101
|
Sun T, Li S, Ren H. OsFH15, a class I formin, interacts with microfilaments and microtubules to regulate grain size via affecting cell expansion in rice. Sci Rep 2017; 7:6538. [PMID: 28747699 PMCID: PMC5529588 DOI: 10.1038/s41598-017-06431-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/13/2017] [Indexed: 11/23/2022] Open
Abstract
Grain size is an important agronomic trait determining rice yield and is mainly restricted by spikelet hull size. However, it remains largely unknown how the spikelet hull size is regulated. In this study, OsFH15, a class I formin protein in Oryza sativa, was found to be able to regulate the size of cells and spikelet hull. OsFH15-Cas9 and OsFH15-RNAi mutants had decreased grain size with reduced cell length, cell width and cell area of inner epidermal cells of the lemma compared with wild-type plants. By contrast, OsFH15-overexpressed plants had increased grain size with larger cells, as well as more abundant microtubules (MTs) and actin filaments (AFs) arrays. OsFH15 was mainly expressed in shoot apical meristem (SAM), spikelets, spikelet hulls and seeds in rice. In vitro biochemical experiments showed that OsFH15 can efficiently nucleate actin polymerization with or without profilin, can cap the barbed end of AFs, and can bind and bundle both AFs and MTs. OsFH15 can also crosslink AFs with MTs, and preferentially bind MTs to AFs. These results demonstrated that OsFH15 played an important role in grain-size control by affecting cell expansion through regulating AFs and MTs.
Collapse
Affiliation(s)
- Tiantian Sun
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Shanwei Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
102
|
Fujiwara I, Narita A. Keeping the focus on biophysics and actin filaments in Nagoya: A report of the 2016 "now in actin" symposium. Cytoskeleton (Hoboken) 2017; 74:450-464. [PMID: 28681410 DOI: 10.1002/cm.21384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 01/01/2023]
Abstract
Regulatory systems in living cells are highly organized, enabling cells to response to various changes in their environments. Actin polymerization and depolymerization are crucial to establish cytoskeletal networks to maintain muscle contraction, cell motility, cell division, adhesion, organism development and more. To share and promote the biophysical understanding of such mechanisms in living creatures, the "Now in Actin Study: -Motor protein research reaching a new stage-" symposium was organized at Nagoya University, Japan on 12 and 13, December 2016. The organizers invited emeritus professor of Nagoya and Osaka Universities Fumio Oosawa and leading scientists worldwide as keynote speakers, in addition to poster presentations on cell motility studies by many researchers. Studies employing various biophysical, biochemical, cell and molecular biological and mathematical approaches provided the latest understanding of mechanisms of cell motility functions driven by actin, microtubules, actin-binding proteins, and other motor proteins.
Collapse
Affiliation(s)
- Ikuko Fujiwara
- Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Akihiro Narita
- Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
| |
Collapse
|
103
|
Juanes MA, Bouguenina H, Eskin JA, Jaiswal R, Badache A, Goode BL. Adenomatous polyposis coli nucleates actin assembly to drive cell migration and microtubule-induced focal adhesion turnover. J Cell Biol 2017; 216:2859-2875. [PMID: 28663347 PMCID: PMC5584174 DOI: 10.1083/jcb.201702007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/14/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023] Open
Abstract
Cell motility depends on tight coordination between the microtubule (MT) and actin cytoskeletons, but the mechanisms underlying this MT-actin cross talk have remained poorly understood. Here, we show that the tumor suppressor protein adenomatous polyposis coli (APC), which is a known MT-associated protein, directly nucleates actin assembly to promote directed cell migration. By changing only two residues in APC, we generated a separation-of-function mutant, APC (m4), that abolishes actin nucleation activity without affecting MT interactions. Expression of full-length APC carrying the m4 mutation (APC (m4)) rescued cellular defects in MT organization, MT dynamics, and mitochondrial distribution caused by depletion of endogenous APC but failed to restore cell migration. Wild-type APC and APC (m4) localized to focal adhesions (FAs), and APC (m4) was defective in promoting actin assembly at FAs to facilitate MT-induced FA turnover. These results provide the first direct evidence for APC-mediated actin assembly in vivo and establish a role for APC in coordinating MTs and actin at FAs to direct cell migration.
Collapse
Affiliation(s)
| | - Habib Bouguenina
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | | | - Richa Jaiswal
- Department of Biology, Brandeis University, Waltham, MA
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA
| |
Collapse
|
104
|
Fedorov EG, Shemesh T. Physical Model for Stabilization and Repair of Trans-endothelial Apertures. Biophys J 2017; 112:388-397. [PMID: 28122224 DOI: 10.1016/j.bpj.2016.11.3207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/16/2016] [Accepted: 11/28/2016] [Indexed: 01/13/2023] Open
Abstract
Bacterial toxins that disrupt the stability of contractile structures in endothelial cells promote the opening of large-scale apertures, thereby breaching the endothelium barrier. These apertures are formed by fusion of the basal and apical membranes into a tunnel that spans the height of the cell. Subsequent to the aperture formation, an active repair process, driven by a stimulated polymerization of actin, results in asymmetrical membrane protrusions and, ultimately, the closure of the aperture. Here, we propose a physics-based model for the generation, stabilization and repair of trans-endothelial apertures. Our model is based on the mechanical interplay between tension in the plasma membrane and stresses that develop within different actin structures at the aperture's periphery. We suggest that accumulation of cytoskeletal fragments around the aperture's rim during the expansion phase results in parallel bundles of actin filaments and myosin motors, generating progressively greater contraction forces that resist further expansion of the aperture. Our results indicate that closure of the tunnel is driven by mechanical stresses that develop within a cross-linked actin gel that forms at localized regions of the aperture periphery. We show that stresses within the gel are due to continuous polymerization of actin filaments against the membrane surfaces of the aperture's edges. Based on our mechanical model, we construct a dynamic simulation of the aperture repair process. Our model fully accounts for the phenomenology of the trans-endothelial aperture formation and stabilization, and recaptures the experimentally observed asymmetry of the intermediate aperture shapes during closure. We make experimentally testable predictions for localization of myosin motors to the tunnel periphery and of adhesion complexes to the edges of apertures undergoing closure, and we estimate the minimal nucleation size of cross-linked actin gel that can lead to a successful repair of the aperture.
Collapse
Affiliation(s)
- Eduard G Fedorov
- Department of Biology, Israel Institute of Technology, Haifa, Israel
| | - Tom Shemesh
- Department of Biology, Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
105
|
Shekhar S, Carlier MF. Enhanced Depolymerization of Actin Filaments by ADF/Cofilin and Monomer Funneling by Capping Protein Cooperate to Accelerate Barbed-End Growth. Curr Biol 2017. [PMID: 28625780 PMCID: PMC5505869 DOI: 10.1016/j.cub.2017.05.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A living cell’s ability to assemble actin filaments in intracellular motile processes is directly dependent on the availability of polymerizable actin monomers, which feed polarized filament growth [1, 2]. Continued generation of the monomer pool by filament disassembly is therefore crucial. Disassemblers like actin depolymerizing factor (ADF)/cofilin and filament cappers like capping protein (CP) are essential agonists of motility [3, 4, 5, 6, 7, 8], but the exact molecular mechanisms by which they accelerate actin polymerization at the leading edge and filament turnover has been debated for over two decades [9, 10, 11, 12]. Whereas filament fragmentation by ADF/cofilin has long been demonstrated by total internal reflection fluorescence (TIRF) [13, 14], filament depolymerization was only inferred from bulk solution assays [15]. Using microfluidics-assisted TIRF microscopy, we provide the first direct visual evidence of ADF’s simultaneous severing and rapid depolymerization of individual filaments. Using a conceptually novel assay to directly visualize ADF’s effect on a population of pre-assembled filaments, we demonstrate how ADF’s enhanced pointed-end depolymerization causes an increase in polymerizable actin monomers, thus promoting faster barbed-end growth. We further reveal that ADF-enhanced depolymerization synergizes with CP’s long-predicted “monomer funneling” [16] and leads to skyrocketing of filament growth rates, close to estimated lamellipodial rates. The “funneling model” hypothesized, on thermodynamic grounds, that at high enough extent of capping, the few non-capped filaments transiently grow much faster [15], an effect proposed to be very important for motility. We provide the first direct microscopic evidence of monomer funneling at the scale of individual filaments. These results significantly enhance our understanding of the turnover of cellular actin networks. ADF enhances barbed- and pointed-end depolymerization of actin filaments Capping protein funnels monomers from all pointed ends to the few non-capped barbed ends ADF and capping protein synergy leads to skyrocketing of filament elongation rates
Collapse
Affiliation(s)
- Shashank Shekhar
- Cytoskeleton Dynamics and Cell Motility, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris Saclay, 91198 Gif-sur-Yvette Cedex, France.
| | - Marie-France Carlier
- Cytoskeleton Dynamics and Cell Motility, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris Saclay, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
106
|
Zhang Y, Yoshida A, Sakai N, Uekusa Y, Kumeta M, Yoshimura SH. In vivo dynamics of the cortical actin network revealed by fast-scanning atomic force microscopy. Microscopy (Oxf) 2017; 66:272-282. [DOI: 10.1093/jmicro/dfx015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/29/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yanshu Zhang
- Graduate School of Biostudies, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Aiko Yoshida
- Graduate School of Biostudies, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | - Masahiro Kumeta
- Graduate School of Biostudies, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shige H. Yoshimura
- Graduate School of Biostudies, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
107
|
Abstract
Filamentous actin (F-actin) organization within cells is regulated by a large number of actin-binding proteins that control actin nucleation, growth, cross-linking and/or disassembly. This protocol describes a technique – the actin co-sedimentation, or pelleting, assay – to determine whether a protein or protein domain binds F-actin and to measure the affinity of the interaction (i.e., the dissociation equilibrium constant). In this technique, a protein of interest is first incubated with F-actin in solution. Then, differential centrifugation is used to sediment the actin filaments, and the pelleted material is analyzed by SDS-PAGE. If the protein of interest binds F-actin, it will co-sediment with the actin filaments. The products of the binding reaction (i.e., F-actin and the protein of interest) can be quantified to determine the affinity of the interaction. The actin pelleting assay is a straightforward technique for determining if a protein of interest binds F-actin and for assessing how changes to that protein, such as ligand binding, affect its interaction with F-actin.
Collapse
Affiliation(s)
- Jonathon A Heier
- Department of Cell Biology, University of Pittsburgh School of Medicine
| | | | - Adam V Kwiatkowski
- Department of Cell Biology, University of Pittsburgh School of Medicine;
| |
Collapse
|
108
|
Burke TA, Harker AJ, Dominguez R, Kovar DR. The bacterial virulence factors VopL and VopF nucleate actin from the pointed end. J Cell Biol 2017; 216:1267-1276. [PMID: 28363971 PMCID: PMC5412564 DOI: 10.1083/jcb.201608104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/31/2017] [Accepted: 02/16/2017] [Indexed: 11/22/2022] Open
Abstract
How the bacterial virulence factors VopL/F from Vibrio catalyze actin nucleation is unclear. Using multicolor TIRF microscopy imaging, Burke et al. find that VopL and VopF stimulate actin assembly via identical pointed-end nucleation mechanisms. VopL and VopF (VopL/F) are tandem WH2-domain actin assembly factors used by infectious Vibrio species to induce actin assembly in host cells. There is disagreement about the filament assembly mechanism of VopL/F, including whether they associate with the filament barbed or pointed end. Here, we used multicolor total internal reflection fluorescence microscopy to directly observe actin assembly with fluorescently labeled VopL/F. In actin monomer assembly reactions, VopL/F exclusively nucleate actin filament assemblies, remaining only briefly associated with the pointed end. VopL/F do not associate with the ends of preassembled filaments. In assembly reactions with saturating profilin, ∼85% of VopL/F molecules also promote nucleation from the pointed end, whereas a smaller fraction (<15%) associate for ∼25 s with the barbed end of preassembled filaments, inhibiting their elongation. We conclude that VopL/F function primarily as actin nucleation factors that remain briefly (∼100 s) associated with the pointed end.
Collapse
Affiliation(s)
- Thomas A Burke
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Alyssa J Harker
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637 .,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
109
|
Jiang Y, Huang S. Direct Visualization and Quantification of the Actin Nucleation andElongation Events in vitro by TIRF Microscopy. Bio Protoc 2017; 7:e2146. [PMID: 34458464 DOI: 10.21769/bioprotoc.2146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/05/2016] [Accepted: 02/03/2017] [Indexed: 11/02/2022] Open
Abstract
Total internal reflection fluorescence (TIRF) microscopy is a powerful tool for visualizing the dynamics of actin filaments at single-filament resolution in vitro. Thanks to the development of various fluorescent probes, we can easily monitor all kinds of events associated with actin dynamics, including nucleation, elongation, bundling, fragmentation and monomer dissociation. Here we present a detailed protocol regarding the visualization and quantification of actin nucleation and filament elongation events by TIRF microscopy in vitro, which is based on the methods previously reported ( Liu et al., 2015 ; Yang et al., 2011 ).
Collapse
Affiliation(s)
- Yuxiang Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
110
|
Frémont S, Hammich H, Bai J, Wioland H, Klinkert K, Rocancourt M, Kikuti C, Stroebel D, Romet-Lemonne G, Pylypenko O, Houdusse A, Echard A. Oxidation of F-actin controls the terminal steps of cytokinesis. Nat Commun 2017; 8:14528. [PMID: 28230050 PMCID: PMC5331220 DOI: 10.1038/ncomms14528] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/04/2017] [Indexed: 12/30/2022] Open
Abstract
Cytokinetic abscission, the terminal step of cell division, crucially depends on the local constriction of ESCRT-III helices after cytoskeleton disassembly. While the microtubules of the intercellular bridge are cut by the ESCRT-associated enzyme Spastin, the mechanism that clears F-actin at the abscission site is unknown. Here we show that oxidation-mediated depolymerization of actin by the redox enzyme MICAL1 is key for ESCRT-III recruitment and successful abscission. MICAL1 is recruited to the abscission site by the Rab35 GTPase through a direct interaction with a flat three-helix domain found in MICAL1 C terminus. Mechanistically, in vitro assays on single actin filaments demonstrate that MICAL1 is activated by Rab35. Moreover, in our experimental conditions, MICAL1 does not act as a severing enzyme, as initially thought, but instead induces F-actin depolymerization from both ends. Our work reveals an unexpected role for oxidoreduction in triggering local actin depolymerization to control a fundamental step of cell division. Cytokinetic abscission relies on the local constriction after cytoskeleton disassembly, but it is not known how the actin filaments are disassembled. Here, the authors show that the redox enzyme MICAL1 is recruited by Rab35 and induces oxidation-mediated depolymerization of actin, which is required to recruit ESCRT-III and complete abscission.
Collapse
Affiliation(s)
- Stéphane Frémont
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris Cedex 15, France.,Centre National de la Recherche Scientifique UMR3691, 75015 Paris, France
| | - Hussein Hammich
- Structural Motility, Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - Jian Bai
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris Cedex 15, France.,Centre National de la Recherche Scientifique UMR3691, 75015 Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Sorbonne Universités, IFD, 4 Place Jussieu, 75252 Paris Cedex 15, France
| | - Hugo Wioland
- Institut Jacques Monod, CNRS, Université Paris Diderot, Université Sorbonne Paris Cité, 75013 Paris, France
| | - Kerstin Klinkert
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris Cedex 15, France.,Centre National de la Recherche Scientifique UMR3691, 75015 Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Sorbonne Universités, IFD, 4 Place Jussieu, 75252 Paris Cedex 15, France
| | - Murielle Rocancourt
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris Cedex 15, France.,Centre National de la Recherche Scientifique UMR3691, 75015 Paris, France
| | - Carlos Kikuti
- Structural Motility, Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - David Stroebel
- Ecole Normale Supérieure, PSL Research University, CNRS, INSERM, Institut de Biologie de l'École Normale Supérieure (IBENS), 75005 Paris, France
| | - Guillaume Romet-Lemonne
- Institut Jacques Monod, CNRS, Université Paris Diderot, Université Sorbonne Paris Cité, 75013 Paris, France
| | - Olena Pylypenko
- Structural Motility, Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - Anne Houdusse
- Structural Motility, Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris Cedex 15, France.,Centre National de la Recherche Scientifique UMR3691, 75015 Paris, France
| |
Collapse
|
111
|
Marchenko OO, Das S, Yu J, Novak IL, Rodionov VI, Efimova N, Svitkina T, Wolgemuth CW, Loew LM. A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites. Mol Biol Cell 2017; 28:1021-1033. [PMID: 28228546 PMCID: PMC5391179 DOI: 10.1091/mbc.e16-06-0461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/15/2016] [Accepted: 02/13/2017] [Indexed: 11/22/2022] Open
Abstract
A combination of computational and experimental approaches is used to show that the complex dynamics of dendritic filopodia, which is essential for synaptogenesis, is explained by a conceptually simple interplay among actin retrograde flow, myosin contractility, and substrate adhesion. Dendritic filopodia are actin-filled dynamic subcellular structures that sprout on neuronal dendrites during neurogenesis. The exploratory motion of the filopodia is crucial for synaptogenesis, but the underlying mechanisms are poorly understood. To study filopodial motility, we collected and analyzed image data on filopodia in cultured rat hippocampal neurons. We hypothesized that mechanical feedback among the actin retrograde flow, myosin activity, and substrate adhesion gives rise to various filopodial behaviors. We formulated a minimal one-dimensional partial differential equation model that reproduced the range of observed motility. To validate our model, we systematically manipulated experimental correlates of parameters in the model: substrate adhesion strength, actin polymerization rate, myosin contractility, and the integrity of the putative microtubule-based barrier at the filopodium base. The model predicts the response of the system to each of these experimental perturbations, supporting the hypothesis that our actomyosin-driven mechanism controls dendritic filopodia dynamics.
Collapse
Affiliation(s)
- Olena O Marchenko
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030
| | - Sulagna Das
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461
| | - Ji Yu
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030
| | - Igor L Novak
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030
| | - Vladimir I Rodionov
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030
| | - Nadia Efimova
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Charles W Wolgemuth
- Departments of Physics and Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
112
|
Grintsevich EE. Remodeling of Actin Filaments by Drebrin A and Its Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:61-82. [DOI: 10.1007/978-4-431-56550-5_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
113
|
Shekhar S, Carlier MF. Single-filament kinetic studies provide novel insights into regulation of actin-based motility. Mol Biol Cell 2016; 27:1-6. [PMID: 26715420 PMCID: PMC4694749 DOI: 10.1091/mbc.e15-06-0352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Polarized assembly of actin filaments forms the basis of actin-based motility and is regulated both spatially and temporally. Cells use a variety of mechanisms by which intrinsically slower processes are accelerated, and faster ones decelerated, to match rates observed in vivo. Here we discuss how kinetic studies of individual reactions and cycles that drive actin remodeling have provided a mechanistic and quantitative understanding of such processes. We specifically consider key barbed-end regulators such as capping protein and formins as illustrative examples. We compare and contrast different kinetic approaches, such as the traditional pyrene-polymerization bulk assays, as well as more recently developed single-filament and single-molecule imaging approaches. Recent development of novel biophysical methods for sensing and applying forces will in future allow us to address the very important relationship between mechanical stimulus and kinetics of actin-based motility.
Collapse
Affiliation(s)
- Shashank Shekhar
- Cytoskeleton Dynamics and Cell Motility, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France
| | - Marie-France Carlier
- Cytoskeleton Dynamics and Cell Motility, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France
| |
Collapse
|
114
|
Bengtsson E, Persson M, Rahman MA, Kumar S, Takatsuki H, Månsson A. Myosin-Induced Gliding Patterns at Varied [MgATP] Unveil a Dynamic Actin Filament. Biophys J 2016; 111:1465-1477. [PMID: 27705769 PMCID: PMC5052455 DOI: 10.1016/j.bpj.2016.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 11/29/2022] Open
Abstract
Actin filaments have key roles in cell motility but are generally claimed to be passive interaction partners in actin-myosin-based motion generation. Here, we present evidence against this static view based on an altered myosin-induced actin filament gliding pattern in an in vitro motility assay at varied [MgATP]. The statistics that characterize the degree of meandering of the actin filament paths suggest that for [MgATP] ≥ 0.25 mM, the flexural rigidity of heavy meromyosin (HMM)-propelled actin filaments is similar (without phalloidin) or slightly lower (with phalloidin) than that of HMM-free filaments observed in solution without surface tethering. When [MgATP] was reduced to ≤0.1 mM, the actin filament paths in the in vitro motility assay became appreciably more winding in both the presence and absence of phalloidin. This effect of lowered [MgATP] was qualitatively different from that seen when HMM was mixed with ATP-insensitive, N-ethylmaleimide-treated HMM (NEM-HMM; 25-30%). In particular, the addition of NEM-HMM increased a non-Gaussian tail in the path curvature distribution as well as the number of events in which different parts of an actin filament followed different paths. These effects were the opposite of those observed with reduced [MgATP]. Theoretical modeling suggests a 30-40% lowered flexural rigidity of the actin filaments at [MgATP] ≤ 0.1 mM and local bending of the filament front upon each myosin head attachment. Overall, the results fit with appreciable structural changes in the actin filament during actomyosin-based motion generation, and modulation of the actin filament mechanical properties by the dominating chemomechanical actomyosin state.
Collapse
Affiliation(s)
- Elina Bengtsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | - Malin Persson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | - Mohammad A Rahman
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | - Saroj Kumar
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | - Hideyo Takatsuki
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden.
| |
Collapse
|
115
|
Winkelman JD, Suarez C, Hocky GM, Harker AJ, Morganthaler AN, Christensen JR, Voth GA, Bartles JR, Kovar DR. Fascin- and α-Actinin-Bundled Networks Contain Intrinsic Structural Features that Drive Protein Sorting. Curr Biol 2016; 26:2697-2706. [PMID: 27666967 DOI: 10.1016/j.cub.2016.07.080] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/04/2016] [Accepted: 07/28/2016] [Indexed: 12/25/2022]
Abstract
Cells assemble and maintain functionally distinct actin cytoskeleton networks with various actin filament organizations and dynamics through the coordinated action of different sets of actin-binding proteins. The biochemical and functional properties of diverse actin-binding proteins, both alone and in combination, have been increasingly well studied. Conversely, how different sets of actin-binding proteins properly sort to distinct actin filament networks in the first place is not nearly as well understood. Actin-binding protein sorting is critical for the self-organization of diverse dynamic actin cytoskeleton networks within a common cytoplasm. Using in vitro reconstitution techniques including biomimetic assays and single-molecule multi-color total internal reflection fluorescence microscopy, we discovered that sorting of the prominent actin-bundling proteins fascin and α-actinin to distinct networks is an intrinsic behavior, free of complicated cellular signaling cascades. When mixed, fascin and α-actinin mutually exclude each other by promoting their own recruitment and inhibiting recruitment of the other, resulting in the formation of distinct fascin- or α-actinin-bundled domains. Subdiffraction-resolution light microscopy and negative-staining electron microscopy revealed that fascin domains are densely packed, whereas α-actinin domains consist of widely spaced parallel actin filaments. Importantly, other actin-binding proteins such as fimbrin and espin show high specificity between these two bundle types within the same reaction. Here we directly observe that fascin and α-actinin intrinsically segregate to discrete bundled domains that are specifically recognized by other actin-binding proteins.
Collapse
Affiliation(s)
- Jonathan D Winkelman
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Glen M Hocky
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Alyssa J Harker
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Alisha N Morganthaler
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jenna R Christensen
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Gregory A Voth
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; James Franck Institute, The University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Computation Institute, The University of Chicago, Chicago, IL 60637, USA
| | - James R Bartles
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
116
|
Zaccone A, Terentjev I, Herling TW, Knowles TPJ, Aleksandrova A, Terentjev EM. Kinetics of fragmentation and dissociation of two-strand protein filaments: Coarse-grained simulations and experiments. J Chem Phys 2016; 145:105101. [DOI: 10.1063/1.4962366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
117
|
Kwakwa K, Savell A, Davies T, Munro I, Parrinello S, Purbhoo MA, Dunsby C, Neil MAA, French PMW. easySTORM: a robust, lower-cost approach to localisation and TIRF microscopy. JOURNAL OF BIOPHOTONICS 2016; 9:948-957. [PMID: 27592533 DOI: 10.1002/jbio.201500324] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/21/2016] [Accepted: 01/31/2016] [Indexed: 06/06/2023]
Abstract
TIRF and STORM microscopy are super-resolving fluorescence imaging modalities for which current implementations on standard microscopes can present significant complexity and cost. We present a straightforward and low-cost approach to implement STORM and TIRF taking advantage of multimode optical fibres and multimode diode lasers to provide the required excitation light. Combined with open source software and relatively simple protocols to prepare samples for STORM, including the use of Vectashield for non-TIRF imaging, this approach enables TIRF and STORM imaging of cells labelled with appropriate dyes or expressing suitable fluorescent proteins to become widely accessible at low cost.
Collapse
Affiliation(s)
- Kwasi Kwakwa
- Photonics Group, Physics Department, Imperial College London, London, SW7 2AZ.
| | - Alexander Savell
- Photonics Group, Physics Department, Imperial College London, London, SW7 2AZ
- Institute of Chemical Biology, Imperial College London, London, SW7 2AZ
| | - Timothy Davies
- MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London, W12 0NN
| | - Ian Munro
- Photonics Group, Physics Department, Imperial College London, London, SW7 2AZ
| | - Simona Parrinello
- MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London, W12 0NN
| | - Marco A Purbhoo
- Section of Hepatology, QEQM Hospital, Imperial College London, London, W2 1PG, UK
| | - Chris Dunsby
- Photonics Group, Physics Department, Imperial College London, London, SW7 2AZ
- Centre for Pathology, Imperial College London, London, W12 0NN
| | - Mark A A Neil
- Photonics Group, Physics Department, Imperial College London, London, SW7 2AZ
| | - Paul M W French
- Photonics Group, Physics Department, Imperial College London, London, SW7 2AZ
| |
Collapse
|
118
|
Abstract
Organisms from all domains of life depend on filaments of the protein actin to provide structure and to support internal movements. Many eukaryotic cells use forces produced by actin polymerization for their motility, and myosin motor proteins use ATP hydrolysis to produce force on actin filaments. Actin polymerizes spontaneously, followed by hydrolysis of a bound adenosine triphosphate (ATP). Dissociation of the γ-phosphate prepares the polymer for disassembly. This review provides an overview of the properties of actin and shows how dozens of proteins control both the assembly and disassembly of actin filaments. These players catalyze nucleotide exchange on actin monomers, initiate polymerization, promote phosphate dissociation, cap the ends of polymers, cross-link filaments to each other and other cellular components, and sever filaments.
Collapse
|
119
|
Henty-Ridilla JL, Rankova A, Eskin JA, Kenny K, Goode BL. Accelerated actin filament polymerization from microtubule plus ends. Science 2016; 352:1004-9. [PMID: 27199431 DOI: 10.1126/science.aaf1709] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/05/2016] [Indexed: 12/13/2022]
Abstract
Microtubules (MTs) govern actin network remodeling in a wide range of biological processes, yet the mechanisms underlying this cytoskeletal cross-talk have remained obscure. We used single-molecule fluorescence microscopy to show that the MT plus-end-associated protein CLIP-170 binds tightly to formins to accelerate actin filament elongation. Furthermore, we observed mDia1 dimers and CLIP-170 dimers cotracking growing filament ends for several minutes. CLIP-170-mDia1 complexes promoted actin polymerization ~18 times faster than free-barbed-end growth while simultaneously enhancing protection from capping proteins. We used a MT-actin dynamics co-reconstitution system to observe CLIP-170-mDia1 complexes being recruited to growing MT ends by EB1. The complexes triggered rapid growth of actin filaments that remained attached to the MT surface. These activities of CLIP-170 were required in primary neurons for normal dendritic morphology. Thus, our results reveal a cellular mechanism whereby growing MT plus ends direct rapid actin assembly.
Collapse
Affiliation(s)
| | - Aneliya Rankova
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Julian A Eskin
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Katelyn Kenny
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Bruce L Goode
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
120
|
Zhang S, Liu C, Wang J, Ren Z, Staiger CJ, Ren H. A Processive Arabidopsis Formin Modulates Actin Filament Dynamics in Association with Profilin. MOLECULAR PLANT 2016; 9:900-10. [PMID: 26996265 DOI: 10.1016/j.molp.2016.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/28/2016] [Accepted: 03/04/2016] [Indexed: 05/08/2023]
Abstract
Formins are conserved regulators of actin cytoskeletal organization and dynamics that have been implicated to be important for cell division and cell polarity. The mechanism by which diverse formins regulate actin dynamics in plants is still not well understood. Using in vitro single-molecule imaging technology, we directly observed that the FH1-FH2 domain of an Arabidopsis thaliana formin, AtFH14, processively attaches to the barbed end of actin filaments as a dimer and slows their elongation rate by 90%. The attachment persistence of FH1-FH2 is concentration dependent. Furthermore, by use of the triple-color total internal reflection fluorescence microscopy, we found that ABP29, a barbed-end capping protein, competes with FH1-FH2 at the filament barbed end, where its binding is mutually exclusive with AtFH14. In the presence of different plant profilin isoforms, FH1-FH2 enhances filament elongation rates from about 10 to 42 times. Filaments buckle when FH1-FH2 is anchored specifically to cover slides, further indicating that AtFH14 moves processively on the elongating barbed end. At high concentration, AtFH14 bundles actin filaments randomly into antiparallel or parallel spindle-like structures; however, the FH1-FH2-mediated bundles become thinner and longer in the presence of plant profilins. This is the direct demonstration of a processive formin from plants. Our results also illuminate the molecular mechanism of AtFH14 in regulating actin dynamics via association with profilin.
Collapse
Affiliation(s)
- Sha Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Chang Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jiaojiao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zhanhong Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Christopher J Staiger
- Department of Biological Sciences, Purdue University, Hansen Life Sciences Research Building, West Lafayette, IN 47907-2064, USA
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China.
| |
Collapse
|
121
|
Pernier J, Shekhar S, Jegou A, Guichard B, Carlier MF. Profilin Interaction with Actin Filament Barbed End Controls Dynamic Instability, Capping, Branching, and Motility. Dev Cell 2016; 36:201-14. [PMID: 26812019 PMCID: PMC4729542 DOI: 10.1016/j.devcel.2015.12.024] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022]
Abstract
Cell motility and actin homeostasis depend on the control of polarized growth of actin filaments. Profilin, an abundant regulator of actin dynamics, supports filament assembly at barbed ends by binding G-actin. Here, we demonstrate how, by binding and destabilizing filament barbed ends at physiological concentrations, profilin also controls motility, cell migration, and actin homeostasis. Profilin enhances filament length fluctuations. Profilin competes with Capping Protein at barbed ends, which generates a lower amount of profilin-actin than expected if barbed ends were tightly capped. Profilin competes with barbed end polymerases, such as formins and VopF, and inhibits filament branching by WASP-Arp2/3 complex by competition for filament barbed ends, accounting for its as-yet-unknown effects on motility and metastatic cell migration observed in this concentration range. In conclusion, profilin is a major coordinator of polarized growth of actin filaments, controlled by competition between barbed end cappers, trackers, destabilizers, and filament branching machineries. The binding of profilin to barbed ends accounts for its effects on cell migration Profilin enhances length fluctuations of actin filaments by destabilizing barbed ends Profilin competes with capping protein at filament barbed ends Profilin competes with polymerases and filament branching machineries at barbed ends
Collapse
Affiliation(s)
- Julien Pernier
- Cytoskeleton Dynamics and Motility Group, I2BC, CNRS, Gif-sur-Yvette 91198, France
| | - Shashank Shekhar
- Cytoskeleton Dynamics and Motility Group, I2BC, CNRS, Gif-sur-Yvette 91198, France
| | - Antoine Jegou
- Cytoskeleton Dynamics and Motility Group, I2BC, CNRS, Gif-sur-Yvette 91198, France
| | - Bérengère Guichard
- Cytoskeleton Dynamics and Motility Group, I2BC, CNRS, Gif-sur-Yvette 91198, France
| | - Marie-France Carlier
- Cytoskeleton Dynamics and Motility Group, I2BC, CNRS, Gif-sur-Yvette 91198, France.
| |
Collapse
|
122
|
Abstract
Septins are polymerizing eukaryotic proteins that play conserved roles in cell cortex organization and are essential in many cell types. How septin dynamics and protein-protein interactions determine their function at the plasma membrane remains a mystery. Here, we present a method for recapitulating septin polymerization and lipid interaction utilizing supported lipid bilayers to mimic the eukaryotic plasma membrane. Septins on supported lipid bilayers can be visualized with single-molecule sensitivity using total internal reflective fluorescence microscopy. Microscopy-based in vitro assays have revolutionized our understanding of actin, microtubules, and bacterial cytoskeletal systems, and will likely immediately advance our understanding of the septin proteins. As such, we hope that this technique will be adopted and widely utilized by those interested in uncovering septin properties and functions of septin interacting proteins.
Collapse
|
123
|
Li Y, Christensen JR, Homa KE, Hocky GM, Fok A, Sees JA, Voth GA, Kovar DR. The F-actin bundler α-actinin Ain1 is tailored for ring assembly and constriction during cytokinesis in fission yeast. Mol Biol Cell 2016; 27:1821-33. [PMID: 27075176 PMCID: PMC4884072 DOI: 10.1091/mbc.e16-01-0010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/06/2016] [Indexed: 12/18/2022] Open
Abstract
The actomyosin contractile ring is a network of cross-linked actin filaments that facilitates cytokinesis in dividing cells. Contractile ring formation has been well characterized in Schizosaccharomyces pombe, in which the cross-linking protein α-actinin SpAin1 bundles the actin filament network. However, the specific biochemical properties of SpAin1 and whether they are tailored for cytokinesis are not known. Therefore we purified SpAin1 and quantified its ability to dynamically bind and bundle actin filaments in vitro using a combination of bulk sedimentation assays and direct visualization by two-color total internal reflection fluorescence microscopy. We found that, while SpAin1 bundles actin filaments of mixed polarity like other α-actinins, SpAin1 has lower bundling activity and is more dynamic than human α-actinin HsACTN4. To determine whether dynamic bundling is important for cytokinesis in fission yeast, we created the less dynamic bundling mutant SpAin1(R216E). We found that dynamic bundling is critical for cytokinesis, as cells expressing SpAin1(R216E) display disorganized ring material and delays in both ring formation and constriction. Furthermore, computer simulations of initial actin filament elongation and alignment revealed that an intermediate level of cross-linking best facilitates filament alignment. Together our results demonstrate that dynamic bundling by SpAin1 is important for proper contractile ring formation and constriction.
Collapse
Affiliation(s)
- Yujie Li
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637
| | - Jenna R Christensen
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Kaitlin E Homa
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Glen M Hocky
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, University of Chicago, Chicago, IL 60637
| | - Alice Fok
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Jennifer A Sees
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, University of Chicago, Chicago, IL 60637
| | - David R Kovar
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637 Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637 Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
124
|
Oelz D, Mogilner A. Actomyosin contraction, aggregation and traveling waves in a treadmilling actin array. PHYSICA D. NONLINEAR PHENOMENA 2016; 318-319:70-83. [PMID: 26989275 PMCID: PMC4789780 DOI: 10.1016/j.physd.2015.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We use perturbation theory to derive a continuum model for the dynamic actomyosin bundle/ring in the regime of very strong crosslinking. Actin treadmilling is essential for contraction. Linear stability analysis and numerical solutions of the model equations reveal that when the actin treadmilling is very slow, actin and myosin aggregate into equidistantly spaced peaks. When treadmilling is significant, actin filament of one polarity are distributed evenly, while filaments of the opposite polarity develop a shock wave moving with the treadmilling velocity. Myosin aggregates into a sharp peak surfing the crest of the actin wave. Any actomyosin aggregation diminishes contractile stress. The easiest way to maintain higher contraction is to upregulate the actomyosin turnover which destabilizes nontrivial patterns and stabilizes the homogeneous actomyosin distributions. We discuss the model's implications for the experiment.
Collapse
Affiliation(s)
- Dietmar Oelz
- Courant Inst. of Math. Sciences, New York University, 251
Mercer St, New York, NY 10012
| | - Alex Mogilner
- Courant Inst. of Math. Sciences, New York University, 251
Mercer St, New York, NY 10012
- Department of Biology, New York University
| |
Collapse
|
125
|
Chin SM, Jansen S, Goode BL. TIRF microscopy analysis of human Cof1, Cof2, and ADF effects on actin filament severing and turnover. J Mol Biol 2016; 428:1604-16. [PMID: 26996939 DOI: 10.1016/j.jmb.2016.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/29/2016] [Accepted: 03/09/2016] [Indexed: 10/24/2022]
Abstract
Dynamic remodeling and turnover of cellular actin networks requires actin filament severing by actin-depolymerizing factor (ADF)/Cofilin proteins. Mammals express three different ADF/Cofilins (Cof1, Cof2, and ADF), and genetic studies suggest that in vivo they perform both overlapping and unique functions. To gain mechanistic insights into their different roles, we directly compared their G-actin and F-actin binding affinities, and quantified the actin filament severing activities of human Cof1, Cof2, and ADF using in vitro total internal reflection fluorescence microscopy. All three ADF/Cofilins had similar affinities for G-actin and F-actin. However, Cof2 and ADF severed filaments much more efficiently than Cof1 at both lower and higher concentrations and using either muscle or platelet actin. Furthermore, Cof2 and ADF were more effective than Cof1 in promoting "enhanced disassembly" when combined with actin disassembly co-factors Coronin-1B and actin-interacting protein 1 (AIP1), and these differences were observed on both preformed and actively growing filaments. To probe the mechanism underlying these differences, we used multi-wavelength total internal reflection fluorescence microscopy to directly observe Cy3-Cof1 and Cy3-Cof2 interacting with actin filaments in real time during severing. Cof1 and Cof2 each bound to filaments with similar kinetics, yet Cof2 induced severing much more rapidly than Cof1, decreasing the time interval between initial binding on a filament and severing at the same location. These differences in ADF/Cofilin activities and mechanisms may be used in cells to tune filament turnover rates, which can vary widely for different actin structures.
Collapse
Affiliation(s)
- Samantha M Chin
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Silvia Jansen
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
126
|
Gurung R, Yadav R, Brungardt JG, Orlova A, Egelman EH, Beck MR. Actin polymerization is stimulated by actin cross-linking protein palladin. Biochem J 2016; 473:383-96. [PMID: 26607837 PMCID: PMC4912051 DOI: 10.1042/bj20151050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/25/2015] [Indexed: 12/15/2022]
Abstract
The actin scaffold protein palladin regulates both normal cell migration and invasive cell motility, processes that require the co-ordinated regulation of actin dynamics. However, the potential effect of palladin on actin dynamics has remained elusive. In the present study, we show that the actin-binding immunoglobulin-like domain of palladin, which is directly responsible for both actin binding and bundling, also stimulates actin polymerization in vitro. Palladin eliminated the lag phase that is characteristic of the slow nucleation step of actin polymerization. Furthermore, palladin dramatically reduced depolymerization, slightly enhanced the elongation rate, and did not alter the critical concentration. Microscopy and in vitro cross-linking assays reveal differences in actin bundle architecture when palladin is incubated with actin before or after polymerization. These results suggest a model whereby palladin stimulates a polymerization-competent form of globular or monomeric actin (G-actin), akin to metal ions, either through charge neutralization or through conformational changes.
Collapse
Affiliation(s)
- Ritu Gurung
- Chemistry Department, Wichita State University, Wichita, KS 67260, U.S.A
| | - Rahul Yadav
- Chemistry Department, Wichita State University, Wichita, KS 67260, U.S.A
| | - Joseph G Brungardt
- Chemistry Department, Wichita State University, Wichita, KS 67260, U.S.A
| | - Albina Orlova
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, U.S.A
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, U.S.A
| | - Moriah R Beck
- Chemistry Department, Wichita State University, Wichita, KS 67260, U.S.A.
| |
Collapse
|
127
|
Winterhoff M, Brühmann S, Franke C, Breitsprecher D, Faix J. Visualization of Actin Assembly and Filament Turnover by In Vitro Multicolor TIRF Microscopy. Methods Mol Biol 2016; 1407:287-306. [PMID: 27271910 DOI: 10.1007/978-1-4939-3480-5_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In response to chemotactic signals, motile cells develop a single protruding front to persistently migrate in direction of the chemotactic gradient. The highly dynamic reorganization of the actin cytoskeleton is an essential part during this process and requires the precise interplay of various actin filament assembly factors and actin-binding proteins (ABPs). Although many ABPs have been implicated in cell migration, as yet only a few of them have been well characterized concerning their specific functions during actin network assembly and disassembly. In this chapter, we describe a versatile method that allows the direct visualization of the assembly of single actin filaments and higher structures in real time by in vitro total internal reflection fluorescence microscopy (TIRF-M) using purified and fluorescently labeled actin and ABPs.
Collapse
Affiliation(s)
- Moritz Winterhoff
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Stefan Brühmann
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Christof Franke
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | | | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
128
|
Abstract
Characterizing the biochemical and biophysical properties of purified proteins is critical to understand the underlying molecular mechanisms that facilitate complicated cellular processes such as cytokinesis. Here we outline in vitro assays to investigate the effects of cytokinesis actin-binding proteins on actin filament dynamics and organization. We describe (1) multicolor single-molecule TIRF microscopy actin assembly assays, (2) "bulk" pyrene actin assembly/disassembly assays, and (3) "bulk" sedimentation actin filament binding and bundling assays.
Collapse
|
129
|
Trendowski M. Using cytochalasins to improve current chemotherapeutic approaches. Anticancer Agents Med Chem 2015; 15:327-35. [PMID: 25322987 PMCID: PMC4485394 DOI: 10.2174/1871520614666141016164335] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 01/26/2023]
Abstract
Although the amount of progress cancer therapy has made in recent years is commendable, considerable limitations still remain. Most agents preferentially target rapidly proliferating cells, thereby destroying tumorigenic growths. Unfortunately, there are many labile cells in the patient that are also rapidly dividing, ultimately perpetuating significant side effects, including immunosuppression. Cytochalasins are microfilament-directed agents most commonly known for their use in basic research to understand cytoskeletal mechanisms. However, such agents also exhibit profound anticancer activity, as indicated by numerous in vitro and in vivo studies. Cytochalasins appear to preferentially damage malignant cells, as shown by their minimal effects on normal epithelial and immune cells. Further, cytochalasins influence the end stages of mitosis, suggesting that such agents could be combined with microtubule-directed agents to elicit a profound synergistic effect on malignant cells. Therefore, it is likely that cytochalasins could be used to supplement current chemotherapeutic measures to improve efficacy rates, as well as decrease the prevalence of drug resistance in the clinical setting.
Collapse
Affiliation(s)
- Matthew Trendowski
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA.
| |
Collapse
|
130
|
High-speed depolymerization at actin filament ends jointly catalysed by Twinfilin and Srv2/CAP. Nat Cell Biol 2015; 17:1504-11. [PMID: 26458246 PMCID: PMC4808055 DOI: 10.1038/ncb3252] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/11/2015] [Indexed: 12/16/2022]
Abstract
Purified actin filaments depolymerize slowly, and cytosolic conditions strongly favor actin assembly over disassembly, which has left our understanding of how actin filaments are rapidly turned over in vivo incomplete 1,2. One mechanism for driving filament disassembly is severing by factors such as Cofilin. However, even after severing, pointed end depolymerization remains slow and unable to fully account for observed rates of actin filament turnover in vivo. Here we describe a mechanism by which Twinfilin and Cyclase-associated protein work in concert to accelerate depolymerization of actin filaments by 3-fold and 17-fold at their barbed and pointed ends, respectively. This mechanism occurs even under assembly conditions, allowing reconstitution and direct visualization of individual filaments undergoing tunable, accelerated treadmilling. Further, we use specific mutations to demonstrate that this activity is critical for Twinfilin function in vivo. These findings fill a major gap in our knowledge of mechanisms, and suggest that depolymerization and severing may be deployed separately or together to control the dynamics and architecture of distinct actin networks.
Collapse
|
131
|
Heisler DB, Kudryashova E, Grinevich DO, Suarez C, Winkelman JD, Birukov KG, Kotha SR, Parinandi NL, Vavylonis D, Kovar DR, Kudryashov DS. ACTIN-DIRECTED TOXIN. ACD toxin-produced actin oligomers poison formin-controlled actin polymerization. Science 2015; 349:535-9. [PMID: 26228148 DOI: 10.1126/science.aab4090] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The actin cross-linking domain (ACD) is an actin-specific toxin produced by several pathogens, including life-threatening spp. of Vibrio cholerae, Vibrio vulnificus, and Aeromonas hydrophila. Actin cross-linking by ACD is thought to lead to slow cytoskeleton failure owing to a gradual sequestration of actin in the form of nonfunctional oligomers. Here, we found that ACD converted cytoplasmic actin into highly toxic oligomers that potently "poisoned" the ability of major actin assembly proteins, formins, to sustain actin polymerization. Thus, ACD can target the most abundant cellular protein by using actin oligomers as secondary toxins to efficiently subvert cellular functions of actin while functioning at very low doses.
Collapse
Affiliation(s)
- David B Heisler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Dmitry O Grinevich
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jonathan D Winkelman
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Konstantin G Birukov
- Section of Pulmonary and Critical Care and Lung Injury Center, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sainath R Kotha
- Lipid Signaling and Lipidomics Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Narasimham L Parinandi
- Lipid Signaling and Lipidomics Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA. Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
132
|
Coronin Enhances Actin Filament Severing by Recruiting Cofilin to Filament Sides and Altering F-Actin Conformation. J Mol Biol 2015; 427:3137-47. [PMID: 26299936 DOI: 10.1016/j.jmb.2015.08.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 11/23/2022]
Abstract
High rates of actin filament turnover are essential for many biological processes and require the activities of multiple actin-binding proteins working in concert. The mechanistic role of the actin filament severing protein cofilin is now firmly established; however, the contributions of other conserved disassembly-promoting factors including coronin have remained more obscure. Here, we have investigated the mechanism by which yeast coronin (Crn1) enhances F-actin turnover. Using multi-color total internal reflection fluorescence microscopy, we show that Crn1 enhances Cof1-mediated severing by accelerating Cof1 binding to actin filament sides. Further, using biochemical assays to interrogate F-actin conformation, we show that Crn1 alters longitudinal and lateral actin-actin contacts and restricts opening of the nucleotide-binding cleft in actin subunits. Moreover, Crn1 and Cof1 show opposite structural effects on F-actin yet synergize in promoting release of phalloidin from filaments, suggesting that Crn1/Cof1 co-decoration may increase local discontinuities in filament topology to enhance severing.
Collapse
|
133
|
Huang CK, Donald A. Revealing the dependence of cell spreading kinetics on its spreading morphology using microcontact printed fibronectin patterns. J R Soc Interface 2015; 12:20141064. [PMID: 25551146 DOI: 10.1098/rsif.2014.1064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Since the dawn of in vitro cell cultures, how cells interact and proliferate within a given external environment has always been an important issue in the study of cell biology. It is now well known that mammalian cells typically exhibit a three-phase sigmoid spreading on encountering a substrate. To further this understanding, we examined the influence of cell shape towards the second rapid expansion phase of spreading. Specifically, 3T3 fibroblasts were seeded onto silicon elastomer films made from polydimethylsiloxane (PDMS), and micro-contact printed with fibronectin stripes of various dimensions. PDMS is adopted in our study for its biocompatibility, its ease in producing very smooth surfaces, and in the fabrication of micro-contact printing stamps. The substrate patterns are compared with respect to their influence on cell spreading over time. Our studies reveal, during the early rapid expansion phase, 3T3 fibroblasts are found to spread radially following a t≃¹·⁸ law; meanwhile, they proliferated in a lengthwise fashion on the striped patterns, following a t≃¹ law. We account for the observed differences in kinetics through a simple geometric analysis which predicted similar trends. In particular, a t² law for radial spreading cells, and a t¹ law for lengthwise spreading cells.
Collapse
|
134
|
Vascular disease-causing mutation R258C in ACTA2 disrupts actin dynamics and interaction with myosin. Proc Natl Acad Sci U S A 2015; 112:E4168-77. [PMID: 26153420 DOI: 10.1073/pnas.1507587112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Point mutations in vascular smooth muscle α-actin (SM α-actin), encoded by the gene ACTA2, are the most prevalent cause of familial thoracic aortic aneurysms and dissections (TAAD). Here, we provide the first molecular characterization, to our knowledge, of the effect of the R258C mutation in SM α-actin, expressed with the baculovirus system. Smooth muscles are unique in that force generation requires both interaction of stable actin filaments with myosin and polymerization of actin in the subcortical region. Both aspects of R258C function therefore need investigation. Total internal reflection fluorescence (TIRF) microscopy was used to quantify the growth of single actin filaments as a function of time. R258C filaments are less stable than WT and more susceptible to severing by cofilin. Smooth muscle tropomyosin offers little protection from cofilin cleavage, unlike its effect on WT actin. Unexpectedly, profilin binds tighter to the R258C monomer, which will increase the pool of globular actin (G-actin). In an in vitro motility assay, smooth muscle myosin moves R258C filaments more slowly than WT, and the slowing is exacerbated by smooth muscle tropomyosin. Under loaded conditions, small ensembles of myosin are unable to produce force on R258C actin-tropomyosin filaments, suggesting that tropomyosin occupies an inhibitory position on actin. Many of the observed defects cannot be explained by a direct interaction with the mutated residue, and thus the mutation allosterically affects multiple regions of the monomer. Our results align with the hypothesis that defective contractile function contributes to the pathogenesis of TAAD.
Collapse
|
135
|
Lu Q, Schafer DA, Adler PN. The Drosophila planar polarity gene multiple wing hairs directly regulates the actin cytoskeleton. Development 2015; 142:2478-86. [PMID: 26153232 DOI: 10.1242/dev.122119] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/29/2015] [Indexed: 01/18/2023]
Abstract
The evolutionarily conserved frizzled/starry night (fz/stan) pathway regulates planar cell polarity (PCP) in vertebrates and invertebrates. This pathway has been extensively studied in the Drosophila wing, where it is manifested by an array of distally pointing cuticular hairs. Using in vivo imaging we found that, early in hair growth, cells have multiple actin bundles and hairs that subsequently fuse into a single growing hair. The downstream PCP gene multiple wing hairs (mwh) plays a key role in this process and acts to antagonize the actin cytoskeleton. In mwh mutants hair initiation is not limited to a small region at the distal edge of pupal wing cells as in wild type, resulting in multiple hairs with aberrant polarity. Extra actin bundles/hairs are formed and do not completely fuse, in contrast to wild type. As development proceeded additional hairs continued to form, further increasing hair number. We identified a fragment of Mwh with in vivo rescue activity and that bound and bundled F-actin filaments and inhibited actin polymerization in in vitro actin assays. The loss of these activities can explain the mwh mutant phenotype. Our data suggest a model whereby, prior to hair initiation, proximally localized Mwh inhibits actin polymerization resulting in polarized activation of the cytoskeleton and hair formation on the distal side of wing cells. During hair growth Mwh is found in growing hairs, where we suggest it functions to promote the fusion of actin bundles and inhibit the formation of additional actin bundles that could lead to extra hairs.
Collapse
Affiliation(s)
- Qiuheng Lu
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Dorothy A Schafer
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Paul N Adler
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
136
|
Virulent Burkholderia species mimic host actin polymerases to drive actin-based motility. Cell 2015; 161:348-60. [PMID: 25860613 DOI: 10.1016/j.cell.2015.02.044] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/22/2014] [Accepted: 02/05/2015] [Indexed: 11/23/2022]
Abstract
Burkholderia pseudomallei and B. mallei are bacterial pathogens that cause melioidosis and glanders, whereas their close relative B. thailandensis is non-pathogenic. All use the trimeric autotransporter BimA to facilitate actin-based motility, host cell fusion, and dissemination. Here, we show that BimA orthologs mimic different host actin-polymerizing proteins. B. thailandensis BimA activates the host Arp2/3 complex. In contrast, B. pseudomallei and B. mallei BimA mimic host Ena/VASP actin polymerases in their ability to nucleate, elongate, and bundle filaments by associating with barbed ends, as well as in their use of WH2 motifs and oligomerization for activity. Mechanistic differences among BimA orthologs resulted in distinct actin filament organization and motility parameters, which affected the efficiency of cell fusion during infection. Our results identify bacterial Ena/VASP mimics and reveal that pathogens imitate the full spectrum of host actin-polymerizing pathways, suggesting that mimicry of different polymerization mechanisms influences key parameters of infection.
Collapse
|
137
|
Almada P, Culley S, Henriques R. PALM and STORM: Into large fields and high-throughput microscopy with sCMOS detectors. Methods 2015; 88:109-21. [PMID: 26079924 DOI: 10.1016/j.ymeth.2015.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/28/2015] [Accepted: 06/03/2015] [Indexed: 01/05/2023] Open
Abstract
Single Molecule Localization Microscopy (SMLM) techniques such as Photo-Activation Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM) enable fluorescence microscopy super-resolution: the overcoming of the resolution barrier imposed by the diffraction of light. These techniques are based on acquiring hundreds or thousands of images of single molecules, locating them and reconstructing a higher-resolution image from the high-precision localizations. These methods generally imply a considerable trade-off between imaging speed and resolution, limiting their applicability to high-throughput workflows. Recent advancements in scientific Complementary Metal-Oxide Semiconductor (sCMOS) camera sensors and localization algorithms reduce the temporal requirements for SMLM, pushing it toward high-throughput microscopy. Here we outline the decisions researchers face when considering how to adapt hardware on a new system for sCMOS sensors with high-throughput in mind.
Collapse
Affiliation(s)
- Pedro Almada
- Quantitative Imaging and NanoBiophysics Group, MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - Siân Culley
- Quantitative Imaging and NanoBiophysics Group, MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - Ricardo Henriques
- Quantitative Imaging and NanoBiophysics Group, MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6BT London, United Kingdom.
| |
Collapse
|
138
|
Falzone TT, Blair S, Robertson-Anderson RM. Entangled F-actin displays a unique crossover to microscale nonlinearity dominated by entanglement segment dynamics. SOFT MATTER 2015; 11:4418-4423. [PMID: 25920523 DOI: 10.1039/c5sm00155b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We drive optically trapped microspheres through entangled F-actin at constant speeds and distances well beyond the linear regime, and measure the microscale force response of the entangled filaments during and following strain. Our results reveal a unique crossover to appreciable nonlinearity at a strain rate of [small gamma, Greek, dot above]c ≈ 3 s(-1) which corresponds remarkably well with the theoretical rate of relaxation of entanglement length deformations 1/τent. Above [small gamma, Greek, dot above]c, we observe stress stiffening which occurs over very short time scales comparable to the predicted timescale over which mesh size deformations relax. Stress softening then takes over, yielding to an effectively viscous regime over a timescale comparable to the entanglement length relaxation time, τent. The viscous regime displays shear thinning but with a less pronounced viscosity scaling with strain rate compared to flexible polymers. The relaxation of induced force on filaments following strain shows that the relative relaxation proceeds more quickly for increasing strain rates; and for rates greater than [small gamma, Greek, dot above]c, the relaxation displays a complex power-law dependence on time. Our collective results reveal that molecular-level nonlinear viscoelasticity is driven by non-classical dynamics of individual entanglement segments that are unique to semiflexible polymers.
Collapse
Affiliation(s)
- Tobias T Falzone
- Department of Physics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | | | | |
Collapse
|
139
|
Kuhn DA, Hartmann R, Fytianos K, Petri-Fink A, Rothen-Rutishauser B, Parak WJ. Cellular uptake and cell-to-cell transfer of polyelectrolyte microcapsules within a triple co-culture system representing parts of the respiratory tract. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2015; 16:034608. [PMID: 27877795 PMCID: PMC5099832 DOI: 10.1088/1468-6996/16/3/034608] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/14/2015] [Accepted: 05/14/2015] [Indexed: 05/25/2023]
Abstract
Polyelectrolyte multilayer microcapsules around 3.4 micrometers in diameter were added to epithelial cells, monocyte-derived macrophages, and dendritic cells in vitro and their uptake kinetics were quantified. All three cell types were combined in a triple co-culture model, mimicking the human epithelial alveolar barrier. Hereby, macrophages were separated in a three-dimensional model from dendritic cells by a monolayer of epithelial cells. While passing of small nanoparticles has been demonstrated from macrophages to dendritic cells across the epithelial barrier in previous studies, for the micrometer-sized capsules, this process could not be observed in a significant amount. Thus, this barrier is a limiting factor for cell-to-cell transfer of micrometer-sized particles.
Collapse
Affiliation(s)
- Dagmar A Kuhn
- Adolphe Merkle Institute, Université de Fribourg, Fribourg, Switzerland
| | - Raimo Hartmann
- Department of Physics, Philipps Universität Marburg, Marburg, Germany
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, Université de Fribourg, Fribourg, Switzerland
| | | | - Wolfgang J Parak
- Department of Physics, Philipps Universität Marburg, Marburg, Germany
- CIC Biomagune, San Sebastian, Spain
| |
Collapse
|
140
|
Jansen S, Collins A, Chin SM, Ydenberg CA, Gelles J, Goode BL. Single-molecule imaging of a three-component ordered actin disassembly mechanism. Nat Commun 2015; 6:7202. [PMID: 25995115 PMCID: PMC4443854 DOI: 10.1038/ncomms8202] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 04/17/2015] [Indexed: 12/25/2022] Open
Abstract
The mechanisms by which cells destabilize and rapidly disassemble filamentous actin networks have remained elusive; however, Coronin, Cofilin and AIP1 have been implicated in this process. Here using multi-wavelength single-molecule fluorescence imaging, we show that mammalian Cor1B, Cof1 and AIP1 work in concert through a temporally ordered pathway to induce highly efficient severing and disassembly of actin filaments. Cor1B binds to filaments first, and dramatically accelerates the subsequent binding of Cof1, leading to heavily decorated, stabilized filaments. Cof1 in turn recruits AIP1, which rapidly triggers severing and remains bound to the newly generated barbed ends. New growth at barbed ends generated by severing was blocked specifically in the presence of all three proteins. This activity enabled us to reconstitute and directly visualize single actin filaments being rapidly polymerized by formins at their barbed ends while simultanteously being stochastically severed and capped along their lengths, and disassembled from their pointed ends. The roles of Coronin, Cofilin and AIP1 in promoting actin disassembly have not been well understood. Here using single-molecule fluorescence imaging, Jansen et al. show that the three proteins act together in a coordinated, temporal pathway to induce rapid severing and disassembly of actin filaments.
Collapse
Affiliation(s)
- Silvia Jansen
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South street, Waltham, Massachusetts 02454, USA
| | - Agnieszka Collins
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South street, Waltham, Massachusetts 02454, USA
| | - Samantha M Chin
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South street, Waltham, Massachusetts 02454, USA
| | - Casey A Ydenberg
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South street, Waltham, Massachusetts 02454, USA
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, 415 South street, Waltham, Massachusetts 02454, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South street, Waltham, Massachusetts 02454, USA
| |
Collapse
|
141
|
Gressin L, Guillotin A, Guérin C, Blanchoin L, Michelot A. Architecture dependence of actin filament network disassembly. Curr Biol 2015; 25:1437-47. [PMID: 25913406 DOI: 10.1016/j.cub.2015.04.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/06/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Turnover of actin networks in cells requires the fast disassembly of aging actin structures. While ADF/cofilin and Aip1 have been identified as central players, how their activities are modulated by the architecture of the networks remains unknown. Using our ability to reconstitute a diverse array of cellular actin organizations, we found that ADF/cofilin binding and ADF/cofilin-mediated disassembly both depend on actin geometrical organization. ADF/cofilin decorates strongly and stabilizes actin cables, whereas its weaker interaction to Arp2/3 complex networks is correlated with their dismantling and their reorganization into stable architectures. Cooperation of ADF/cofilin with Aip1 is necessary to trigger the full disassembly of all actin filament networks. Additional experiments performed at the single-molecule level indicate that this cooperation is optimal above a threshold of 23 molecules of ADF/cofilin bound as clusters along an actin filament. Our results indicate that although ADF/cofilin is able to dismantle selectively branched networks through severing and debranching, stochastic disassembly of actin filaments by ADF/cofilin and Aip1 represents an efficient alternative pathway for the full disassembly of all actin networks. Our data support a model in which the binding of ADF/cofilin is required to trigger a structural change of the actin filaments, as a prerequisite for their disassembly by Aip1.
Collapse
Affiliation(s)
- Laurène Gressin
- Physics of the Cytoskeleton and Morphogenesis Group, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/INRA/UJF, Grenoble 38054, France
| | - Audrey Guillotin
- Physics of the Cytoskeleton and Morphogenesis Group, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/INRA/UJF, Grenoble 38054, France
| | - Christophe Guérin
- Physics of the Cytoskeleton and Morphogenesis Group, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/INRA/UJF, Grenoble 38054, France
| | - Laurent Blanchoin
- Physics of the Cytoskeleton and Morphogenesis Group, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/INRA/UJF, Grenoble 38054, France.
| | - Alphée Michelot
- Physics of the Cytoskeleton and Morphogenesis Group, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/CEA/INRA/UJF, Grenoble 38054, France.
| |
Collapse
|
142
|
Drummond MC, Barzik M, Bird JE, Zhang DS, Lechene CP, Corey DP, Cunningham LL, Friedman TB. Live-cell imaging of actin dynamics reveals mechanisms of stereocilia length regulation in the inner ear. Nat Commun 2015; 6:6873. [PMID: 25898120 PMCID: PMC4411292 DOI: 10.1038/ncomms7873] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 03/06/2015] [Indexed: 02/05/2023] Open
Abstract
The maintenance of sensory hair cell stereocilia is critical for lifelong hearing; however, mechanisms of structural homeostasis remain poorly understood. Conflicting models propose that stereocilia F-actin cores are either continually renewed every 24-48 h via a treadmill or are stable, exceptionally long-lived structures. Here to distinguish between these models, we perform an unbiased survey of stereocilia actin dynamics in more than 500 utricle hair cells. Live-imaging EGFP-β-actin or dendra2-β-actin reveal stable F-actin cores with turnover and elongation restricted to stereocilia tips. Fixed-cell microscopy of wild-type and mutant β-actin demonstrates that incorporation of actin monomers into filaments is required for localization to stereocilia tips. Multi-isotope imaging mass spectrometry and live imaging of single differentiating hair cells capture stereociliogenesis and explain uniform incorporation of (15)N-labelled protein and EGFP-β-actin into nascent stereocilia. Collectively, our analyses support a model in which stereocilia actin cores are stable structures that incorporate new F-actin only at the distal tips.
Collapse
Affiliation(s)
- Meghan C Drummond
- Laboratory of Molecular Genetics, Section on Human Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Melanie Barzik
- Laboratory of Molecular Genetics, Section on Human Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jonathan E Bird
- Laboratory of Molecular Genetics, Section on Human Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Duan-Sun Zhang
- Department of Neurobiology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - Claude P Lechene
- 1] National Resource for Imaging Mass Spectrometry, Brigham and Women's Hospital and Harvard Medical School, Cambridge, Massachusetts 02139, USA [2] Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - David P Corey
- Department of Neurobiology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - Lisa L Cunningham
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, Section on Human Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
143
|
Crevenna AH, Arciniega M, Dupont A, Mizuno N, Kowalska K, Lange OF, Wedlich-Söldner R, Lamb DC. Side-binding proteins modulate actin filament dynamics. eLife 2015; 4. [PMID: 25706231 PMCID: PMC4375888 DOI: 10.7554/elife.04599] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/20/2015] [Indexed: 01/10/2023] Open
Abstract
Actin filament dynamics govern many key physiological processes from cell motility to tissue morphogenesis. A central feature of actin dynamics is the capacity of filaments to polymerize and depolymerize at their ends in response to cellular conditions. It is currently thought that filament kinetics can be described by a single rate constant for each end. In this study, using direct visualization of single actin filament elongation, we show that actin polymerization kinetics at both filament ends are strongly influenced by the binding of proteins to the lateral filament surface. We also show that the pointed-end has a non-elongating state that dominates the observed filament kinetic asymmetry. Estimates of flexibility as well as effects on fragmentation and growth suggest that the observed kinetic diversity arises from structural alteration. Tuning elongation kinetics by exploiting the malleability of the filament structure may be a ubiquitous mechanism to generate a rich variety of cellular actin dynamics. DOI:http://dx.doi.org/10.7554/eLife.04599.001 Actin is one of the most abundant proteins in cells. It forms networks of filaments that provide structural support and generate the forces needed for cell movement, division, and many other processes in cells. Filaments of actin continuously change in length as actin molecules are added or removed at the ends. One end of an actin filament—called the barbed-end—grows much faster than the other, known as the pointed-end. Many other proteins also help the actin filaments to form. Some of these proteins bind to the ends of the filaments, where they directly control the growth of the filaments. Other proteins bind along the length of the filaments, but how these ‘side-binding’ proteins influence the growth of filaments is not clear. In this study, Crevenna et al. used a technique called ‘total internal reflection fluorescence (TIRF) microscopy’ to study how several side-binding proteins affect the growth of actin filaments in an artificial system. The growth of the barbed-ends was strongly influenced by which side-binding protein was interacting with the filament. For example, the barbed-end grew rapidly when a protein called VASP was present but grew more slowly in the presence of the protein α-actinin. Although the growth at the pointed-end was generally slow and sporadic, the side-binding proteins also had noticeable effects. Crevenna et al. found that when the side-binding proteins were present at low levels, filament growth was similar for all proteins studied. It was only when the proteins were present at higher levels that the growth of the actin filaments was altered depending on the specific side-binding protein present. One side-binding protein called α-actinin also altered the shape of the actin filament so that when it was present at high levels, the filaments curved in a particular direction. Together, these results suggest that the growth, structure, and flexibility of actin filaments can be strongly influenced by the various proteins that bind along the length of the filaments. The next challenges are to understand the precise details of how these side-binding proteins are able to alter the growth and shape of actin and investigate how they influence other processes that control the structure of actin networks in cells. DOI:http://dx.doi.org/10.7554/eLife.04599.002
Collapse
Affiliation(s)
- Alvaro H Crevenna
- Physical Chemistry, Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany.,Cellular Dynamics and Cell Patterning, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Marcelino Arciniega
- Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Chemistry, Technische Universität München, Garching, Germany
| | - Aurélie Dupont
- Physical Chemistry, Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany.,NanoSystems Initiative Munich, Ludwig-Maximilians-Universität München, Munich, Germany.,Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Naoko Mizuno
- Cellular and Membrane Trafficking, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kaja Kowalska
- Cellular Dynamics and Cell Patterning, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Oliver F Lange
- Department of Chemistry, Technische Universität München, Garching, Germany.,Biomolecular NMR and Munich Center for Integrated Protein Science, Technische Universität München, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Roland Wedlich-Söldner
- Cellular Dynamics and Cell Patterning, Max Planck Institute of Biochemistry, Martinsried, Germany.,Institute of Cell Dynamics and Imaging, Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany.,NanoSystems Initiative Munich, Ludwig-Maximilians-Universität München, Munich, Germany.,Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
144
|
Rosin C, Estel K, Hälker J, Winter R. Combined effects of temperature, pressure, and co-solvents on the polymerization kinetics of actin. Chemphyschem 2015; 16:1379-85. [PMID: 25704394 DOI: 10.1002/cphc.201500083] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 11/11/2022]
Abstract
In vivo studies have shown that the cytoskeleton of cells is very sensitive to changes in temperature and pressure. In particular, actin filaments get depolymerized when pressure is increased up to several hundred bars, conditions that are easily encountered in the deep sea. We quantitatively evaluate the effects of temperature, pressure, and osmolytes on the kinetics of the polymerization reaction of actin by high-pressure stopped-flow experiments in combination with fluorescence detection and an integrative stochastic simulation of the polymerization process. We show that the compatible osmolyte trimethylamine-N-oxide is not only able to compensate for the strongly retarding effect of chaotropic agents, such as urea, on actin polymerization, it is also able to largely offset the deteriorating effect of pressure on actin polymerization, thereby allowing biological cells to better cope with extreme environmental conditions.
Collapse
Affiliation(s)
- Christopher Rosin
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund (Germany)
| | - Kathrin Estel
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund (Germany)
| | - Jessica Hälker
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund (Germany)
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund (Germany).
| |
Collapse
|
145
|
Hariadi RF, Yurke B, Winfree E. Thermodynamics and kinetics of DNA nanotube polymerization from single-filament measurements. Chem Sci 2015; 6:2252-2267. [PMID: 29308139 PMCID: PMC5645730 DOI: 10.1039/c3sc53331j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/20/2015] [Indexed: 12/26/2022] Open
Abstract
Single-filament measurement of the thermodynamic and kinetic parameters of DNA nanotube assembly supports a polymerization/depolymerization model sharing common features with cytoskeletal polymer models.
DNA nanotubes provide a programmable architecture for molecular self-assembly and can serve as model systems for one-dimensional biomolecular assemblies. While a variety of DNA nanotubes have been synthesized and employed as models for natural biopolymers, an extensive investigation of DNA nanotube kinetics and thermodynamics has been lacking. Using total internal reflection microscopy, DNA nanotube polymerization was monitored in real time at the single filament level over a wide range of free monomer concentrations and temperatures. The measured polymerization rates were subjected to a global nonlinear fit based on polymerization theory in order to simultaneously extract kinetic and thermodynamic parameters. For the DNA nanotubes used in this study, the association rate constant is (5.99 ± 0.15) × 105 M–1 s–1, the enthalpy is 87.9 ± 2.0 kcal mol–1, and the entropy is 0.252 ± 0.006 kcal mol–1 K–1. The qualitative and quantitative similarities between the kinetics of DNA nanotubes, actin filaments, and microtubules polymerization highlight the prospect of building complex dynamic systems from DNA molecules inspired by biological architecture.
Collapse
Affiliation(s)
- Rizal F Hariadi
- Applied Physics , California Institute of Technology , Pasadena , California 91125 , USA
| | - Bernard Yurke
- Materials Science and Engineering Department and Electrical and Computer Engineering Department , Boise State University , Boise , Idaho 83725 , USA
| | - Erik Winfree
- Bioengineering , California Institute of Technology , Pasadena , California 91125 , USA .
| |
Collapse
|
146
|
Usov I, Mezzenga R. FiberApp: An Open-Source Software for Tracking and Analyzing Polymers, Filaments, Biomacromolecules, and Fibrous Objects. Macromolecules 2015. [DOI: 10.1021/ma502264c] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ivan Usov
- Department of Health Science & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO E23, 8092 Zurich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Science & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO E23, 8092 Zurich, Switzerland
| |
Collapse
|
147
|
Won GJ, Fudge DS, Choh V. The effects of actomyosin disruptors on the mechanical integrity of the avian crystalline lens. Mol Vis 2015; 21:98-109. [PMID: 25684975 PMCID: PMC4316703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/24/2015] [Indexed: 11/04/2022] Open
Abstract
PURPOSE Actin and myosin within the crystalline lens maintain the structural integrity of lens fiber cells and form a hexagonal lattice cradling the posterior surface of the lens. The actomyosin network was pharmacologically disrupted to examine the effects on lenticular biomechanics and optical quality. METHODS One lens of 7-day-old White Leghorn chickens was treated with 10 µM of a disruptor and the other with 0.01% dimethyl sulfoxide (vehicle). Actin, myosin, and myosin light chain kinase (MLCK) disruptors were used. The stiffness and the optical quality of the control and treated lenses were measured. Western blotting and confocal imaging were used to confirm that treatment led to a disruption of the actomyosin network. The times for the lenses to recover stiffness to match the control values were also measured. RESULTS Disruptor-treated lenses were significantly less stiff than their controls (p≤0.0274 for all disruptors). The disruptors led to changes in the relative protein amounts as well as the distributions of proteins within the lattice. However, the disruptors did not affect the clarity of the lenses (p≥0.4696 for all disruptors), nor did they affect spherical aberration (p = 0.02245). The effects of all three disruptors were reversible, with lenses recovering from treatment with actin, myosin, and MLCK disruptors after 4 h, 1 h, and 8 min, respectively. CONCLUSIONS Cytoskeletal protein disruptors led to a decreased stiffness of the lens, and the effects were reversible. Optical quality was mostly unaffected, but the long-term consequences remain unclear. Our results raise the possibility that the mechanical properties of the avian lens may be actively regulated in vivo via adjustments to the actomyosin lattice.
Collapse
Affiliation(s)
- Gah-Jone Won
- School of Optometry and Vision Science, University of Waterloo, Ontario, Canada
| | - Douglas S. Fudge
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - Vivian Choh
- School of Optometry and Vision Science, University of Waterloo, Ontario, Canada
| |
Collapse
|
148
|
Rosin C, Schummel PH, Winter R. Cosolvent and crowding effects on the polymerization kinetics of actin. Phys Chem Chem Phys 2015; 17:8330-7. [DOI: 10.1039/c4cp04431b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effects of cosolvents and macromolecular crowding agents on the G-to-F-transformation of actin are studied. Drastic and diverse changes in the lag phase and association rates of polymerizing actin are observed under different solvent conditions.
Collapse
Affiliation(s)
- Christopher Rosin
- TU Dortmund University
- Department of Chemistry and Chemical Biology
- Physical Chemistry I - Biophysical Chemistry
- D-44227 Dortmund
- Germany
| | - Paul Hendrik Schummel
- TU Dortmund University
- Department of Chemistry and Chemical Biology
- Physical Chemistry I - Biophysical Chemistry
- D-44227 Dortmund
- Germany
| | - Roland Winter
- TU Dortmund University
- Department of Chemistry and Chemical Biology
- Physical Chemistry I - Biophysical Chemistry
- D-44227 Dortmund
- Germany
| |
Collapse
|
149
|
Zhu L, Pan W, Lu X, Li D, Zhao J, Liang D. The growth of filaments under macromolecular confinement using scaling theory. Chem Commun (Camb) 2015; 51:15928-31. [DOI: 10.1039/c5cc06748k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Macromolecular confinement regulates the growth rate, structure, and length of the filaments, which can be quantitatively described using scaling theory.
Collapse
Affiliation(s)
- Lin Zhu
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Wei Pan
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Xi Lu
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P.R. China
| | - Desheng Li
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P.R. China
| | - Jiang Zhao
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P.R. China
| | - Dehai Liang
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| |
Collapse
|
150
|
Courtemanche N, Gifford SM, Simpson MA, Pollard TD, Koleske AJ. Abl2/Abl-related gene stabilizes actin filaments, stimulates actin branching by actin-related protein 2/3 complex, and promotes actin filament severing by cofilin. J Biol Chem 2014; 290:4038-46. [PMID: 25540195 DOI: 10.1074/jbc.m114.608117] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both Arp2/3 complex and the Abl2/Arg nonreceptor tyrosine kinase are essential to form and maintain diverse actin-based structures in cells, including cell edge protrusions in fibroblasts and cancer cells and dendritic spines in neurons. The ability of Arg to promote cell edge protrusions in fibroblasts does not absolutely require kinase activity, raising the question of how Arg might modulate actin assembly and turnover in the absence of kinase function. Arg has two distinct actin-binding domains and interacts physically and functionally with cortactin, an activator of the Arp2/3 complex. However, it was not known whether and how Arg influences actin filament stability, actin branch formation, or cofilin-mediated actin severing or how cortactin influences these reactions of Arg with actin. Arg or cortactin bound to actin filaments stabilizes them from depolymerization. Low concentrations of Arg and cortactin cooperate to stabilize filaments by slowing depolymerization. Arg stimulates formation of actin filament branches by Arp2/3 complex and cortactin. An Arg mutant lacking the C-terminal calponin homology actin-binding domain stimulates actin branch formation by the Arp2/3 complex, indicative of autoinhibition. ArgΔCH can stimulate the Arp2/3 complex even in the absence of cortactin. Arg greatly potentiates cofilin severing of actin filaments, and cortactin attenuates this enhanced severing. The ability of Arg to stabilize filaments, promote branching, and increase severing requires the internal (I/L)WEQ actin-binding domain. These activities likely underlie important roles that Arg plays in the formation, dynamics, and stability of actin-based cellular structures.
Collapse
Affiliation(s)
- Naomi Courtemanche
- From the Departments of Molecular, Cellular and Developmental Biology and
| | | | - Mark A Simpson
- the Departments of Molecular Biophysics and Biochemistry and
| | - Thomas D Pollard
- From the Departments of Molecular, Cellular and Developmental Biology and the Departments of Molecular Biophysics and Biochemistry and Cell Biology, Yale University, New Haven, Connecticut 06511 and
| | - Anthony J Koleske
- the Departments of Molecular Biophysics and Biochemistry and Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06520 Neurobiology and
| |
Collapse
|