJ, Li H. Cryoelectron microscopy structure of purified gamma-secretase at 12 A resolution. J Mol Biol 2008; 385:642-52. [PMID: 19013469 DOI: 10.1016/j.jmb.2008.10.078] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 09/16/2008] [Accepted: 10/27/2008] [Indexed: 11/17/2022]
Abstract
Gamma-secretase, an integral membrane protein complex, catalyzes the intramembrane cleavage of the beta-amyloid precursor protein (APP) during the neuronal production of the amyloid beta-peptide. As such, the protease has emerged as a key target for developing agents to treat and prevent Alzheimer's disease. Existing biochemical studies conflict on the oligomeric assembly state of the protease complex, and its detailed structure is not known. Here, we report that purified active human gamma-secretase in digitonin has a total molecular mass of approximately 230 kDa when measured by scanning transmission electron microscopy. This result supports a complex that is monomeric for each of the four component proteins. We further report the three-dimensional structure of the gamma-secretase complex at 12 A resolution as obtained by cryoelectron microscopy and single-particle image reconstruction. The structure reveals several domains on the extracellular side, three solvent-accessible low-density cavities, and a potential substrate-binding surface groove in the transmembrane region of the complex.
Collapse
Affiliation(s)
- Pamela Osenkowski
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Structure and function of gamma-secretase. Semin Cell Dev Biol 2008; 20:211-8. [PMID: 19007897 DOI: 10.1016/j.semcdb.2008.10.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 10/13/2008] [Indexed: 11/22/2022]
Abstract
The gamma-secretase complex is a prime target for pharmacological intervention in Alzheimer's disease and so far drug discovery efforts have yielded a large variety of potent and rather specific inhibitors of this enzymatic activity. However, as gamma-secretase is able to cleave a wide variety of physiological important substrates, the real challenge is to develop substrate-specific compounds. Therefore, obtaining structural information about gamma-secretase is indispensable. As crystal structures of the complex will be difficult to achieve, applied biochemical approaches need to be integrated with structural information obtained from other intramembrane-cleaving proteases. Here we review current knowledge about the structure and function of gamma-secretase and discuss the value of these findings for the mechanistic understanding of this unusual protease.
Collapse
|
103
|
Steiner H, Winkler E, Haass C. Chemical cross-linking provides a model of the gamma-secretase complex subunit architecture and evidence for close proximity of the C-terminal fragment of presenilin with APH-1. J Biol Chem 2008; 283:34677-86. [PMID: 18801744 DOI: 10.1074/jbc.m709067200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gamma-secretase is an intramembrane cleaving aspartyl protease complex intimately implicated in Alzheimer disease pathogenesis. The protease is composed of the catalytic subunit presenilin (PS1 or PS2), the substrate receptor nicastrin (NCT), and two additional subunits, APH-1 (APH-1a, as long and short splice forms (APH-1aL, APH-1aS), or APH-1b) and PEN-2. Apart from the Alzheimer disease-associated beta-amyloid precursor protein, gamma-secretase has been shown to cleave a large number of other type I membrane proteins. Despite the progress in elucidating gamma-secretase function, basic questions concerning the precise organization of its subunits, their molecular interactions, and their exact stoichiometry in the complex are largely unresolved. Here we isolated endogenous human gamma-secretase from human embryonic kidney 293 cells and investigated the subunit architecture of the gamma-secretase complex formed by PS1, NCT, APH-1aL, and PEN-2 by chemical cross-linking. Using this approach, we provide evidence for the close neighborhood of the PS1 N- and C-terminal fragments (NTF and CTF, respectively), the PS1 NTF and PEN-2, the PS1 CTF and APH-1aL, and NCT and APH-1aL. We thus identify a previously unrecognized PS1 CTF/APH-1aL interaction, verify subunit interactions deduced previously from indirect approaches, and provide a model of the gamma-secretase complex subunit architecture. Finally, we further show that, like the PS1 CTF, the PS2 CTF also interacts with APH-1aL, and we provide evidence that these interactions also occur with the other APH-1 variants, suggesting similar subunit architectures of all gamma-secretase complexes.
Collapse
Affiliation(s)
- Harald Steiner
- Center for Integrated Protein Science Munich and Adolf-Butenandt-Institute, Department of Biochemistry, Laboratory for Neurodegenerative Disease Research, Ludwig-Maximilians-University, 80336 Munich, Germany.
| | | | | |
Collapse
|
104
|
Tomita T. Peptides inhibiting specific cleaving activities of presenilins. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.9.1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
105
|
Spasic D, Annaert W. Building gamma-secretase: the bits and pieces. J Cell Sci 2008; 121:413-20. [PMID: 18256384 DOI: 10.1242/jcs.015255] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
gamma-Secretase is a promiscuous aspartyl protease responsible for the final intramembrane cleavage of various type I transmembrane proteins after their large ectodomains are shed. The vast functional diversity of its substrates, which are involved in cell fate decisions, adhesion, neurite outgrowth and synapse formation, highlights the important role gamma-secretase plays in development and neurogenesis. The most renowned substrates are the amyloid precursor protein and Notch, from which gamma-secretase liberates amyloid beta peptides and induces downstream signalling, respectively. gamma-Secretase is a multiprotein complex containing presenilin (which harbours the catalytic site), nicastrin, APH1 and PEN2. Its assembly occurs under tight control of ER-Golgi recycling regulators, which allows defined quantities of complexes to reach post-Golgi compartments, where gamma-secretase activity is regulated by multiple other factors. 3D-EM rendering reveals a complex with a translucent inner space, suggesting the presence of a water-filled cavity required for intramembrane proteolysis. Despite huge efforts, we are now only beginning to unravel the assembly, stoichiometry, activation and subcellular location of gamma-secretase.
Collapse
Affiliation(s)
- Dragana Spasic
- Laboratory for Membrane Trafficking, Center for Human Genetics (KULeuven) and Department of Molecular and Developmental Genetics (VIB), O&N1, Gasthuisberg, Herestraat 49, Leuven, Belgium
| | | |
Collapse
|
106
|
Abstract
Gamma-secretase mediates the final proteolytic cleavage, which liberates amyloid beta-peptide (Abeta), the major component of senile plaques in the brains of Alzheimer disease patients. Therefore, gamma-secretase is a prime target for Abeta-lowering therapeutic strategies. gamma-Secretase is a protein complex composed of four different subunits, presenilin (PS), APH-1, nicastrin, and PEN-2, which are most likely present in a 1:1:1:1 stoichiometry. PS harbors the catalytically active site, which is critically required for the aspartyl protease activity of gamma-secretase. Moreover, numerous familial Alzheimer disease-associated mutations within the PSs increase the production of the aggregation-prone and neurotoxic 42-amino acid Abeta. Nicastrin may serve as a substrate receptor, although this has recently been challenged. PEN-2 is required to stabilize PS within the gamma-secretase complex. No particular function has so far been assigned to APH-1. The four components are sufficient and required for gamma-secretase activity. At least six different gamma-secretase complexes exist that are composed of different variants of PS and APH-1. All gamma-secretase complexes can exert pathological Abeta production. Assembly of the gamma-secretase complex occurs within the endoplasmic reticulum, and only fully assembled and functional gamma-secretase complexes are transported to the plasma membrane. Structural analysis by electron microscopy and chemical cross-linking reveals a water-containing cavity, which allows intramembrane proteolysis. Specific and highly sensitive gamma-secretase inhibitors have been developed; however, they interfere with the physiological function of gamma-secretase in Notch signaling and thus cause rather significant side effects in human trials. Modulators of gamma-secretase, which selectively affect the production of the pathological 42-amino acid Abeta, do not inhibit Notch signaling.
Collapse
Affiliation(s)
- Harald Steiner
- Center for Integrated Protein Science Munich and Adolf Butenandt Institute, Department of Biochemistry, Laboratory for Neurodegenerative Disease Research, Ludwig Maximilians University, 80336 Munich, Germany.
| | | | | |
Collapse
|
107
|
The C-terminal PAL motif and transmembrane domain 9 of presenilin 1 are involved in the formation of the catalytic pore of the gamma-secretase. J Neurosci 2008; 28:6264-71. [PMID: 18550769 DOI: 10.1523/jneurosci.1163-08.2008] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gamma-secretase is an unusual membrane-embedded protease, which cleaves the transmembrane domains (TMDs) of type I membrane proteins, including amyloid-beta precursor protein and Notch receptor. We have previously shown the existence of a hydrophilic pore formed by TMD6 and TMD7 of presenilin 1 (PS1), the catalytic subunit of gamma-secretase, within the membrane by the substituted cysteine accessibility method. Here we analyzed the structure of TMD8, TMD9, and the C terminus of PS1, which encompass the conserved PAL motif and the hydrophobic C-terminal tip, both being critical for the catalytic activity and the formation of the gamma-secretase complex. We found that the amino acid residues around the PAL motif and the extracellular/luminal portion of TMD9 are highly water accessible and located in proximity to the catalytic pore. Furthermore, the region starting from the luminal end of TMD9 toward the C terminus forms an amphipathic alpha-helix-like structure that extends along the interface between the membrane and the extracellular milieu. Competition analysis using gamma-secretase inhibitors revealed that the TMD9 is involved in the initial binding of substrates, as well as in the subsequent catalytic process as a subsite. Our results provide mechanistic insights into the role of TMD9 in the formation of the catalytic pore and the substrate entry, crucial to the unusual mode of intramembrane proteolysis by gamma-secretase.
Collapse
|
108
|
Tolia A, Horré K, De Strooper B. Transmembrane domain 9 of presenilin determines the dynamic conformation of the catalytic site of gamma-secretase. J Biol Chem 2008; 283:19793-803. [PMID: 18482978 DOI: 10.1074/jbc.m802461200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the most prominent drug targets for the treatment of Alzheimer disease is gamma-secretase, a multi-protein complex responsible for the generation of the amyloid-beta peptide. The catalytic core of the complex lies on presenilin, a multi-spanning membrane protease, the activity of which depends on two aspartate residues located in transmembrane domains 6 and 7. We have recently shown by cysteine-scanning mutagenesis that these aspartates are facing a water-filled cavity in the lipid bilayer, demonstrating how proteolytic cleavage of the substrates can be taking place within the membrane. Here, we demonstrate that transmembrane domain 9 and hydrophobic domain VII in the large cytoplasmic loop of presenilin are dynamic structural parts of this cavity. Hydrophobic domain VII is associated with transmembrane domain 7 in the membrane, probably facilitating the entrance of water molecules in the catalytic site. Transmembrane domain 9, on the other hand, exhibits a highly flexible structure, potentially involved in the transport of substrates to the catalytic site, as well as in the binding of gamma-secretase inhibitors. The conserved proline-alanine-leucine motif at the cytoplasmic part of this domain is extremely close to the catalytic Asp257 and is crucial for conformational changes leading to the activation of the catalytic site. We, also, identify a unique mutant in this domain (I437C) that specifically blocks amyloid-beta peptide production without affecting the processing of the physiologically indispensable Notch substrate. Our data are finally combined to propose a model for the architectural organization and activation of the catalytic site of presenilin.
Collapse
Affiliation(s)
- Alexandra Tolia
- Department for Molecular and Developmental Genetics, VIB (Vlaams Instituut voor Biotechnologie), Belgium
| | | | | |
Collapse
|
109
|
Abstract
Gamma-Secretase is a promiscuous protease that cleaves bitopic membrane proteins within the lipid bilayer. Elucidating both the mechanistic basis of gamma-secretase proteolysis and the precise factors regulating substrate identification is important because modulation of this biochemical degradative process can have important consequences in a physiological and pathophysiological context. Here, we briefly review such information for all major classes of intramembranously cleaving proteases (I-CLiPs), with an emphasis on gamma-secretase, an I-CLiP closely linked to the etiology of Alzheimer's disease. A large body of emerging data allows us to survey the substrates of gamma-secretase to ascertain the conformational features that predispose a peptide to cleavage by this enigmatic protease. Because substrate specificity in vivo is closely linked to the relative subcellular compartmentalization of gamma-secretase and its substrates, we also survey the voluminous body of literature concerning the traffic of gamma-secretase and its most prominent substrate, the amyloid precursor protein.
Collapse
Affiliation(s)
- A. J. Beel
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| | - C. R. Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| |
Collapse
|
110
|
Urban S, Shi Y. Core principles of intramembrane proteolysis: comparison of rhomboid and site-2 family proteases. Curr Opin Struct Biol 2008; 18:432-41. [PMID: 18440799 DOI: 10.1016/j.sbi.2008.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 03/13/2008] [Indexed: 11/30/2022]
Abstract
Cleavage of proteins within their membrane-spanning segments is an ancient regulatory mechanism that has evolved to control a myriad of cellular processes in all forms of life. Although three mechanistic families of enzymes have been discovered that catalyze hydrolysis within the water-excluding environment of the membrane, how they achieve this improbable reaction has been both a point of controversy and skepticism. The crystal structures of rhomboid and site-2 protease, two different classes of intramembrane proteases, have been solved recently. Combined with current biochemical analyses, this advance provides an unprecedented view of how nature has solved the problem of facilitating hydrolysis within membranes in two independent instances. We focus on detailing the similarities between these unrelated enzymes to define core biochemical principles that govern this conserved regulatory mechanism.
Collapse
Affiliation(s)
- Sinisa Urban
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
111
|
Koide K, Ito K, Akiyama Y. Substrate Recognition and Binding by RseP, an Escherichia coli Intramembrane Protease. J Biol Chem 2008; 283:9562-70. [DOI: 10.1074/jbc.m709984200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
112
|
Abstract
Rhomboids were only discovered to be novel proteases in 2001, but progress on understanding this newest family of intramembrane proteases has been rapid. They are now the best characterized of these rather mysterious enzymes that cleave transmembrane domains within the lipid bilayer. In particular, the biochemical analysis of solubilized rhomboids and, most recently, a flurry of high-resolution crystal structures, have led to real insight into their enzymology. Long-standing questions about how it is possible for a water-requiring proteolytic reaction to occur in the lipid bilayer are now answered for the rhomboids. Intramembrane proteases, which control many medically important biological processes, have made the transition from rather heretical outsiders to novel enzymes that are becoming well understood.
Collapse
|
113
|
Zhao B, Yu M, Neitzel M, Marugg J, Jagodzinski J, Lee M, Hu K, Schenk D, Yednock T, Basi G. Identification of γ-Secretase Inhibitor Potency Determinants on Presenilin. J Biol Chem 2008; 283:2927-38. [DOI: 10.1074/jbc.m708870200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
114
|
Tomita T. At the frontline of Alzheimer's disease treatment: gamma-secretase inhibitor/modulator mechanism. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2007; 377:295-300. [PMID: 18038124 DOI: 10.1007/s00210-007-0206-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 10/17/2007] [Indexed: 12/01/2022]
Abstract
Genetic and biological studies provide evidence that the production and deposition of amyloid-beta peptides (Abeta) contribute to the etiology of Alzheimer's disease. beta- and gamma-secretases, which are responsible for the generation of Abeta, are plausible molecular targets for Alzheimer's disease treatment. gamma-Secretase is an unusual aspartic protease that cleaves the scissile bond within the transmembrane domain. This unusual enzyme is composed of a high molecular weight membrane protein complex containing presenilin, nicastrin, Aph-1 and Pen-2. Drugs that regulate the production of Abeta by inhibiting or modulating gamma-secretase activity could provide a disease-modifying effect on Alzheimer's disease, although recent studies suggest that gamma-secretase plays important roles in cellular signaling including Notch. Thus, understanding the molecular mechanism whereby gamma-secretase recognizes and cleaves its substrate is a critical issue for the development of compounds that specifically regulate Abeta-generating gamma-secretase activity. This review focuses on the structure and function relationship of gamma-secretase complex and the mode of action of the gamma-secretase inhibitors.
Collapse
Affiliation(s)
- Taisuke Tomita
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
115
|
Yagishita S, Morishima-Kawashima M, Ishiura S, Ihara Y. Abeta46 is processed to Abeta40 and Abeta43, but not to Abeta42, in the low density membrane domains. J Biol Chem 2007; 283:733-8. [PMID: 18024430 DOI: 10.1074/jbc.m707103200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gamma-secretase cleaves the transmembrane domain of beta-amyloid precursor protein at multiple sites referred to as gamma-, epsilon-, and zeta-cleavage sites. We previously showed that N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a potent dipeptide gamma-secretase inhibitor, causes differential accumulation of longer amyloid beta-proteins (Abetas) within Chinese hamster ovary cells co-expressing beta C-terminal fragment and wild-type presenilin 1 (C99/wtPS1 cells). In this study, we used sucrose density gradient centrifugation to fractionate the membranes from C99/wtPS1 cells that had been pretreated with DAPT. We found that accumulating Abeta46 localized exclusively to low density membrane (LDM) domains. Incubating the Abeta46-accumulating LDM domains at 37 degrees C produced Abeta40, Abeta42, Abeta43, and beta-amyloid precursor protein intracellular domain. The addition of L685,458 completely prevented beta-amyloid precursor protein intracellular domain generation and resulted in a large decrease in the level of Abeta46 and the concomitant appearance of Abeta40 and Abeta43 but not Abeta42. Further addition of DAPT suppressed the production of Abeta40/43 and abolished the decrease in the amount of Abeta46. These data indicate that preaccumulated Abeta46 is processed by gamma-secretase to Abeta40/43 but not to Abeta42 in the LDM domains. The amount of newly produced Abeta40 and Abeta43 was roughly equivalent to the decrease in the amount of Abeta46. Temporal profiles did not show a maximal concentration for Abeta43, suggesting that Abeta46 is processed to Abeta40 and Abeta43 through a nonsuccessive process.
Collapse
Affiliation(s)
- Sosuke Yagishita
- Department of Neuropathology, Faculty of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
116
|
|
117
|
Ha Y. Structural principles of intramembrane proteases. Curr Opin Struct Biol 2007; 17:405-11. [PMID: 17714936 PMCID: PMC2042915 DOI: 10.1016/j.sbi.2007.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/25/2007] [Accepted: 06/26/2007] [Indexed: 11/24/2022]
Abstract
Intramembrane proteases are present in most organisms, and are used by cells to send signal across membranes, to activate growth factors, and to accomplish many other tasks that are beyond the capability of their soluble cousins. These enzymes specialize in cleaving peptide bonds that are normally embedded in cell membranes. They contain multiple membrane-spanning segments, and their catalytic residues are often found within these hydrophobic domains. In the past year, a number of important papers have been published that began to address the structural features of these membrane proteins by X-ray crystallography, electron microscopy, and biochemical methods, including the first report of an intramembrane protease crystal structure, that of Escherichia coli GlpG. Taken together, these studies started to reveal patterns of how intramembrane proteases are constructed, how waters are supplied to the membrane-embedded active site, and how membrane protein substrates interact with them.
Collapse
Affiliation(s)
- Ya Ha
- Department of Pharmacology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
118
|
Lichtenthaler SF, Steiner H. Sheddases and intramembrane-cleaving proteases: RIPpers of the membrane. Symposium on regulated intramembrane proteolysis. EMBO Rep 2007; 8:537-41. [PMID: 17496832 PMCID: PMC2002526 DOI: 10.1038/sj.embor.7400978] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 03/28/2007] [Indexed: 11/09/2022] Open
Affiliation(s)
- Stefan F Lichtenthaler
- Adolf-Butenandt-Institute, Department of Biochemistry, Laboratory of Alzheimer's and Parkinson's Disease Research, Ludwig-Maximilians-University, Schillerstrasse 44, 80336 Munich, Germany
- Tel: +49 89 2180 75 453; Fax: +49 89 2180 75 415;
| | - Harald Steiner
- Adolf-Butenandt-Institute, Department of Biochemistry, Laboratory of Alzheimer's and Parkinson's Disease Research, Ludwig-Maximilians-University, Schillerstrasse 44, 80336 Munich, Germany
- Tel: +49 89 2180 75 480; Fax: +49 89 2180 75 415;
| |
Collapse
|
119
|
Lieberman RL, Wolfe MS. From rhomboid function to structure and back again. Proc Natl Acad Sci U S A 2007; 104:8199-200. [PMID: 17494772 PMCID: PMC1895926 DOI: 10.1073/pnas.0702745104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Raquel L. Lieberman
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115
| | - Michael S. Wolfe
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
120
|
Isoo N, Sato C, Miyashita H, Shinohara M, Takasugi N, Morohashi Y, Tsuji S, Tomita T, Iwatsubo T. Aβ42 Overproduction Associated with Structural Changes in the Catalytic Pore of γ-Secretase. J Biol Chem 2007; 282:12388-96. [PMID: 17329245 DOI: 10.1074/jbc.m611549200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
gamma-Secretase is an atypical aspartyl protease that cleaves amyloid beta-precursor protein to generate Abeta peptides that are causative for Alzheimer disease. gamma-Secretase is a multimeric membrane protein complex composed of presenilin (PS), nicastrin, Aph-1, and Pen-2. Pen-2 directly binds to transmembrane domain 4 of PS and confers proteolytic activity on gamma-secretase, although the mechanism of activation and its role in catalysis remain unknown. Here we show that an addition of amino acid residues to the N terminus of Pen-2 specifically increases the generation of Abeta42, the longer and more aggregable species of Abeta. The effect of the N-terminal elongation of Pen-2 on Abeta42 generation was independent of the amino acid sequences, the expression system and the presenilin species. In vitro gamma-secretase assay revealed that Pen-2 directly affects the Abeta42-generating activity of gamma-secretase. The elongation of Pen-2 N terminus caused a reduction in the water accessibility of the luminal side of the catalytic pore of PS1 in a similar manner to that caused by an Abeta42-raising gamma-secretase modulator, fenofibrate, as determined by substituted cysteine accessibility method. These data suggest a unique mechanism of Abeta42 overproduction associated with structural changes in the catalytic pore of presenilins caused commonly by the N-terminal elongation of Pen-2 and fenofibrate.
Collapse
Affiliation(s)
- Noriko Isoo
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Affiliation(s)
- Raquel L. Lieberman
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115
| | - Michael S. Wolfe
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
122
|
Koide K, Maegawa S, Ito K, Akiyama Y. Environment of the active site region of RseP, an Escherichia coli regulated intramembrane proteolysis protease, assessed by site-directed cysteine alkylation. J Biol Chem 2006; 282:4553-4560. [PMID: 17179147 DOI: 10.1074/jbc.m607339200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulated intramembrane proteolysis (RIP) plays crucial roles in both prokaryotic and eukaryotic organisms. Proteases for RIP cleave transmembrane regions of substrate membrane proteins. However, the molecular mechanisms for the proteolysis of membrane-embedded transmembrane sequences are largely unknown. Here we studied the environment surrounding the active site region of RseP, an Escherichia coli S2P ortholog involved in the sigma(E) pathway of extracytoplasmic stress responses. RseP has two presumed active site motifs, HEXXH and LDG, located in membrane-cytoplasm boundary regions. We examined the reactivity of cysteine residues introduced within or in the vicinity of these two active site motifs with membrane-impermeable thiol-alkylating reagents under various conditions. The active site positions were inaccessible to the reagents in the native state, but many of them became partially modifiable in the presence of a chaotrope, while requiring simultaneous addition of a chaotrope and a detergent for full modification. These results suggest that the active site of RseP is not totally embedded in the lipid phase but located within a proteinaceous structure that is partially exposed to the aqueous milieu.
Collapse
Affiliation(s)
- Kayo Koide
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Saki Maegawa
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Koreaki Ito
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshinori Akiyama
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|