101
|
Pereira L, Horta S, Mateus R, Videira MA. Implications of Akt2/Twist crosstalk on breast cancer metastatic outcome. Drug Discov Today 2015; 20:1152-8. [PMID: 26136161 DOI: 10.1016/j.drudis.2015.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 06/01/2015] [Accepted: 06/17/2015] [Indexed: 12/19/2022]
Abstract
Akt2 is a pivotal player in a complex web of signaling pathways controlling cell growth, proliferation, and survival. The deregulation or aberrations of Akt2 have been associated with tumor progression, metastatic spread, and, lastly, chemoresistance. The impairment of its activity has gained more attention because Akt2 is intertwined with a range of signaling paths, including the Phosphatidylinositol 3 kinase/Akt/Mammalian target of rapamycin (PI3K/mTOR) signaling axis, which are involved in macromolecules synthesis and metabolism. Here, we focus on Akt2 because of its involvement in the acquisition of stem cell-like properties, responsible for invasiveness and chemoresistance, also promoted by Twist. We also suggest therapeutic strategies targeting Akt2 to overcome the drawbacks of current cancer therapies.
Collapse
Affiliation(s)
- Lucília Pereira
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Sara Horta
- iMed.UL, Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Rita Mateus
- iMed.UL, Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Mafalda A Videira
- iMed.UL, Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
102
|
Finlay J, Roberts CM, Dong J, Zink JI, Tamanoi F, Glackin CA. Mesoporous silica nanoparticle delivery of chemically modified siRNA against TWIST1 leads to reduced tumor burden. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1657-66. [PMID: 26115637 DOI: 10.1016/j.nano.2015.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/18/2015] [Accepted: 05/30/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED Growth and progression of solid tumors depend on the integration of multiple pro-growth and survival signals, including the induction of angiogenesis. TWIST1 is a transcription factor whose reactivation in tumors leads to epithelial to mesenchymal transition (EMT), including increased cancer cell stemness, survival, and invasiveness. Additionally, TWIST1 drives angiogenesis via activation of IL-8 and CCL2, independent of VEGF signaling. In this work, results suggest that chemically modified siRNA against TWIST1 reverses EMT both in vitro and in vivo. siRNA delivery with a polyethyleneimine-coated mesoporous silica nanoparticle (MSN) led to reduction of TWIST1 target genes and migratory potential in vitro. In mice bearing xenograft tumors, weekly intravenous injections of the siRNA-nanoparticle complexes resulted in decreased tumor burden together with a loss of CCL2 suggesting a possible anti-angiogenic response. Therapeutic use of TWIST1 siRNA delivered via MSNs has the potential to inhibit tumor growth and progression in many solid tumor types. FROM THE CLINICAL EDITOR Tumor progression and metastasis eventually lead to patient mortality in the clinical setting. In other studies, it has been found that TWIST1, a transcription factor, if reactivated in tumors, would lead to downstream events including angiogenesis and result in poor prognosis in cancer patients. In this article, the authors were able to show that when siRNA against TWIST1 was delivered via mesoporous silica nanoparticle, there was tumor reduction in an in-vivo model. The results have opened up a new avenue for further research in this field.
Collapse
Affiliation(s)
- James Finlay
- Division of Comparative Medicine and, Irell & Manella Graduate School of Biological Sciences, City of Hope, Beckman Research Institute, Duarte, CA, USA.
| | - Cai M Roberts
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Beckman Research Institute, Duarte, CA, USA.
| | - Juyao Dong
- Department of Chemistry and Biochemistry, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA.
| | - Jeffrey I Zink
- Department of Chemistry and Biochemistry, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA.
| | - Fuyuhiko Tamanoi
- Department of Microbiology Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA.
| | - Carlotta A Glackin
- Department of Neurosciences, City of Hope, Beckman Research Institute, Duarte, CA, USA.
| |
Collapse
|
103
|
Smith NC, Fairbridge NA, Pallegar NK, Christian SL. Dynamic upregulation of CD24 in pre-adipocytes promotes adipogenesis. Adipocyte 2015; 4:89-100. [PMID: 26167413 DOI: 10.4161/21623945.2014.985015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 01/06/2023] Open
Abstract
The development of mature adipocytes from pre-adipocytes is a highly regulated process. CD24 is a glycophosphatidylinositol-linked cell surface receptor that has been identified as a critical cell surface marker for identifying pre-adipocytes that are able to reconstitute white adipose tissue (WAT) in vivo. Here, we examined the role and regulation of CD24 during adipogenesis in vitro. We found that CD24 mRNA and protein expression is upregulated early during adipogenesis in the 3T3-L1 pre-adipocytes and in murine primary pre-adipocytes isolated from subcutaneous and visceral WAT, followed by downregulation in mature adipocytes. CD24 mRNA expression was found to be dependent on increased transcription due to increased promoter activity in response to activation of a pre-existing transcriptional regulator. Furthermore, either intracellular cAMP or dexamethasone were sufficient to increase expression in pre-adipocytes, while both additively increased CD24 expression. Preventing the increase in CD24 expression, by siRNA-mediated knock-down, resulted in fewer mature lipid-laden adipocytes and decreased expression of mature adipogenic genes. Therefore, conditions experienced during adipogenesis in vitro are sufficient to increase CD24 expression, which is necessary for differentiation. Overall, we conclude that the dynamic upregulation of CD24 actively promotes adipogenesis in vitro.
Collapse
Key Words
- 3T3-L1
- ADSC, adipose-derived stem cell
- ActD, actinomycin-D
- BCA, bicinchoninic acid
- CD24
- CHX, cycloheximide
- Dex, dexamethasone
- GR, glucocorticoid receptor
- IBMX
- IBMX, 3-isobutyl-1-methylxanthine
- KRH, krebs-ringer-HEPES bicarbonate buffer
- NCS, newborn calf serum
- PKG, cGMP-dependent protein kinase
- SVF, stromal vascular fraction
- WAT, white adipose tissue
- adipogenesis
- adipoq, adiponectin
- dexamethasone
- primary pre-adipocytes
Collapse
|
104
|
Ottewell PD, O'Donnell L, Holen I. Molecular alterations that drive breast cancer metastasis to bone. BONEKEY REPORTS 2015; 4:643. [PMID: 25848532 DOI: 10.1038/bonekey.2015.10] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/19/2015] [Indexed: 12/18/2022]
Abstract
Epithelial cancers including breast and prostate commonly progress to form incurable bone metastases. For this to occur, cancer cells must adapt their phenotype and behaviour to enable detachment from the primary tumour, invasion into the vasculature, and homing to and subsequent colonisation of bone. It is widely accepted that the metastatic process is driven by the transformation of cancer cells from a sessile epithelial to a motile mesenchymal phenotype through epithelial-mesenchymal transition (EMT). Dissemination of these motile cells into the circulation provides the conduit for cells to metastasise to distant organs. However, accumulating evidence suggests that EMT is not sufficient for metastasis to occur and that specific tissue-homing factors are required for tumour cells to lodge and grow in bone. Once tumour cells are disseminated in the bone environment, they can revert into an epithelial phenotype through the reverse process of mesenchymal-epithelial transition (MET) and form secondary tumours. In this review, we describe the molecular alterations undertaken by breast cancer cells at each stage of the metastatic cascade and discuss how these changes facilitate bone metastasis.
Collapse
Affiliation(s)
- Penelope D Ottewell
- Academic Unit of Clinical Oncology, Department of Oncology, Medical School, University of Sheffield , Sheffield, UK
| | - Liam O'Donnell
- Academic Unit of Clinical Oncology, Department of Oncology, Medical School, University of Sheffield , Sheffield, UK
| | - Ingunn Holen
- Academic Unit of Clinical Oncology, Department of Oncology, Medical School, University of Sheffield , Sheffield, UK
| |
Collapse
|
105
|
Zhang Z, Yang C, Gao W, Chen T, Qian T, Hu J, Tan Y. FOXA2 attenuates the epithelial to mesenchymal transition by regulating the transcription of E-cadherin and ZEB2 in human breast cancer. Cancer Lett 2015; 361:240-50. [PMID: 25779673 DOI: 10.1016/j.canlet.2015.03.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 01/04/2023]
Abstract
The Forkhead Box A2 (FOXA2) transcription factor is required for embryonic development and for normal functions of multiple adult tissues, in which the maintained expression of FOXA2 is usually related to preventing the progression of malignant transformation. In this study, we found that FOXA2 prevented the epithelial to mesenchymal transition (EMT) in human breast cancer. We observed a strong correlation between the expression levels of FOXA2 and the epithelial phenotype. Knockdown of FOXA2 promoted the mesenchymal phenotype, whereas stable overexpression of FOXA2 attenuated EMT in breast cancer cells. FOXA2 was found to endogenously bind to and stimulate the promoter of E-cadherin that is crucial for epithelial phenotype of the tumor cells. Meanwhile, FOXA2 prevented EMT of breast cancer cells by repressing the expression of EMT-related transcription factor ZEB2 through recruiting a transcriptional corepressor TLE3 to the ZEB2 promoter. The stable overexpression of FOXA2 abolished metastasis of breast cancer cells in vivo. This study confirmed that FOXA2 inhibited EMT in breast cancer cells by regulating the transcription of EMT-related genes such as E-cadherin and ZEB2.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China
| | - Chao Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China
| | - Wei Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China
| | - Tuanhui Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China
| | - Tingting Qian
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China
| | - Jun Hu
- Department of Pathology, Hunan Provincial Tumor Hospital, Changsha, Hunan 410013, China
| | - Yongjun Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
106
|
Zhan HX, Xu JW, Wu D, Zhang TP, Hu SY. Pancreatic cancer stem cells: new insight into a stubborn disease. Cancer Lett 2015; 357:429-37. [PMID: 25499079 DOI: 10.1016/j.canlet.2014.12.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 11/30/2014] [Accepted: 12/02/2014] [Indexed: 02/07/2023]
Abstract
Resistance to conventional therapy and early distant metastasis contribute to the unsatisfactory prognosis of patients with pancreatic cancer. The concept of cancer stem cells (CSCs) brings new insights into cancer biology and therapy. Many studies have confirmed the important role of these stem cells in carcinogenesis and the development of hematopoietic and solid cancers. Recent studies have shown that CSCs regulate aggressive behavior, recurrence, and drug resistance in pancreatic cancer. Here, we review recent advances in pancreatic cancer stem cells (PCSCs) research. Particular attention is paid to the regulation mechanisms of pancreatic cancer stem cell functions, such as stemness-related signaling pathways, microRNAs, the epithelial-mesenchymal transition (EMT), and the tumor microenvironment, and the development of novel PCSCs targeted therapy. We seek to further understand PCSCs and explore potential therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Han-xiang Zhan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Jian-wei Xu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Dong Wu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Tai-ping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - San-yuan Hu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
107
|
Muellner MK, Mair B, Ibrahim Y, Kerzendorfer C, Lechtermann H, Trefzer C, Klepsch F, Müller AC, Leitner E, Macho-Maschler S, Superti-Furga G, Bennett KL, Baselga J, Rix U, Kubicek S, Colinge J, Serra V, Nijman SMB. Targeting a cell state common to triple-negative breast cancers. Mol Syst Biol 2015; 11:789. [PMID: 25699542 PMCID: PMC4358660 DOI: 10.15252/msb.20145664] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Some mutations in cancer cells can be exploited for therapeutic intervention. However, for many cancer subtypes, including triple-negative breast cancer (TNBC), no frequently recurring aberrations could be identified to make such an approach clinically feasible. Characterized by a highly heterogeneous mutational landscape with few common features, many TNBCs cluster together based on their ‘basal-like’ transcriptional profiles. We therefore hypothesized that targeting TNBC cells on a systems level by exploiting the transcriptional cell state might be a viable strategy to find novel therapies for this highly aggressive disease. We performed a large-scale chemical genetic screen and identified a group of compounds related to the drug PKC412 (midostaurin). PKC412 induced apoptosis in a subset of TNBC cells enriched for the basal-like subtype and inhibited tumor growth in vivo. We employed a multi-omics approach and computational modeling to address the mechanism of action and identified spleen tyrosine kinase (SYK) as a novel and unexpected target in TNBC. Quantitative phosphoproteomics revealed that SYK inhibition abrogates signaling to STAT3, explaining the selectivity for basal-like breast cancer cells. This non-oncogene addiction suggests that chemical SYK inhibition may be beneficial for a specific subset of TNBC patients and demonstrates that targeting cell states could be a viable strategy to discover novel treatment strategies.
Collapse
Affiliation(s)
- Markus K Muellner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Barbara Mair
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Yasir Ibrahim
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Claudia Kerzendorfer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hannelore Lechtermann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Claudia Trefzer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Freya Klepsch
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ernestine Leitner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - José Baselga
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Uwe Rix
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jacques Colinge
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Sebastian M B Nijman
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
108
|
Cancer stem cell and epithelial-mesenchymal transition markers predict worse outcome in metaplastic carcinoma of the breast. Breast Cancer Res Treat 2015; 150:31-41. [PMID: 25677743 DOI: 10.1007/s10549-015-3299-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/03/2015] [Indexed: 01/06/2023]
Abstract
Metaplastic breast carcinomas are known to overexpress markers of epithelial-mesenchymal transition and cancer stem cells. We evaluated their immunohistochemical expression, correlating with clinicopathological parameters and survival outcomes. The study cohort comprised 63 cases diagnosed at the Department of Pathology, Singapore General Hospital. Tumor size, grade, lymph node stage, and metaplastic components were reviewed. Immunohistochemistry was performed on sections cut from tissue microarray blocks. Antibodies to ER, PR, HER2, CK14, EGFR, 34βE12, cancer stem cell markers (CD44, CD24, ALDH1A1), epithelial-mesenchymal transition markers (Twist and E-cadherin), were applied. Survival outcomes were correlated with immunohistochemical findings. T2 tumors accounted for 74.7 % of cases, with grade 3 tumors predominating (71.4 %). Triple negativity occurred in 87.3 %, and basal-like subtype in 69.8 % of tumors. CD44+, CD44+CD24-, ALDH1A1+, loss of membranous E-cadherin (Ecadloss) and positive Twist expression was found in 82.5, 73.0, 77.8, 54.0, and 57.1 % of tumors, respectively. Combinational phenotypes of CD44+EcadlossTwist+, CD44+CD24-EcadlossTwist+, and ALDH1A1+EcadlossTwist+ were observed in 28.6, 25.4, and 2.6 % of tumors. Histologic grade was significantly correlated with E-cadherin loss (p = 0.042), Twist positivity (P = 0.001), CD44+EcadlossTwist+ (P = 0.010), CD44+CD24-EcadlossTwist+ (P = 0.018), and ALDH1A1+EcadlossTwist+(P = 0.010). Lymph node stage was significantly associated with CD44+EcadlossTwist+(P = 0.044) and CD44+CD24-EcadlossTwist+ (P = 0.044). Basal-like phenotype was significantly correlated with CD44 expressing (P = 0.004) and CD44+CD24- tumors (P = 0.049). Tumors harboring CD44+EcadlossTwist+ and CD44+CD24-EcadlossTwist+ phenotypes disclosed early recurrence (P = 0.027, P = 0.006) and poorer overall survival (P = 0.037, P = 0.006), respectively. Expression of cancer stem cell and epithelial-mesenchymal transition markers in metaplastic breast cancers correlates with adverse pathological parameters and outcome.
Collapse
|
109
|
Prognostic significance of epithelial–mesenchymal transition proteins Twist and Foxc2 in phyllodes tumours of the breast. Breast Cancer Res Treat 2015; 150:19-29. [DOI: 10.1007/s10549-015-3296-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/02/2015] [Indexed: 12/11/2022]
|
110
|
RNA-based TWIST1 inhibition via dendrimer complex to reduce breast cancer cell metastasis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:382745. [PMID: 25759817 PMCID: PMC4339717 DOI: 10.1155/2015/382745] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 12/31/2014] [Accepted: 12/31/2014] [Indexed: 01/11/2023]
Abstract
Breast cancer is the leading cause of cancer-related deaths among women in the United States, and survival rates are lower for patients with metastases and/or triple-negative breast cancer (TNBC; ER, PR, and Her2 negative). Understanding the mechanisms of cancer metastasis is therefore crucial to identify new therapeutic targets and develop novel treatments to improve patient outcomes. A potential target is the TWIST1 transcription factor, which is often overexpressed in aggressive breast cancers and is a master regulator of cellular migration through epithelial-mesenchymal transition (EMT). Here, we demonstrate an siRNA-based TWIST1 silencing approach with delivery using a modified poly(amidoamine) (PAMAM) dendrimer. Our results demonstrate that SUM1315 TNBC cells efficiently take up PAMAM-siRNA complexes, leading to significant knockdown of TWIST1 and EMT-related target genes. Knockdown lasts up to one week after transfection and leads to a reduction in migration and invasion, as determined by wound healing and transwell assays. Furthermore, we demonstrate that PAMAM dendrimers can deliver siRNA to xenograft orthotopic tumors and siRNA remains in the tumor for at least four hours after treatment. These results suggest that further development of dendrimer-based delivery of siRNA for TWIST1 silencing may lead to a valuable adjunctive therapy for patients with TNBC.
Collapse
|
111
|
Nam EH, Lee Y, Moon B, Lee JW, Kim S. Twist1 and AP-1 cooperatively upregulate integrin α5 expression to induce invasion and the epithelial–mesenchymal transition. Carcinogenesis 2015; 36:327-37. [DOI: 10.1093/carcin/bgv005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
112
|
Zhang X, Zhao X, Shao S, Zuo X, Ning Q, Luo M, Gu S, Zhao X. Notch1 induces epithelial-mesenchymal transition and the cancer stem cell phenotype in breast cancer cells and STAT3 plays a key role. Int J Oncol 2014; 46:1141-8. [PMID: 25544568 DOI: 10.3892/ijo.2014.2809] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 12/05/2014] [Indexed: 11/06/2022] Open
Abstract
Breast cancer is the most common malignancy in women. The Notch signaling pathway has been shown to be associated with the development and progression of many human cancers, including breast cancer, but the precise mechanism remains unknown. Here, the influence of Notch1 signaling in mammary epithelial cells was studied. We showed that Notch1 promotes proliferation in MCF7 and MCF10A cells. Transwell assay indicated that Notch1 overexpression promotes cell migration and the invasion of breast cancer cells. We showed that MCF7 and MCF10A cells overexpressing Notch1 acquired features of epithelial-mesenchymal transition (EMT) and displayed a cancer stem cell (CSC) phenotype. The expression levels of the epithelial markers E-cadherin and occludin were decreased, while the expression levels of the mesenchymal markers N-cadherin, vimentin and fibronectin were increased in cells overexpressing Notch1. We demonstrated that Notch1 induced phosphorylation of the signal transducer and activator of transcription 3 (STAT3) in breast cancer cells and increased the expression of p65 and interleukin (IL)-1β. Inhibition of STAT3 activity by JSI124 reduced the expression of p65 and IL-1. Treatment of MCF7-notch1 and MCF10A-notch1 cells with JSI124 also reduced the expression of N-cadherin, markers of epithelial mesenchymal transition and increased the expression of E-cadherin. Our results suggest that Notch1 promotes EMT and the CSC phenotype through induction of STAT3.
Collapse
Affiliation(s)
- Xiaojin Zhang
- Department of Oncology, The First Hospital Affiliated to School of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoai Zhao
- Department of Oncology, The First Hospital Affiliated to School of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shan Shao
- Department of Oncology, The First Hospital Affiliated to School of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoxiao Zuo
- Department of Oncology, The First Hospital Affiliated to School of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qian Ning
- Department of Respiratory, The First Hospital Affiliated to School of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Minna Luo
- Department of Oncology, The First Hospital Affiliated to School of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shanzhi Gu
- Department of Forensic Medicine, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xinhan Zhao
- Department of Oncology, The First Hospital Affiliated to School of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
113
|
The molecular mechanisms underlying the therapeutic resistance of cancer stem cells. Arch Pharm Res 2014; 38:389-401. [DOI: 10.1007/s12272-014-0531-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/08/2014] [Indexed: 12/19/2022]
|
114
|
Selmi A, de Saint-Jean M, Jallas AC, Garin E, Hogarty MD, Bénard J, Puisieux A, Marabelle A, Valsesia-Wittmann S. TWIST1 is a direct transcriptional target of MYCN and MYC in neuroblastoma. Cancer Lett 2014; 357:412-418. [PMID: 25475555 DOI: 10.1016/j.canlet.2014.11.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
Abstract
In neuroblastoma, MYCN amplification is associated with a worse prognosis and is a criterion used in the clinic to provide intensive treatments to children even with localized disease. In correlation with MYCN amplification, upregulation of TWIST1, a transcription factor playing a crucial role in inhibition of apoptosis and differentiation, was previously reported. Clinical data set analysis of MYCN, MYC and TWIST1 expression permits us to confirm that TWIST1 expression is upregulated in MYCN amplified neuroblastoma but also in a subset of neuroblastoma harboring high expression of MYCN or MYC without gene amplification. In silico analyses reveal the presence of several MYC regulatory motifs (E-Boxes and INR) within the TWIST1 promoter. Using gel shift assay and reporter activity assays, we demonstrate that both N-Myc and c-Myc proteins can bind and activate the TWIST1 promoter. Therefore, we propose TWIST1 as a direct MYC transcriptional target.
Collapse
Affiliation(s)
- Abdelkader Selmi
- Université Lyon 1, F-69000 Lyon, France; INSERM UMR-S1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69008 Lyon, France
| | - Maud de Saint-Jean
- Université Lyon 1, F-69000 Lyon, France; INSERM UMR-S1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69008 Lyon, France
| | - Anne-Catherine Jallas
- Centre Léon Bérard, F-69008 Lyon, France; Pôle des Sciences Cliniques, Lyon, F-69008, France
| | - Elisabeth Garin
- Centre Léon Bérard, F-69008 Lyon, France; Pôle des Sciences Cliniques, Lyon, F-69008, France
| | - Michael D Hogarty
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104-4318, USA
| | - Jean Bénard
- CNRS UMR8126 Institut Gustave Roussy, Université Paris XI, Villejuif F-94805, France
| | - Alain Puisieux
- Université Lyon 1, F-69000 Lyon, France; INSERM UMR-S1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69008 Lyon, France; Centre Léon Bérard, F-69008 Lyon, France
| | - Aurélien Marabelle
- Université Lyon 1, F-69000 Lyon, France; INSERM UMR-S1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69008 Lyon, France; Centre Léon Bérard, F-69008 Lyon, France; Pôle des Sciences Cliniques, Lyon, F-69008, France
| | - Sandrine Valsesia-Wittmann
- Université Lyon 1, F-69000 Lyon, France; Centre Léon Bérard, F-69008 Lyon, France; Pôle des Sciences Cliniques, Lyon, F-69008, France.
| |
Collapse
|
115
|
Dong CY, Liu XY, Wang N, Wang LN, Yang BX, Ren Q, Liang HY, Ma XT. Twist-1, A Novel Regulator of Hematopoietic Stem Cell Self-Renewal and Myeloid Lineage Development. Stem Cells 2014; 32:3173-82. [PMID: 25100001 DOI: 10.1002/stem.1803] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 07/15/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Cheng-Ya Dong
- State Key Laboratory of Experimental Hematology; Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College; Tianjin People's Republic of China
| | - Xiao-Yan Liu
- State Key Laboratory of Experimental Hematology; Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College; Tianjin People's Republic of China
| | - Nan Wang
- State Key Laboratory of Experimental Hematology; Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College; Tianjin People's Republic of China
| | - Li-Na Wang
- State Key Laboratory of Experimental Hematology; Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College; Tianjin People's Republic of China
| | - Bin-Xia Yang
- State Key Laboratory of Experimental Hematology; Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College; Tianjin People's Republic of China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology; Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College; Tianjin People's Republic of China
| | - Hao-Yue Liang
- State Key Laboratory of Experimental Hematology; Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College; Tianjin People's Republic of China
| | - Xiao-Tong Ma
- State Key Laboratory of Experimental Hematology; Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College; Tianjin People's Republic of China
| |
Collapse
|
116
|
Cai X, Dai Z, Reeves RS, Caballero-Benitez A, Duran KL, Delrow JJ, Porter PL, Spies T, Groh V. Autonomous stimulation of cancer cell plasticity by the human NKG2D lymphocyte receptor coexpressed with its ligands on cancer cells. PLoS One 2014; 9:e108942. [PMID: 25291178 PMCID: PMC4188595 DOI: 10.1371/journal.pone.0108942] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/27/2014] [Indexed: 12/20/2022] Open
Abstract
The stimulatory NKG2D receptor on lymphocytes promotes tumor immune surveillance by targeting ligands selectively induced on cancer cells. Progressing tumors counteract by employing tactics to disable lymphocyte NKG2D. This negative dynamic is escalated as some human cancer cells co-opt expression of NKG2D, thereby complementing the presence of its ligands for autonomous stimulation of oncogenic signaling. Clinical association data imply relationships between cancer cell NKG2D and metastatic disease. Here we show that NKG2D promotes cancer cell plasticity by induction of phenotypic, molecular, and functional signatures diagnostic of the epithelial–mesenchymal transition, and of stem-like traits via induction of Sox9, a key transcriptional regulator of breast stem cell maintenance. These findings obtained with model breast tumor lines and xenotransplants were recapitulated by exvivo cancer cells from primary invasive breast carcinomas. Thus, NKG2D may have the capacity to drive high malignancy traits underlying metastatic disease.
Collapse
Affiliation(s)
- Xin Cai
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Zhenpeng Dai
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Rebecca S. Reeves
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Andrea Caballero-Benitez
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Kate L. Duran
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jeffrey J. Delrow
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Peggy L. Porter
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Thomas Spies
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| | - Veronika Groh
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
117
|
Glackin CA. Targeting the Twist and Wnt signaling pathways in metastatic breast cancer. Maturitas 2014; 79:48-51. [DOI: 10.1016/j.maturitas.2014.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 06/21/2014] [Indexed: 01/31/2023]
|
118
|
Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 2014; 16:488-94. [PMID: 24875735 DOI: 10.1038/ncb2976] [Citation(s) in RCA: 793] [Impact Index Per Article: 72.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The plasticity of cancer cells underlies their capacity to adapt to the selective pressures they encounter during tumour development. Aberrant reactivation of epithelial-mesenchymal transition (EMT), an essential embryonic process, can promote cancer cell plasticity and fuel both tumour initiation and metastatic spread. Here we discuss the roles of EMT-inducing transcription factors in creating a pro-tumorigenic setting characterized by an intrinsic ability to withstand oncogenic insults through the mitigation of p53-dependent oncosuppressive functions and the gain of stemness-related properties.
Collapse
Affiliation(s)
- Alain Puisieux
- Inserm UMR-S1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69008 Lyon, France; Université Lyon 1, ISPB, F-69000 Lyon, France; and Centre Léon Bérard, F-69008 Lyon, France
| | - Thomas Brabletz
- Department of General and Visceral Surgery, Comprehensive Cancer Center and BIOSS Centre for Biological Signalling Studies, University of Freiburg Medical Center, Freiburg, Germany, and the German Cancer Consortium (DKTK), Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julie Caramel
- Inserm UMR-S1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69008 Lyon, France; Université Lyon 1, ISPB, F-69000 Lyon, France; and Centre Léon Bérard, F-69008 Lyon, France
| |
Collapse
|
119
|
Liu C, Li Z, Bi L, Li K, Zhou B, Xu C, Huang J, Xu K. NOTCH1 signaling promotes chemoresistance via regulating ABCC1 expression in prostate cancer stem cells. Mol Cell Biochem 2014; 393:265-70. [PMID: 24782036 DOI: 10.1007/s11010-014-2069-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/12/2014] [Indexed: 12/29/2022]
Abstract
Chemotherapy is a strategy for patients with advanced prostate cancer, especially those with castration-resistant prostate cancer. Prostate cancer stem cells (PCSCs) are believed to be the origin of cancer recurrence following therapy intervention, including chemotherapy. The mechanisms underlying the chemoresistance of PCSCs are still poorly understood. In the present study, fluorescence-activated cell sorting was used to isolate PCSCs from LNCaP and PC3 cell lines. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide was used to measure the cell viability. Quantitative real-time PCR and western blotting were utilized to evaluate the mRNA and protein levels. ShRNA was employed to knock down target gene expression. Chromatin immunoprecipitation (ChIP) was performed to explore the detailed mechanism underlying ABCC1 expression. Our results revealed that the sorted PCSCs showed enhanced chemoresistance ability than matched non-PCSCs. Protein level of activated form of NOTCH1(ICN1) was significantly higher in PCSCs. Inhibition of NOTCH1 with shRNA could decrease ABCC1 expression, and improve chemosensitivity in PCSCs. Finally, ChIP-PCR showed ICN1 could directly bind to the promoter region of ABCC1. In conclusion, NOTCH1 signaling could transactivate ABCC1, resulting in higher chemoresistance ability of PCSCs, which might be one of the important mechanisms underlying the chemoresistance of PCSCs.
Collapse
Affiliation(s)
- Cheng Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Shamir ER, Pappalardo E, Jorgens DM, Coutinho K, Tsai WT, Aziz K, Auer M, Tran PT, Bader JS, Ewald AJ. Twist1-induced dissemination preserves epithelial identity and requires E-cadherin. J Cell Biol 2014; 204:839-56. [PMID: 24590176 PMCID: PMC3941052 DOI: 10.1083/jcb.201306088] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 01/27/2014] [Indexed: 01/06/2023] Open
Abstract
Dissemination of epithelial cells is a critical step in metastatic spread. Molecular models of dissemination focus on loss of E-cadherin or repression of cell adhesion through an epithelial to mesenchymal transition (EMT). We sought to define the minimum molecular events necessary to induce dissemination of cells out of primary murine mammary epithelium. Deletion of E-cadherin disrupted epithelial architecture and morphogenesis but only rarely resulted in dissemination. In contrast, expression of the EMT transcription factor Twist1 induced rapid dissemination of cytokeratin-positive epithelial cells. Twist1 induced dramatic transcriptional changes in extracellular compartment and cell-matrix adhesion genes but not in cell-cell adhesion genes. Surprisingly, we observed disseminating cells with membrane-localized E-cadherin and β-catenin, and E-cadherin knockdown strongly inhibited Twist1-induced single cell dissemination. Dissemination can therefore occur with retention of epithelial cell identity. The spread of cancer cells during metastasis could similarly involve activation of an epithelial motility program without requiring a transition from epithelial to mesenchymal character.
Collapse
Affiliation(s)
- Eliah R. Shamir
- Department of Cell Biology and Department of Oncology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Elisa Pappalardo
- Department of Biomedical Engineering, High-Throughput Biology Center, Johns Hopkins University, Baltimore, MD 21218
| | - Danielle M. Jorgens
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Kester Coutinho
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Wen-Ting Tsai
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Khaled Aziz
- Department of Radiation Oncology and Department of Molecular Radiation Sciences, Oncology, and Urology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Manfred Auer
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Phuoc T. Tran
- Department of Radiation Oncology and Department of Molecular Radiation Sciences, Oncology, and Urology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Joel S. Bader
- Department of Biomedical Engineering, High-Throughput Biology Center, Johns Hopkins University, Baltimore, MD 21218
| | - Andrew J. Ewald
- Department of Cell Biology and Department of Oncology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
121
|
Ferrand N, Gnanapragasam A, Dorothee G, Redeuilh G, Larsen AK, Sabbah M. Loss of WISP2/CCN5 in estrogen-dependent MCF7 human breast cancer cells promotes a stem-like cell phenotype. PLoS One 2014; 9:e87878. [PMID: 24498388 PMCID: PMC3912128 DOI: 10.1371/journal.pone.0087878] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/05/2014] [Indexed: 01/06/2023] Open
Abstract
It has been proposed that the epithelial-mesenchymal transition (EMT) in mammary epithelial cells and breast cancer cells generates stem cell features. WISP2 (Wnt-1-induced signaling protein-2) plays an important role in maintenance of the differentiated phenotype of estrogen receptor-positive breast cancer cells and loss of WISP2 is associated with EMT. We now report that loss of WISP2 in MCF7 breast cancer cells can also promote the emergence of a cancer stem-like cell phenotype characterized by high expression of CD44, increased aldehyde dehydrogenase activity and mammosphere formation. Higher levels of the stem cell markers Nanog and Oct3/4 were observed in those mammospheres. In addition we show that low-cell inoculums are capable of tumor formation in the mammary fat pad of immunodeficient mice. Gene expression analysis show an enrichment of markers linked to stem cell function such as SOX9 and IGFBP7 which is linked to TGF-β inducible, SMAD3-dependent transcription. Taken together, our data demonstrate that WISP2 loss promotes both EMT and the stem-like cell phenotype.
Collapse
Affiliation(s)
- Nathalie Ferrand
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Anne Gnanapragasam
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Guillaume Dorothee
- Immune system, Neuroinflammation and Neurodegenerative diseases, Centre de Recherche Saint-Antoine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Gérard Redeuilh
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Annette K. Larsen
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Michèle Sabbah
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- Université Pierre et Marie Curie, Paris, France
- * E-mail:
| |
Collapse
|
122
|
Dynamics between cancer cell subpopulations reveals a model coordinating with both hierarchical and stochastic concepts. PLoS One 2014; 9:e84654. [PMID: 24416258 PMCID: PMC3886990 DOI: 10.1371/journal.pone.0084654] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 11/18/2013] [Indexed: 02/04/2023] Open
Abstract
Tumors are often heterogeneous in which tumor cells of different phenotypes have distinct properties. For scientific and clinical interests, it is of fundamental importance to understand their properties and the dynamic variations among different phenotypes, specifically under radio- and/or chemo-therapy. Currently there are two controversial models describing tumor heterogeneity, the cancer stem cell (CSC) model and the stochastic model. To clarify the controversy, we measured probabilities of different division types and transitions of cells via in situ immunofluorescence. Based on the experiment data, we constructed a model that combines the CSC with the stochastic concepts, showing the existence of both distinctive CSC subpopulations and the stochastic transitions from NSCCs to CSCs. The results showed that the dynamic variations between CSCs and non-stem cancer cells (NSCCs) can be simulated with the model. Further studies also showed that the model can be used to describe the dynamics of the two subpopulations after radiation treatment. More importantly, analysis demonstrated that the experimental detectable equilibrium CSC proportion can be achieved only when the stochastic transitions from NSCCs to CSCs occur, indicating that tumor heterogeneity may exist in a model coordinating with both the CSC and the stochastic concepts. The mathematic model based on experimental parameters may contribute to a better understanding of the tumor heterogeneity, and provide references on the dynamics of CSC subpopulation during radiotherapy.
Collapse
|
123
|
Abstract
Tumor metastasis is a multistep process by which tumor cells disseminate from their primary site and form secondary tumors at a distant site. Metastasis occurs through a series of steps: local invasion, intravasation, transport, extravasation, and colonization. A developmental program termed epithelial-mesenchymal transition (EMT) has been shown to play a critical role in promoting metastasis in epithelium-derived carcinoma. Recent experimental and clinical studies have improved our knowledge of this dynamic program and implicated EMT and its reverse program, mesenchymal-epithelial transition (MET), in the metastatic process. Here, we review the functional requirement of EMT and/or MET during the individual steps of tumor metastasis and discuss the potential of targeting this program when treating metastatic diseases.
Collapse
|
124
|
Charpentier M, Martin S. Interplay of Stem Cell Characteristics, EMT, and Microtentacles in Circulating Breast Tumor Cells. Cancers (Basel) 2013; 5:1545-65. [PMID: 24240660 PMCID: PMC3875953 DOI: 10.3390/cancers5041545] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/08/2013] [Accepted: 11/04/2013] [Indexed: 12/31/2022] Open
Abstract
Metastasis, not the primary tumor, is responsible for the majority of breast cancer-related deaths. Emerging evidence indicates that breast cancer stem cells (CSCs) and the epithelial-to-mesenchymal transition (EMT) cooperate to produce circulating tumor cells (CTCs) that are highly competent for metastasis. CTCs with both CSC and EMT characteristics have recently been identified in the bloodstream of patients with metastatic disease. Breast CSCs have elevated tumorigenicity required for metastatic outgrowth, while EMT may promote CSC character and endows breast cancer cells with enhanced invasive and migratory potential. Both CSCs and EMT are associated with a more flexible cytoskeleton and with anoikis-resistance, which help breast carcinoma cells survive in circulation. Suspended breast carcinoma cells produce tubulin-based extensions of the plasma membrane, termed microtentacles (McTNs), which aid in reattachment. CSC and EMT-associated upregulation of intermediate filament vimentin and increased detyrosination of α-tubulin promote the formation of McTNs. The combined advantages of CSCs and EMT and their associated cytoskeletal alterations increase metastatic efficiency, but understanding the biology of these CTCs also presents new therapeutic targets to reduce metastasis.
Collapse
Affiliation(s)
- Monica Charpentier
- Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-20, Baltimore, MD 21201, USA; E-Mail:
- Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-29, Baltimore, MD 21201, USA
| | - Stuart Martin
- Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-29, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-29, Baltimore, MD 21201, USA
| |
Collapse
|
125
|
Liu AY, Cai Y, Mao Y, Lin Y, Zheng H, Wu T, Huang Y, Fang X, Lin S, Feng Q, Huang Z, Yang T, Luo Q, Ouyang G. Twist2 promotes self-renewal of liver cancer stem-like cells by regulating CD24. Carcinogenesis 2013; 35:537-45. [PMID: 24193512 DOI: 10.1093/carcin/bgt364] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Twist2 is a highly conserved basic helix-loop-helix transcription factor that plays a critical role in embryogenesis. Recent evidence has revealed that aberrant Twist2 expression contributes to tumor progression; however, the role of Twist2 in human hepatocellular carcinoma (HCC) and its underlying mechanisms remain undefined. In this report, we demonstrate that Twist2 is overexpressed in human HCC tumors. We show that ectopic expression of Twist2 induces epithelial-mesenchymal transition phenotypes, augments cell migration and invasion and colony-forming abilities in human HCC cells in vitro, and promotes tumor growth in vivo. Moreover, we found a higher percentage of CD24(+) liver cancer stem-like cells in Twist2-transduced HCC cells. Twist2-expressing cells exhibited an increased expression of stem cell markers Bmi-1, Sox2, CD24 and Nanog and an increased capacity for self-renewal. Knockdown of CD24 in HepG2/Twist2 cells decreased the levels of Sox2, pSTAT3 and Nanog, and reversed the cancer stem-like cell phenotypes induced by ectopic expression of Twist2. Furthermore, Twist2 regulated the CD24 expression by directly binding to the E-box region in CD24 promoter. Therefore, our data demonstrated that Twist2 augments liver cancer stem-like cell self-renewal in a CD24-dependent manner. Twist2-CD24-STAT3-Nanog pathway may play a critical role in regulating liver cancer stem-like cell self-renewal. The identification of the Twist2-CD24 signaling pathway provides a potential therapeutic approach to target cancer stem cells in HCCs.
Collapse
Affiliation(s)
- Allan Yi Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Koshkin V, Yang BB, Krylov SN. Kinetics of MDR transport in tumor-initiating cells. PLoS One 2013; 8:e79222. [PMID: 24223908 PMCID: PMC3815210 DOI: 10.1371/journal.pone.0079222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/25/2013] [Indexed: 12/31/2022] Open
Abstract
Multidrug resistance (MDR) driven by ABC (ATP binding cassette) membrane transporters is one of the major causes of treatment failure in human malignancy. MDR capacity is thought to be unevenly distributed among tumor cells, with higher capacity residing in tumor-initiating cells (TIC) (though opposite finding are occasionally reported). Functional evidence for enhanced MDR of TICs was previously provided using a "side population" assay. This assay estimates MDR capacity by a single parameter - cell's ability to retain fluorescent MDR substrate, so that cells with high MDR capacity ("side population") demonstrate low substrate retention. In the present work MDR in TICs was investigated in greater detail using a kinetic approach, which monitors MDR efflux from single cells. Analysis of kinetic traces obtained allowed for the estimation of both the velocity (V max) and affinity (K M) of MDR transport in single cells. In this way it was shown that activation of MDR in TICs occurs in two ways: through the increase of V max in one fraction of cells, and through decrease of K M in another fraction. In addition, kinetic data showed that heterogeneity of MDR parameters in TICs significantly exceeds that of bulk cells. Potential consequences of these findings for chemotherapy are discussed.
Collapse
Affiliation(s)
- Vasilij Koshkin
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, Canada
| | - Burton B. Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Sergey N. Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, Canada
| |
Collapse
|
127
|
Zhang Y, Duan C, Bian C, Xiong Y, Zhang J. Steroid receptor coactivator-1: a versatile regulator and promising therapeutic target for breast cancer. J Steroid Biochem Mol Biol 2013; 138:17-23. [PMID: 23474438 DOI: 10.1016/j.jsbmb.2013.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 02/06/2013] [Accepted: 02/19/2013] [Indexed: 11/15/2022]
Abstract
Breast cancer is the leading cause of cancer death for women worldwide. Various therapeutic approaches have been proposed, among which endocrine therapy has recently become popular due to the high sensitivity of breast tissues to steroids such as estrogens and progesterone. The underlying mechanisms of steroid regulation in breast cancer cell proliferation, invasiveness, metastasis and endocrine resistance, however, remain largely unknown. Steroid receptor coactivator-1 (SRC-1) has attracted much attention because it is an important co-regulator and plays a pivotal role in modulating the transcriptional activities of steroid nuclear receptors. Accumulated research has established a strong correlation between SRC-1 and the pathological progression or disease-related features of breast cancer, which supports its potential as a target for specific therapeutic intervention in the clinical management of breast cancer. In addition, a diverse group of downstream molecules have also been shown to participate in various functional pathways related to SRC-1-associated regulation of breast cancer. These downstream molecules are also considered promising therapeutic targets, providing additional options for targeted treatments. In this review, the expression of SRC-1 in breast cancer and the close relationships between SRC-1 and the cell proliferation, invasiveness, metastasis and endocrine resistance of breast cancer will be discussed, followed by a brief summary of its putative functional mechanisms with an emphasis on the potential therapeutic role of SRC-1.
Collapse
Affiliation(s)
- Yanlei Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China; Company Ten of Cadet Brigade, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | |
Collapse
|
128
|
Wang X, Chang X, Zhuo G, Sun M, Yin K. Twist and miR-34a are involved in the generation of tumor-educated myeloid-derived suppressor cells. Int J Mol Sci 2013; 14:20459-77. [PMID: 24129179 PMCID: PMC3821625 DOI: 10.3390/ijms141020459] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/19/2013] [Accepted: 09/23/2013] [Indexed: 12/23/2022] Open
Abstract
Tumors can induce the generation and accumulation of immunosuppressive cells such as myeloid-derived suppressor cells in the tumor microenvironment, contributing to tumor immunological escapes. Many studies have demonstrated that multiple factors could induce myeloid precursor cells into myeloid-derived suppressor cells, not dendritic cells. In our study, we found that tumor supernatants could induce the generation of myeloid-derived suppressor cells by disturbing the development of dendritic cells. Twist and miR-34a may regulate the effect of tumor cells inducing myeloid-derived suppressor cells via TGF-β and/or IL-10.
Collapse
Affiliation(s)
- Xin Wang
- Department of General Surgery, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China; E-Mail:
- Department of Gynaecology and Obstetrics, the 306 Hospital of PLA, Beijing 100037, China
| | - Xusheng Chang
- Department of General Surgery, Yancheng City First People’s Hospital, Yancheng City 224000, Jiangsu, China; E-Mail:
| | - Guangzuan Zhuo
- Department of Colorectal Surgery, the Second Artillery General Hospital of PLA, Beijing 10008, China; E-Mail:
| | - Mingjuan Sun
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai 200433, China
- Authors to whom correspondence should be addressed; E-Mails: (M.S.); (K.Y.); Tel./Fax: +86-21-8187-1114 (M.S. & K.Y.)
| | - Kai Yin
- Department of General Surgery, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (M.S.); (K.Y.); Tel./Fax: +86-21-8187-1114 (M.S. & K.Y.)
| |
Collapse
|
129
|
Epithelial-to-mesenchymal transition: what is the impact on breast cancer stem cells and drug resistance. Cancer Treat Rev 2013; 40:341-8. [PMID: 24090504 DOI: 10.1016/j.ctrv.2013.09.008] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/03/2013] [Accepted: 09/06/2013] [Indexed: 12/24/2022]
Abstract
There is increasing interest in cancer stem cells (CSCs) and their role in cancer progression. Recently, CSCs have been identified in brain, skin, and intestinal tumors and it has been suggested that these CSCs are responsible for tumor growth and metastasis. In breast cancer fatality is often due to the development of metastatic disease (MBC). Almost 30% of early breast cancer patients eventually develop MBC and in 90% of these multi-drug resistance (MDR) occurs. This could be attributed to the presence of breast cancer stem cells (BCSCs). Epithelial-to-mesenchymal transition (EMT) is a process known to contribute to metastasis in cancer and it is mainly characterized by loss of E-cadherin expression. The TGF-β signaling pathway has an established role in promoting EMT by down-regulating E-cadherin via a number of transcription factors, such as Twist, Snail and Slug. EMT has also been reported to produce cells with stem cell-like properties. Definition of the exact molecular mechanisms that are involved in the generation of stem cells through EMT could lead to the identification of new potential therapeutic targets and enable the development of more efficient strategies for particular patient groups. In this review we discuss what is known about the relationship between EMT, BCSCs and MDR.
Collapse
|
130
|
Chen C, Zimmermann M, Tinhofer I, Kaufmann AM, Albers AE. Epithelial-to-mesenchymal transition and cancer stem(-like) cells in head and neck squamous cell carcinoma. Cancer Lett 2013; 338:47-56. [DOI: 10.1016/j.canlet.2012.06.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 06/11/2012] [Accepted: 06/27/2012] [Indexed: 12/19/2022]
|
131
|
Floc'h N, Kolodziejski J, Akkari L, Simonin Y, Ansieau S, Puisieux A, Hibner U, Lassus P. Modulation of oxidative stress by twist oncoproteins. PLoS One 2013; 8:e72490. [PMID: 23967308 PMCID: PMC3742535 DOI: 10.1371/journal.pone.0072490] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 07/17/2013] [Indexed: 01/02/2023] Open
Abstract
Expression of developmental genes Twist1 and Twist2 is reactivated in many human tumors. Among their oncogenic activities, induction of epithelial to mesenchymal transition is believed to increase cell motility and invasiveness and may be related to acquisition of cancer stem cell phenotype. In addition, Twist proteins promote malignant conversion by overriding two oncogene-induced failsafe programs: senescence and apoptosis. Reactive oxygen species (ROS) are also important mediators of apoptosis, senescence and motility and are tightly linked to disease, notably to cancer. We report here that Twist factors and ROS are functionally linked. In wild type cells both Twist1 and Twist2 exhibit antioxidant properties. We show that Twist-driven modulation of oncogene-induced apoptosis is linked to its effects on oxidative stress. Finally, we identify several targets that mediate Twist antioxidant activity. These findings unveil a new function of Twist factors that could be important in explaining their pleiotropic role during carcinogenesis.
Collapse
Affiliation(s)
- Nicolas Floc'h
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5535, Montpellier, France
- Université Montpellier I and Université Montpellier II, Montpellier, France
| | - Jakub Kolodziejski
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5535, Montpellier, France
- Université Montpellier I and Université Montpellier II, Montpellier, France
| | - Leila Akkari
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5535, Montpellier, France
- Université Montpellier I and Université Montpellier II, Montpellier, France
| | - Yannick Simonin
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5535, Montpellier, France
- Université Montpellier I and Université Montpellier II, Montpellier, France
| | - Stéphane Ansieau
- Institut National de la Santé et de la Recherche Médicale (Inserm) Unité Mixte de Recherche (UMR) S1052, Centre de Recherche en Cancérologie, Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5286, Centre de Recherche en Cancérologie, Lyon, France
- Université Unité Mixte de Recherche (UMR) 1052, Centre de Recherche en Cancérologie, Lyon, France
- Université de Lyon, Lyon, France
| | - Alain Puisieux
- Institut National de la Santé et de la Recherche Médicale (Inserm) Unité Mixte de Recherche (UMR) S1052, Centre de Recherche en Cancérologie, Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5286, Centre de Recherche en Cancérologie, Lyon, France
- Université Unité Mixte de Recherche (UMR) 1052, Centre de Recherche en Cancérologie, Lyon, France
- Université de Lyon, Lyon, France
- Centre Léon Bérard, Lyon, France
| | - Urszula Hibner
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5535, Montpellier, France
- Université Montpellier I and Université Montpellier II, Montpellier, France
| | - Patrice Lassus
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5535, Montpellier, France
- Université Montpellier I and Université Montpellier II, Montpellier, France
- * E-mail:
| |
Collapse
|
132
|
Inducible knockout of Twist1 in young and adult mice prolongs hair growth cycle and has mild effects on general health, supporting Twist1 as a preferential cancer target. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1281-1292. [PMID: 23906809 DOI: 10.1016/j.ajpath.2013.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/06/2013] [Accepted: 06/26/2013] [Indexed: 01/24/2023]
Abstract
Twist1 promotes epithelial-mesenchymal transition, invasion, metastasis, stemness, and chemotherapy resistance in cancer cells and thus is a potential target for cancer therapy. However, Twist1-null mice are embryonic lethal, and people with one Twist1 germline mutant allele develop Saethre-Chotzen syndrome; it is questionable whether Twist1 can be targeted in patients without severe adverse effects. We found that Twist1 is expressed in several tissues, including fibroblasts of the mammary glands and dermal papilla cells of the hair follicles. We developed a tamoxifen-inducible Twist1 knockout mouse model; Twist1 knockout in 6-week-old female mice did not affect mammary gland morphogenesis and function during pregnancy and lactation. In both males and females, the knockout did not influence body weight gain, heart rate, or total lean and fat components. The knockout also did not alter blood pressure in males, although it slightly reduced blood pressure in females. Although Twist1 is not cyclically expressed in dermal papilla cells, knockout of Twist1 at postnatal day 13 (when hair follicles have developed) drastically extended the anagen phase and accelerated hair growth. These results indicate that Twist1 is not essential for maintaining an overall healthy condition in young and adult mice and that loss of function facilitates hair growth in adulthood, supporting Twist1 as a preferential target for cancer therapy.
Collapse
|
133
|
Khan MA, Chen HC, Zhang D, Fu J. Twist: a molecular target in cancer therapeutics. Tumour Biol 2013; 34:2497-506. [PMID: 23873099 DOI: 10.1007/s13277-013-1002-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/04/2013] [Indexed: 01/28/2023] Open
Abstract
Twist, the basic helix-loop-helix transcription factor, is involved in the process of epithelial to mesenchymal transitions (EMTs), which play an essential role in cancer metastasis. Overexpression of Twist or its promoter methylation is a common scenario in metastatic carcinomas. Twist is activated by a variety of signal transduction pathways, including Akt, signal transducer and activator of transcription 3, mitogen-activated protein kinase, Ras, and Wnt signaling. Activated Twist upregulates N-cadherin and downregulates E-cadherin, which are the hallmarks of EMT. Moreover, Twist plays an important role in some physiological processes involved in metastasis, like angiogenesis, invadopodia, extravasation, and chromosomal instability. Twist also protects cancer cells from apoptotic cell death. In addition, Twist is responsible for the stemness of cancer cells and the generation of drug resistance. Recently, targeting Twist has gained significant interests in cancer therapeutics. The inactivation of Twist by small RNA technology or chemotherapeutic approach has been proved successful. Moreover, several inhibitors which are antagonistic to the upstream or downstream molecules of Twist signaling pathways have also been identified. Development of potential treatment strategies by targeting Twist has a great promise in cancer therapeutics.
Collapse
Affiliation(s)
- Md Asaduzzaman Khan
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Luzhou Medical College, 3-319 Zhongshan Road, Luzhou, Sichuan, 646000, China
| | | | | | | |
Collapse
|
134
|
Yang C, Chen H, Tan G, Gao W, Cheng L, Jiang X, Yu L, Tan Y. FOXM1 promotes the epithelial to mesenchymal transition by stimulating the transcription of Slug in human breast cancer. Cancer Lett 2013; 340:104-12. [PMID: 23856032 DOI: 10.1016/j.canlet.2013.07.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/05/2013] [Accepted: 07/08/2013] [Indexed: 01/11/2023]
Abstract
The Forkhead Box M1 (FOXM1) transcription factor is involved in tumorigenesis and tumor progression in multiple human carcinomas. In this study, we found that FOXM1 promoted the epithelial to mesenchymal transition (EMT) in human breast cancer. We observed a strong correlation between the expression levels of FOXM1 and the mesenchymal phenotype. Knockdown of FOXM1 inhibited the mesenchymal phenotype, whereas stable overexpression of FOXM1 induced EMT in breast cancer cells. FOXM1 was found to endogenously bind to and stimulate the promoter of Slug that is crucial for EMT progression. The knockdown of Slug abolished the EMT-inducing function of FOXM1. The stable overexpression of FOXM1 promoted metastasis of breast cancer cells in vivo. This study confirmed that FOXM1 promoted EMT in breast cancer cells by stimulating the transcription of EMT-related genes such as Slug.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, Hunan 410082, China
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Lander R, Nasr T, Ochoa SD, Nordin K, Prasad MS, Labonne C. Interactions between Twist and other core epithelial-mesenchymal transition factors are controlled by GSK3-mediated phosphorylation. Nat Commun 2013; 4:1542. [PMID: 23443570 DOI: 10.1038/ncomms2543] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 01/24/2013] [Indexed: 01/05/2023] Open
Abstract
A subset of transcription factors classified as neural crest 'specifiers' are also core epithelial-mesenchymal transition regulatory factors, both in the neural crest and in tumour progression. The bHLH factor Twist is among the least well studied of these factors. Here we demonstrate that Twist is required for cranial neural crest formation and fate determination in Xenopus. We further show that Twist function in the neural crest is dependent upon its carboxy-terminal WR domain. The WR domain mediates physical interactions between Twist and other core epithelial-mesenchymal transition factors, including Snail1 and Snail2, which are essential for proper function. Interaction with Snail1/2, and Twist function more generally, is regulated by GSK-3-β-mediated phosphorylation of conserved sites in the WR domain. Together, these findings elucidate a mechanism for coordinated control of a group of structurally diverse factors that function as a regulatory unit in both developmental and pathological epithelial-mesenchymal transitions.
Collapse
Affiliation(s)
- Rachel Lander
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | | | |
Collapse
|
136
|
Ramakrishna R, Rostomily R. Seed, soil, and beyond: The basic biology of brain metastasis. Surg Neurol Int 2013; 4:S256-64. [PMID: 23717797 PMCID: PMC3656561 DOI: 10.4103/2152-7806.111303] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/07/2013] [Indexed: 01/21/2023] Open
Abstract
First invoked by Paget, the seed and soil hypothesis suggests that the successful growth of metastatic cells depends on the interactions and properties of cancer cells (seeds) and their potential target organs (soil). In the context of the seed and soil hypothesis this review examines recent advances in the understanding of molecular and cellular features that permit transformed epithelial cells to gain access to the blood stream (intravasation), survive their journey through the blood stream, and ultimately traverse through the microvasculature of target organs (extravsation) to deposit, survive, and grow in a foreign tissue environment. In addition to a review of the clinical and experimental evidence supporting the seed and soil theory to cancer metastasis, additional concepts highlighted include: (i) The role of cancer stem-like cells as putative cells of metastatic origin (the "seeds"); (ii) the mechanism of epithelial to mesenchymal transition (EMT) in driving epithelial cell conthose molecules do no blood stream to avoid anoikis, or anchorage independent cell death; and (iv) the reverse process of EMT, or mesenchymal to epithelial transition (MET), which promotes conversion back to the parent cell morphology and growth of macrometastsis in the target organ. The unique biology of metastases once established in the brain, and in particular the "sanctuary" role that the brain microenvironment plays in promoting metastatic growth and treatment resistance, will also be examined. These issues are of more than academic interest since as systemic therapies gradually improve local tumor control, the relative impact of brain metastasis will inexorably play a proportionally greater role in determining patient morbidity and mortality.
Collapse
Affiliation(s)
- Rohan Ramakrishna
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
137
|
Bouard C, Terreux R, Hope J, Chemelle JA, Puisieux A, Ansieau S, Payen L. Interhelical loops within the bHLH domain are determinant in maintaining TWIST1-DNA complexes. J Biomol Struct Dyn 2013; 32:226-41. [PMID: 23527594 PMCID: PMC3869052 DOI: 10.1080/07391102.2012.762722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The basic helix-loop-helix (bHLH) transcription factor TWIST1 is essential to embryonic development, and hijacking of its function contributes to the development of numerous cancer types. It forms either a homodimer or a heterodimeric complex with an E2A or HAND partner. These functionally distinct complexes display sometimes antagonistic functions during development, so that alterations in the balance between them lead to pronounced morphological alterations, as observed in mice and in Saethre–Chotzen syndrome patients. We, here, describe the structures of TWIST1 bHLH–DNA complexes produced in silico through molecular dynamics simulations. We highlight the determinant role of the interhelical loops in maintaining the TWIST1–DNA complex structures and provide a structural explanation for the loss of function associated with several TWIST1 mutations/insertions observed in Saethre–Chotzen syndrome patients. An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:27
Collapse
Affiliation(s)
- Charlotte Bouard
- a Centre de Recherche en Cancerologie de Lyon , Lyon , F-69000 , France
| | | | | | | | | | | | | |
Collapse
|
138
|
Nolte SM, Venugopal C, McFarlane N, Morozova O, Hallett RM, O'Farrell E, Manoranjan B, Murty NK, Klurfan P, Kachur E, Provias JP, Farrokhyar F, Hassell JA, Marra M, Singh SK. A cancer stem cell model for studying brain metastases from primary lung cancer. J Natl Cancer Inst 2013; 105:551-62. [PMID: 23418195 DOI: 10.1093/jnci/djt022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Brain metastases are most common in adults with lung cancer, predicting uniformly poor patient outcome, with a median survival of only months. Despite their frequency and severity, very little is known about tumorigenesis in brain metastases. METHODS We applied previously developed primary solid tumor-initiating cell models to the study of brain metastases from the lung to evaluate the presence of a cancer stem cell population. Patient-derived brain metastases (n = 20) and the NCI-H1915 cell line were cultured as stem-enriching tumorspheres. We used in vitro limiting-dilution and sphere-forming assays, as well as intracranial human-mouse xenograft models. To determine genes overexpressed in brain metastasis tumorspheres, we performed comparative transcriptome analysis. All statistical analyses were two-sided. RESULTS Patient-derived brain metastasis tumorspheres had a mean sphere-forming capacity of 33 spheres/2000 cells (SD = 33.40) and median stem-cell frequency of 1/60 (range = 0-1/141), comparable to that of primary brain tumorspheres (P = .53 and P = .20, respectively). Brain metastases also expressed CD15 and CD133, markers suggestive of a stemlike population. Through intracranial xenotransplantation, brain metastasis tumorspheres were found to recapitulate the original patient tumor heterogeneity. We also identified several genes overexpressed in brain metastasis tumorspheres as statistically significant predictors of poor survival in primary lung cancer. CONCLUSIONS For the first time, we demonstrate the presence of a stemlike population in brain metastases from the lung. We also show that NCI-H1915 tumorspheres could be useful in studying self-renewal and tumor initiation in brain metastases. Our candidate genes may be essential to metastatic stem cell populations, where pathway interference may be able to transform a uniformly fatal disease into a more localized and treatable one.
Collapse
Affiliation(s)
- Sara M Nolte
- Department of Biochemistry and Biomedical Sciences, Faculty of HealthSciences, McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Banerjee A, Qian P, Wu ZS, Ren X, Steiner M, Bougen NM, Liu S, Liu DX, Zhu T, Lobie PE. Artemin stimulates radio- and chemo-resistance by promoting TWIST1-BCL-2-dependent cancer stem cell-like behavior in mammary carcinoma cells. J Biol Chem 2012; 287:42502-15. [PMID: 23095743 DOI: 10.1074/jbc.m112.365163] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Artemin (ARTN) has been reported to promote a TWIST1-dependent epithelial to mesenchymal transition of estrogen receptor negative mammary carcinoma (ER-MC) cells associated with metastasis and poor survival outcome. We therefore examined a potential role of ARTN in the promotion of the cancer stem cell (CSC)-like phenotype in mammary carcinoma cells. Acquired resistance of ER-MC cells to either ionizing radiation (IR) or paclitaxel was accompanied by increased ARTN expression. Small interfering RNA (siRNA)-mediated depletion of ARTN in either IR- or paclitaxel-resistant ER-MC cells restored cell sensitivity to IR or paclitaxel. Expression of ARTN was enriched in ER-MC cells grown in mammospheric compared with monolayer culture and was also enriched along with BMI1, TWIST1, and DVL1 in mammospheric and ALDH1+ populations. ARTN promoted mammospheric growth and self-renewal of ER-MC cells and increased the ALDH1+ population, whereas siRNA-mediated depletion of ARTN diminished these CSC-like cell behaviors. Furthermore, increased ARTN expression was significantly correlated with ALDH1 expression in a cohort of ER-MC patients. Forced expression of ARTN also dramatically enhanced tumor initiating capacity of ER-MC cells in xenograft models at low inoculum. ARTN promotion of the CSC-like cell phenotype was mediated by TWIST1 regulation of BCL-2 expression. ARTN also enhanced mammosphere formation and the ALDH1+ population in estrogen receptor-positive mammary carcinoma (ER+MC) cells. Increased expression of ARTN and the functional consequences thereof may be one common adaptive mechanism used by mammary carcinoma cells to promote cell survival and renewal in hostile tumor microenvironments.
Collapse
Affiliation(s)
- Arindam Banerjee
- Liggins Institute, University of Auckland, Auckland 1023, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Lehmann C, Jobs G, Thomas M, Burtscher H, Kubbies M. Established breast cancer stem cell markers do not correlate with in vivo tumorigenicity of tumor-initiating cells. Int J Oncol 2012; 41:1932-42. [PMID: 23042145 PMCID: PMC3583871 DOI: 10.3892/ijo.2012.1654] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/27/2012] [Indexed: 01/05/2023] Open
Abstract
The tumor-initiating capacity of primary human breast cancer cells is maintained in vitro by culturing these cells as spheres/aggregates. Inoculation of small cell numbers derived from these non-adherent cultures leads to rapid xenograft tumor formation in mice. Accordingly, injection of more differentiated monolayer cells derived from spheres results in significantly decelerated tumor growth. For our study, two breast cancer cell lines were generated from primary tumors and cultured as mammospheres or as their adherent counterparts. We examined the in vivo tumorigenicity of these cells by injecting serial dilutions into immunodeficient mice. Inoculation of 106 cells per mouse led to rapid tumor formation, irrespective of cell line or culture conditions. However, after injection of only 103 cells, solely sphere cells were highly tumorigenic. In vitro, we investigated differentiation markers, established breast CSC markers and conducted mRNA profiling. Cytokeratin 5 and 18 were increased in both monolayer cell types, indicating a more differentiated phenotype. All cell lines were CD24−/CD44+ and did not express CD133, CD326 or E-cadherin. ALDH1 activity was not detectable in any cell line. A verapamil-sensitive Hoechst side population was present in sphere cells, but there was no correlation with tumorigenicity in vivo. mRNA profiling did not reveal upregulation of relevant transcription factors. In vitro cell cycle kinetics and in vivo tumor doubling times displayed no difference between sphere and monolayer cultures. Our data indicate that intrinsic genetic and functional markers investigated are not indicative of the in vivo tumori-genicity of putative breast tumor-initiating cells.
Collapse
Affiliation(s)
- Christian Lehmann
- Discovery Oncology, Roche Diagnostics GmbH, D-82377 Penzberg, Germany.
| | | | | | | | | |
Collapse
|
141
|
Oliveras-Ferraros C, Corominas-Faja B, Cufí S, Vazquez-Martin A, Martin-Castillo B, Iglesias JM, López-Bonet E, Martin ÁG, Menendez JA. Epithelial-to-mesenchymal transition (EMT) confers primary resistance to trastuzumab (Herceptin). Cell Cycle 2012; 11:4020-32. [PMID: 22992620 DOI: 10.4161/cc.22225] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The rate of inherent resistance to single-agent trastuzumab in HER2-overexpressing metastatic breast carcinomas is impressive at above 70%. Unfortunately, little is known regarding the distinctive genetic signatures that could predict trastuzumab refractoriness ab initio. The epithelial-to-mesenchymal transition (EMT) molecular features, HER2 expression status and primary responses to trastuzumab were explored in the public Lawrence Berkeley Laboratory (LBL) Breast Cancer Collection. Lentivirus-delivered small hairpin RNAs were employed to reduce specifically and stably the expression of EMT transcription factors in trastuzumab-refractory basal/HER2+ cells. Cell proliferation assays and pre-clinical nude mice xenograft-based studies were performed to assess the contribution of specific EMT transcription factors to inherent trastuzumab resistance. Primary sensitivity to trastuzumab was restricted to the SLUG/SNAIL2-negative subset of luminal/HER2+ cell lines, whereas all of the SLUG/SNAIL2-positive basal/HER2+ cell lines exhibited an inherent resistance to trastuzumab. The specific knockdown of SLUG/SNAIL2 suppressed the stem-related CD44+CD24(-/low) mesenchymal immunophenotype by transcriptionally upregulating the luminal epithelial marker CD24 in basal/HER2+ cells. Basal/HER2+ cells gained sensitivity to the growth-inhibitory effects of trastuzumab following SLUG/SNAIL2 gene depletion, which induced the expression of the mesenchymal-to-epithelial transition (MET) genes involved in promoting an epithelial phenotype. The isolation of CD44+CD24(-/low) mesenchymal cells by magnetic-activated cell sorting (MACS) confirmed their intrinsic unresponsiveness to trastuzumab. A reduction in tumor growth and dramatic gain in sensitivity to trastuzumab in vivo were confirmed when the SLUG/SNAIL2 knockdown basal/HER2+ cells were injected into nude mice. HER2 overexpression in a basal, rather than in a luminal molecular background, results in a basal/HER2+ breast cancer subtype that is intrinsically resistant to trastuzumab. EMT transcription factors might induce an enhanced phenotypic plasticity that would allow basal/HER2+ breast cancer cells to "enter" into and "exit" dynamically from trastuzumab-responsive stem cell-like states. The systematic determination of SLUG/SNAIL2 as a stem/CD44+CD24(-/low) cell-associated protein may improve the therapeutic management of HER2+ breast carcinomas.
Collapse
Affiliation(s)
- Cristina Oliveras-Ferraros
- Metabolism & Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Asli NS, Harvey RP. Epithelial to mesenchymal transition as a portal to stem cell characters embedded in gene networks. Bioessays 2012; 35:191-200. [DOI: 10.1002/bies.201200089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
143
|
Piccinin S, Tonin E, Sessa S, Demontis S, Rossi S, Pecciarini L, Zanatta L, Pivetta F, Grizzo A, Sonego M, Rosano C, Dei Tos AP, Doglioni C, Maestro R. A "twist box" code of p53 inactivation: twist box: p53 interaction promotes p53 degradation. Cancer Cell 2012; 22:404-15. [PMID: 22975381 DOI: 10.1016/j.ccr.2012.08.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 04/25/2012] [Accepted: 08/04/2012] [Indexed: 01/03/2023]
Abstract
Twist proteins have been shown to contribute to cancer development and progression by impinging on different regulatory pathways, but their mechanism of action is poorly defined. By investigating the role of Twist in sarcomas, we found that Twist1 acts as a mechanism alternative to TP53 mutation and MDM2 overexpression to inactivate p53 in mesenchymal tumors. We provide evidence that Twist1 binds p53 C terminus through the Twist box. This interaction hinders key posttranslational modifications of p53 and facilitates its MDM2-mediated degradation. Our study suggests the existence of a Twist box code of p53 inactivation and provides the proof of principle that targeting the Twist box:p53 interaction might offer additional avenues for cancer treatment.
Collapse
Affiliation(s)
- Sara Piccinin
- Experimental Oncology 1, CRO National Cancer Institute, Aviano 33081, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Payne KK, Manjili MH. Adaptive immune responses associated with breast cancer relapse. Arch Immunol Ther Exp (Warsz) 2012; 60:345-50. [PMID: 22911133 DOI: 10.1007/s00005-012-0185-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/28/2012] [Indexed: 12/21/2022]
Abstract
The generation, survival, and differentiation of breast cancer stem cells (BCSC) in immunocompetent hosts remain elusive. Some investigators have shown that BCSC can be induced from epithelial tumor cells by the pathologic epithelial to mesenchymal transition (EMT). Emerging evidence suggests that the induction of EMT among epithelial tumor cells originates from signals produced by the non-tumor cells that constitute the tumor microenvironment, including the immune effectors that infiltrate the tumors. Thus, this suggests that the immune system not only has anti-tumor function, but also paradoxically immunoedits tumors, facilitating tumor escape and progression. Indeed, many studies in human breast cancers show both positive and negative associations between the infiltration of various immune effectors (e.g., CD4 and CD8 T cells) and the propensity to relapse with metastatic disease. These observations suggest that distinct types of immune effector cells may induce or inhibit tumor relapse. This review focuses on recent advances in identifying components of the immune system that may directly induce tumor escape and relapse. We propose that levels of interferon (IFN)-γ production or levels of the expression of IFN-γ receptor α on tumor cells may determine whether tumor inhibitory or relapse-promoting effect of IFN-γ may prevail.
Collapse
Affiliation(s)
- Kyle K Payne
- Department of Microbiology and Immunology, Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Box 980035, Richmond, VA 23298, USA
| | | |
Collapse
|
145
|
Li S, Kendall SE, Raices R, Finlay J, Covarrubias M, Liu Z, Lowe G, Lin YH, Teh YH, Leigh V, Dhillon S, Flanagan S, Aboody KS, Glackin CA. TWIST1 associates with NF-κB subunit RELA via carboxyl-terminal WR domain to promote cell autonomous invasion through IL8 production. BMC Biol 2012; 10:73. [PMID: 22891766 PMCID: PMC3482588 DOI: 10.1186/1741-7007-10-73] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 08/14/2012] [Indexed: 12/14/2022] Open
Abstract
Background Metastasis is the primary cause of death for cancer patients. TWIST1, an evolutionarily conserved basic helix-loop-helix (bHLH) transcription factor, is a strong promoter of metastatic spread and its expression is elevated in many advanced human carcinomas. However, the molecular events triggered by TWIST1 to motivate dissemination of cancer cells are largely unknown. Results Here we show that TWIST1 induces the production of interleukin 8 (IL8), which activates matrix metalloproteinases and promotes invasion of breast epithelial and cancer cells. In this novel mechanism, TWIST1-mediated IL8 transcription is induced through the TWIST1 carboxy-terminal WR (Trp-Arg) domain instead of the classic DNA binding bHLH domain. Co-immunoprecipitation analyses revealed that the WR domain mediates the formation of a protein complex comprised of TWIST1 and the nuclear factor-kappaB (NF-κB) subunit RELA (p65/NF-κB3), which synergistically activates the transcriptional activity of NF-κB. This activation leads to increased DNA binding affinity of RELA to the IL8 promoter and thus induces the expression of the cytokine. Blockage of IL8 signaling by IL8 neutralizing antibodies or receptor inhibition reduced the invasiveness of both breast epithelial and cancer cells, indicating that TWIST1 induces autonomous cell invasion by establishing an IL8 antocrine loop. Conclusions Our data demonstrate that the TWIST1 WR domain plays a critical role in TWIST1-induced IL8 expression through interactions with and activation of NF-κB. The produced IL8 signals through an autocrine loop and promotes extracellular matrix degradation to enable cell invasion across the basement membrane.
Collapse
Affiliation(s)
- Shan Li
- Division of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Vesuna F, Lisok A, Kimble B, Domek J, Kato Y, van der Groep P, Artemov D, Kowalski J, Carraway H, van Diest P, Raman V. Twist contributes to hormone resistance in breast cancer by downregulating estrogen receptor-α. Oncogene 2012; 31:3223-34. [PMID: 22056872 PMCID: PMC3276743 DOI: 10.1038/onc.2011.483] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 09/14/2011] [Accepted: 09/15/2011] [Indexed: 11/30/2022]
Abstract
The role of estrogen receptor-α (ER) in breast cancer development, and as a primary clinical marker for breast cancer prognosis, has been well documented. In this study, we identified the oncogenic protein, TWIST1 (Twist), which is overexpressed in high-grade breast cancers, as a potential negative regulator of ER expression. Functional characterization of ER regulation by Twist was performed using Twist low (MCF-7, T-47D) and Twist high (Hs 578T, MDA-MB-231, MCF-7/Twist) expressing cell lines. All Twist high expressing cell lines exhibited low ER transcript and protein levels. By chromatin immunoprecipitation and promoter assays, we demonstrated that Twist could directly bind to E-boxes in the ER promoter and significantly downregulate ER promoter activity in vitro. Functionally, Twist overexpression caused estrogen-independent proliferation of breast cells, and promoted hormone resistance to the selective estrogen receptor modulator tamoxifen and selective estrogen receptor down-regulator fulvestrant. Importantly, this effect was reversible on downregulating Twist. In addition, orthotopic tumors generated in mice using MCF-7/Twist cells were resistant to tamoxifen. These tumors had high vascular volume and permeability surface area, as determined by magnetic resonance imaging (MRI). Mechanistically, Twist recruited DNA methyltransferase 3B (DNMT3B) to the ER promoter, leading to a significantly higher degree of ER promoter methylation compared with parental cells. Furthermore, we demonstrated by co-immunoprecipitation that Twist interacted with histone deacetylase 1 (HDAC1) at the ER promoter, causing histone deacetylation and chromatin condensation, further reducing ER transcript levels. Functional re-expression of ER was achieved using the demethylating agent, 5-azacytidine, and the HDAC inhibitor, valproic acid. Finally, an inverse relationship was observed between Twist and ER expression in human breast tumors. In summary, the regulation of ER by Twist could be an underlying mechanism for the loss of ER activity observed in breast tumors, and may contribute to the generation of hormone-resistant, ER-negative breast cancer.
Collapse
Affiliation(s)
- F Vesuna
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21250, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Gasparotto D, Polesel J, Marzotto A, Colladel R, Piccinin S, Modena P, Grizzo A, Sulfaro S, Serraino D, Barzan L, Doglioni C, Maestro R. Overexpression of TWIST2 correlates with poor prognosis in head and neck squamous cell carcinomas. Oncotarget 2012; 2:1165-75. [PMID: 22201613 PMCID: PMC3282075 DOI: 10.18632/oncotarget.390] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are a heterogeneous group of tumors with variable presentation and clinical behavior. Despite improvements in surgical and radiation therapy techniques, the 5-year survival rate has not improved significantly over the past decades. Thus, there is an urgent need to identify novel markers that may allow for the development of personalized therapeutic approaches. In the present study we evaluated the prognostic role of the expression of genes related to the induction of epithelial mesenchymal transition (EMT). To this aim, a consecutive series of 69 HNSCC were analyzed for the expression of TWIST1, TWIST2, SNAI1, SNAI2, E-Cadherin, N-Cadherin and Vimentin. TWIST1, TWIST2, SNAI1 and SNAI2 were significantly overexpressed in HNSCC, with TWIST2, SNAI1 and SNAI2 being more markedly increased in tumors compared to normal mucosae. The expression of TWIST1 and SNAI2 was associated with upregulation of mesenchymal markers, but failed to correlate with pathological parameters or clinical behaviour. In contrast, we found that upregulation of TWIST2, which was independent of the activation of a mesenchymal differentiation program, correlated with poor differentiation grade (p=0.016) and shorter survival (p=0.025), and identifies a subset of node-positive oral cavity/pharynx cancer patients with very poor prognosis (p<0.001). Overall our study suggests that the assessment of TWIST2 expression might help to stratify HNSCC patients for risk of disease progression, pointing to TWIST2 as a potential prognostic marker.
Collapse
Affiliation(s)
- Daniela Gasparotto
- Unit of Experimental Oncology 1, CRO National Cancer Institute, Aviano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Dynamic equilibrium between cancer stem cells and non-stem cancer cells in human SW620 and MCF-7 cancer cell populations. Br J Cancer 2012; 106:1512-9. [PMID: 22472879 PMCID: PMC3341854 DOI: 10.1038/bjc.2012.126] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Cancer stem cells (CSCs) paradigm suggests that CSCs might have important clinical implications in cancer therapy. Previously, we reported that accumulation efficiency of CSCs is different post low- and high-LET irradiation in 48 h. Methods: Cancer stem cells and non-stem cancer cells (NSCCs) were sorted and functionally identified through a variety of assays such as antigen profiles and sphere formation. Inter-conversion between CSCs and NSCCs were in situ visualised. Cancer stem cells proportions were assayed over multiple generations under normal and irradiation surroundings. Supplement and inhibition of TGF-β1, as well as immunofluorescence assay of E-cadherin and Vimentin, were performed. Results: Surface antigen markers of CSCs and NSCCs exist in an intrinsic homoeostasis state with spontaneous and in situ visualisable inter-conversions, irrespective of prior radiations. Supplement with TGF-β1 accelerates the equilibrium, whereas inhibition of TGF-β signalling disturbs the equilibrium and significantly decreases CSC proportion. Epithelial mesenchymal transition (EMT) might be activated during the process. Conclusion: Our results indicate that the intrinsic inter-conversion and dynamic equilibrium between CSCs and NSCCs exist under normal and irradiation surroundings, and TGF-β might have important roles in the equilibrium through activating EMT.
Collapse
|
149
|
EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol 2012; 22:194-207. [DOI: 10.1016/j.semcancer.2012.02.013] [Citation(s) in RCA: 354] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 12/24/2022]
|
150
|
EMT inducers catalyze malignant transformation of mammary epithelial cells and drive tumorigenesis towards claudin-low tumors in transgenic mice. PLoS Genet 2012; 8:e1002723. [PMID: 22654675 PMCID: PMC3359981 DOI: 10.1371/journal.pgen.1002723] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 04/02/2012] [Indexed: 02/06/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is an embryonic transdifferentiation process consisting of conversion of polarized epithelial cells to motile mesenchymal ones. EMT–inducing transcription factors are aberrantly expressed in multiple tumor types and are known to favor the metastatic dissemination process. Supporting oncogenic activity within primary lesions, the TWIST and ZEB proteins can prevent cells from undergoing oncogene-induced senescence and apoptosis by abolishing both p53- and RB-dependent pathways. Here we show that they also downregulate PP2A phosphatase activity and efficiently cooperate with an oncogenic version of H-RAS in malignant transformation of human mammary epithelial cells. Thus, by down-regulating crucial tumor suppressor functions, EMT inducers make cells particularly prone to malignant conversion. Importantly, by analyzing transformed cells generated in vitro and by characterizing novel transgenic mouse models, we further demonstrate that cooperation between an EMT inducer and an active form of RAS is sufficient to trigger transformation of mammary epithelial cells into malignant cells exhibiting all the characteristic features of claudin-low tumors, including low expression of tight and adherens junction genes, EMT traits, and stem cell–like characteristics. Claudin-low tumors are believed to be the most primitive breast malignancies, having arisen through transformation of an early epithelial precursor with inherent stemness properties and metaplastic features. Challenging this prevailing view, we propose that these aggressive tumors arise from cells committed to luminal differentiation, through a process driven by EMT inducers and combining malignant transformation and transdifferentiation. The epithelial-mesenchymal transition (EMT) is essential to germ layer formation and cell migration in the early vertebrate embryo. EMT is aberrantly reactivated under pathological conditions, including fibrotic disease and cancer progression. In the latter process, EMT is known to promote invasion and metastatic dissemination of tumor cells. EMT is orchestrated by a variety of embryonic transcription factors called EMT inducers. Among these, the TWIST and ZEB proteins are known to be frequently reactivated during tumor development. We here report in vitro and in vivo observations demonstrating that activation of these factors fosters cell transformation and primary tumor growth by alleviating key oncosuppressive mechanisms, thereby minimizing the number of events required for acquisition of malignant properties. In a model of breast cancer, cooperation between a single EMT inducer and a single mitogenic oncoprotein is sufficient to transform mammary epithelial cells into malignant cells and to drive the development of aggressive and undifferentiated tumors. Overall, these data underscore the oncogenic role of embryonic transcription factors in initiating the development of poor-prognosis neoplasms by promoting both cell transformation and dedifferentiation.
Collapse
|