101
|
Chandrika G, Natesh K, Ranade D, Chugh A, Shastry P. Suppression of the invasive potential of Glioblastoma cells by mTOR inhibitors involves modulation of NFκB and PKC-α signaling. Sci Rep 2016; 6:22455. [PMID: 26940200 PMCID: PMC4778030 DOI: 10.1038/srep22455] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/10/2016] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive type of brain tumors in adults with survival period <1.5 years of patients. The role of mTOR pathway is documented in invasion and migration, the features associated with aggressive phenotype in human GBM. However, most of the preclinical and clinical studies with mTOR inhibitors are focused on antiproliferative and cytotoxic activity in GBM. In this study, we demonstrate that mTOR inhibitors-rapamycin (RAP), temisirolimus (TEM), torin-1 (TOR) and PP242 suppress invasion and migration induced by Tumor Necrosis Factor-α (TNFα) and tumor promoter, Phorbol 12-myristate 13-acetate (PMA) and also reduce the expression of the TNFα and IL1β suggesting their potential to regulate factors in microenvironment that support tumor progression. The mTOR inhibitors significantly decreased MMP-2 and MMP-9 mRNA, protein and activity that was enhanced by TNFα and PMA. The effect was mediated through reduction of Protein kinase C alpha (PKC-α) activity and downregulation of NFκB. TNFα- induced transcripts of NFκB targets -VEGF, pentraxin-3, cathepsin-B and paxillin, crucial in invasion were restored to basal level by these inhibitors. With limited therapeutic interventions currently available for GBM, our findings are significant and suggest that mTOR inhibitors may be explored as anti-invasive drugs for GBM treatment.
Collapse
Affiliation(s)
- Goparaju Chandrika
- National Centre for Cell Science (NCCS), Savitribai Phule Pune University Campus, Pune, India
| | - Kumar Natesh
- National Centre for Cell Science (NCCS), Savitribai Phule Pune University Campus, Pune, India
| | - Deepak Ranade
- Department of Neurosurgery, D.Y. Patil Medical College, Pune, India
| | - Ashish Chugh
- Department of Neurosurgery, Cimet's Inamdar Multispecialty Hospital, Pune, India
| | - Padma Shastry
- National Centre for Cell Science (NCCS), Savitribai Phule Pune University Campus, Pune, India
| |
Collapse
|
102
|
Liu KH, Yang ST, Lin YK, Lin JW, Lee YH, Wang JY, Hu CJ, Lin EY, Chen SM, Then CK, Shen SC. Fluoxetine, an antidepressant, suppresses glioblastoma by evoking AMPAR-mediated calcium-dependent apoptosis. Oncotarget 2016; 6:5088-101. [PMID: 25671301 PMCID: PMC4467135 DOI: 10.18632/oncotarget.3243] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/26/2014] [Indexed: 12/24/2022] Open
Abstract
The efficacy of glioblastoma chemotherapy is not satisfactory; therefore, a new medication is expected to improve outcomes. As much evidence shows that antidepressants decrease cancer incidence and improve patients' quality of life, we therefore attempted to explore the potential for fluoxetine to be used to treat GBM and its possible underlying mechanism. The expression level of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) was determined using immunohistochemical staining and PCR analysis. The mechanism of fluoxetine-induced apoptosis of gliomas was elucidated. Computer modeling and a binding assay were conducted to investigate the interaction of fluoxetine with the AMPAR. The therapeutic effect of fluoxetine was evaluated using an animal model. We found that fluoxetine directly bound to AMPAR, thus inducing transmembrane Ca2+ influx. The rise in the intracellular calcium concentration ([Ca2+]i) causes mitochondrial Ca2+ overload, thereby triggering apoptosis. AMPARs are excessively expressed in glioma tissues, suggesting that fluoxetine specifically executes glioma cells. Our in vivo study revealed that fluoxetine suppressed the growth of glioblastomas in brains of Nu/Nu mice, an effect similar to that produced by temozolomide. Our preclinical studies suggest fluoxetine, a commonly used antidepressant, might be selectively toxic to gliomas and could provide a new approach for managing this disease.
Collapse
Affiliation(s)
- Kao-Hui Liu
- Taipei Medical University, College of Medicine, Graduate Institute of Medical Sciences, Taipei, Taiwan
| | - Shun-Tai Yang
- Taipei Medical University-Shuang Ho Hospital, Department of Neurosurgery, Taipei, Taiwan
| | - Yen-Kuang Lin
- Taipei Medical University, Biostatistics Center, Taipei, Taiwan
| | - Jia-Wei Lin
- Taipei Medical University-Shuang Ho Hospital, Department of Neurosurgery, Taipei, Taiwan
| | - Yi-Hsuan Lee
- National Yang-Ming University, Department and Institute of Physiology, Taipei, Taiwan
| | - Jia-Yi Wang
- Taipei Medical University, College of Medicine, Graduate Institute of Medical Sciences, Taipei, Taiwan.,Taipei Medical University, College of Medicine, School of Medicine, Department of Physiology, Taipei, Taiwan
| | - Chaur-Jong Hu
- Taipei Medical University-Shuang Ho Hospital, School of Medicine, Department of Neurology, Taipei, Taiwan
| | - En-Yuan Lin
- Taipei Medical University Hospital, Department of Neurosurgery, Taipei, Taiwan
| | - Shu-Mei Chen
- Taipei Medical University-Wan Fang Hospital, Department of Neurosurgery, Taipei, Taiwan
| | - Chee-Kin Then
- Taipei Medical University, College of Medicine, School of Medicine, Taipei, Taiwan
| | - Shing-Chuan Shen
- Taipei Medical University, College of Medicine, Graduate Institute of Medical Sciences, Taipei, Taiwan
| |
Collapse
|
103
|
Wu J, Liu Y, Cho K, Dong X, Teng L, Han D, Liu H, Chen X, Chen X, Hou X, Peng F, Bi Y, Shen C, Zhao S. Downregulation of TRAP1 sensitizes glioblastoma cells to temozolomide chemotherapy through regulating metabolic reprogramming. Neuroreport 2016; 27:136-44. [DOI: 10.1097/wnr.0000000000000513] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
104
|
Song W, Tang Z, Lei T, Wen X, Wang G, Zhang D, Deng M, Tang X, Chen X. Stable loading and delivery of disulfiram with mPEG-PLGA/PCL mixed nanoparticles for tumor therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:377-86. [DOI: 10.1016/j.nano.2015.10.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/10/2015] [Accepted: 10/10/2015] [Indexed: 11/16/2022]
|
105
|
Mucke HA. Drug Repurposing Patent Applications July–September 2015. Assay Drug Dev Technol 2015; 13:661-6. [DOI: 10.1089/adt.2015.29031.pq3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
106
|
Kast RE, Ramiro S, Lladó S, Toro S, Coveñas R, Muñoz M. Antitumor action of temozolomide, ritonavir and aprepitant against human glioma cells. J Neurooncol 2015; 126:425-31. [PMID: 26603162 DOI: 10.1007/s11060-015-1996-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/05/2015] [Indexed: 02/02/2023]
Abstract
In the effort to find better treatments for glioblastoma we tested several currently marketed non-chemotherapy drugs for their ability to enhance the standard cytotoxic drug currently used to treat glioblastoma- temozolomide. We tested four antiviral drugs- acyclovir, cidofovir, maraviroc, ritonavir, and an anti-emetic, aprepitant. We found no cytotoxicity of cidofovir and discussed possible reasons for discrepancy from previous findings of others. We also found no cytotoxicity from acyclovir or maraviroc also in contradistinction to predictions. Cytotoxicity to glioma cell line GAMG for temozolomide alone was 14%, aprepitant alone 7%, ritonavir alone 14%, while temozolomide + aprepitant was 19%, temozolomide + ritonavir 34%, ritonavir + aprepitant 64 %, and all three, temozolomide + ritonavir + aprepitant 78%. We conclude that a remarkable synergy exists between aprepitant and ritonavir. Given the long clinical experience with these two well-tolerated drugs in treating non-cancer conditions, and the current median survival of glioblastoma of 2 years, a trial is warranted of adding these two simple drugs to current standard treatment with temozolomide.
Collapse
Affiliation(s)
- Richard E Kast
- IIAIGC Headquarters, Dean of Studies, 22 Church St, Burlington, VT, 05401, USA.
| | - Susana Ramiro
- Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, Avda. Manuel Siurot s/n, 41013, Seville, Spain
| | - Sandra Lladó
- Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, Avda. Manuel Siurot s/n, 41013, Seville, Spain
| | - Salvador Toro
- Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, Avda. Manuel Siurot s/n, 41013, Seville, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - Miguel Muñoz
- Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, Avda. Manuel Siurot s/n, 41013, Seville, Spain.
| |
Collapse
|
107
|
Dhruv HD, Roos A, Tomboc PJ, Tuncali S, Chavez A, Mathews I, Berens ME, Loftus JC, Tran NL. Propentofylline inhibits glioblastoma cell invasion and survival by targeting the TROY signaling pathway. J Neurooncol 2015; 126:397-404. [PMID: 26559543 DOI: 10.1007/s11060-015-1981-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/25/2015] [Indexed: 01/06/2023]
Abstract
Glioblastoma (GBM) is the most common primary tumor of the CNS and carries a dismal prognosis. The aggressive invasion of GBM cells into the surrounding normal brain makes complete resection impossible, significantly increases resistance to the standard therapy regimen, and virtually assures tumor recurrence. Median survival for newly diagnosed GBM is 14.6 months and declines to 8 months for patients with recurrent GBM. New therapeutic strategies that target the molecular drivers of invasion are required for improved clinical outcome. We have demonstrated that TROY (TNFRSF19), a member of the TNFR super-family, plays an important role in GBM invasion and resistance. Knockdown of TROY expression inhibits GBM cell invasion, increases sensitivity to temozolomide, and prolongs survival in an intracranial xenograft model. Propentofylline (PPF), an atypical synthetic methylxanthine compound, has been extensively studied in Phase II and Phase III clinical trials for Alzheimer's disease and vascular dementia where it has demonstrated blood-brain permeability and minimal adverse side effects. Here we showed that PPF decreased GBM cell expression of TROY, inhibited glioma cell invasion, and sensitized GBM cells to TMZ. Mechanistically, PPF decreased glioma cell invasion by modulating TROY expression and downstream signaling, including AKT, NF-κB, and Rac1 activation. Thus, PPF may provide a pharmacologic approach to target TROY, inhibit cell invasion, and reduce therapeutic resistance in GBM.
Collapse
Affiliation(s)
- Harshil D Dhruv
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Alison Roos
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Patrick J Tomboc
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA.,Medical Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ, 85006, USA
| | - Serdar Tuncali
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Ashley Chavez
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Ian Mathews
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Michael E Berens
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Joseph C Loftus
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Nhan L Tran
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA.
| |
Collapse
|
108
|
Rundle-Thiele D, Head R, Cosgrove L, Martin JH. Repurposing some older drugs that cross the blood-brain barrier and have potential anticancer activity to provide new treatment options for glioblastoma. Br J Clin Pharmacol 2015; 81:199-209. [PMID: 26374633 DOI: 10.1111/bcp.12785] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma is a brain neoplasm with limited 5-year survival rates. Developments of new treatment regimens that improve patient survival in patients with glioblastoma are needed. It is likely that a number of existing drugs used in other conditions have potential anticancer effects that offer significant survival benefit to glioblastoma patients. Identification of such drugs could provide a novel treatment paradigm.
Collapse
Affiliation(s)
| | - Richard Head
- Future Industries Institute, Research and Innovation Portfolio, University of South Australia, Adelaide, SA, Australia
| | - Leah Cosgrove
- CSIRO, Human and Nutrition Flagship, Adelaide, SA, Australia
| | - Jennifer H Martin
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
109
|
Drug-repositioning opportunities for cancer therapy: novel molecular targets for known compounds. Drug Discov Today 2015; 21:190-199. [PMID: 26456577 DOI: 10.1016/j.drudis.2015.09.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/21/2015] [Accepted: 09/30/2015] [Indexed: 01/10/2023]
Abstract
Drug repositioning is gaining increasing attention in drug discovery because it represents a smart way to exploit new molecular targets of a known drug or target promiscuity among diverse diseases, for medical uses different from the one originally considered. In this review, we focus on known non-oncological drugs with new therapeutic applications in oncology, explaining the rationale behind this approach and providing practical evidence. Moving from incompleteness of the knowledge of drug-target interactions, particularly for older molecules, we highlight opportunities for repurposing compounds as cancer therapeutics, underling the biologically and clinically relevant affinities for new targets. Ideal candidates for repositioning can contribute to the therapeutically unmet need for more-efficient anticancer agents, including drugs that selectively target cancer stem cells.
Collapse
|
110
|
Purow B. Repurposing existing agents as adjunct therapies for glioblastoma. Neurooncol Pract 2015; 3:154-163. [PMID: 31386097 DOI: 10.1093/nop/npv041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Indexed: 12/16/2022] Open
Abstract
Numerous non-oncologic medications have been found in the last decade to have anti-cancer properties. While the focus in oncology research should clearly remain on deriving new therapeutic strategies, repurposing these existing medications may offer the potential to rapidly enhance the effectiveness of treatment for resistant cancers. Glioblastoma, the most common and lethal brain cancer, is highly resistant to standard therapies and would benefit from even minor improvements in treatment. Numerous agents already in the clinic for non-cancer applications have been found to also possess potential against cancer or specifically against glioblastoma. These include agents with activities affecting oxidative stress, the immune reponse, epigenetic modifiers, cancer cell metabolism, and angiogenesis and invasiveness. This review serves as a guide for potential ways to repurpose individual drugs alongside standard glioblastoma therapies.
Collapse
Affiliation(s)
- Benjamin Purow
- Neurology Department, University of Virginia Neuro-Oncology Division, Old Medical School Room 4881, 21 Hospital Drive, Charlottesville, VA 22908, USA (B.P.)
| |
Collapse
|
111
|
Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K. Emerging targets for glioblastoma stem cell therapy. J Biomed Res 2015; 30:19-31. [PMID: 26616589 PMCID: PMC4726830 DOI: 10.7555/jbr.30.20150100] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 07/27/2015] [Accepted: 08/07/2015] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM), designated as World Health Organization (WHO) grade IV astrocytoma, is a lethal and therapy-resistant brain cancer comprised of several tumor cell subpopulations, including GBM stem cells (GSCs) which are believed to contribute to tumor recurrence following initial response to therapies. Emerging evidence demonstrates that GBM tumors are initiated from GSCs. The development and use of novel therapies including small molecule inhibitors of specific proteins in signaling pathways that regulate stemness, proliferation and migration of GSCs, immunotherapy, and non-coding microRNAs may provide better means of treating GBM. Identification and characterization of GSC-specific signaling pathways would be necessary to identify specific therapeutic targets which may lead to the development of more efficient therapies selectively targeting GSCs. Several signaling pathways including mTOR, AKT, maternal embryonic leucine zipper kinase (MELK), NOTCH1 and Wnt/β-catenin as well as expression of cancer stem cell markers CD133, CD44, Oct4, Sox2, Nanog, and ALDH1A1 maintain GSC properties. Moreover, the data published in the Cancer Genome Atlas (TCGA) specifically demonstrated the activated PI3K/AKT/mTOR pathway in GBM tumorigenesis. Studying such pathways may help to understand GSC biology and lead to the development of potential therapeutic interventions to render them more sensitive to chemotherapy and radiation therapy. Furthemore, recent demonstration of dedifferentiation of GBM cell lines into CSC-like cells prove that any successful therapeutic agent or combination of drugs for GBM therapy must eliminate not only GSCs, but the differentiated GBM cells and the entire bulk of tumor cells.
Collapse
Affiliation(s)
- Ahmad R Safa
- Indiana University Simon Cancer Center.,Department of Pharmacology and Toxicology.
| | - Mohammad Reza Saadatzadeh
- Indiana University Simon Cancer Center.,Department of Neurosurgery, IU School of Medicine and Goodman Campbell Brain and Spine
| | - Aaron A Cohen-Gadol
- Department of Neurosurgery, IU School of Medicine and Goodman Campbell Brain and Spine
| | - Karen E Pollok
- Indiana University Simon Cancer Center.,Department of Pharmacology and Toxicology.,Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
112
|
Abstract
Glioblastomas are devastating central nervous system tumors with abysmal prognoses. These tumors are often difficult to resect surgically, are highly invasive and proliferative, and are resistant to virtually all therapeutic attempts, making them universally lethal diseases. One key enabling feature of their tumor biology is the engagement of the unfolded protein response (UPR), a stress response originating in the endoplasmic reticulum (ER) designed to handle the pathologies of aggregating malfolded proteins in that organelle. Glioblastomas and other tumors have co-opted this stress response to allow their continued uncontrolled growth by enhanced protein production (maintained by chaperone-assisted protein folding) and lipid biosynthesis driven downstream of the UPR. These features can account for the extensive extracellular remodeling/invasiveness/angiogenesis and proliferative capacity, and ultimately result in tumor phenotypes of chemo- and radio-resistance. The UPR in general, and its chaperoning capacity in particular, are thus putative high-value targets for treatment intervention. Such therapeutic strategies, and potential problems with them, will be discussed and analyzed.
Collapse
|
113
|
Chai KM, Wang CY, Liaw HJ, Fang KM, Yang CS, Tzeng SF. Downregulation of BRCA1-BRCA2-containing complex subunit 3 sensitizes glioma cells to temozolomide. Oncotarget 2015; 5:10901-15. [PMID: 25337721 PMCID: PMC4279418 DOI: 10.18632/oncotarget.2543] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 09/29/2014] [Indexed: 12/19/2022] Open
Abstract
We previously found that BRCA1-BRCA2-containing complex subunit 3 (BRCC3) was highly expressed in tumorigenic rat glioma cells. However, the functional role of BRCC3 in human glioma cells remains to be characterized. This study indicated that the upregulation of BRCC3 expression was induced in two human malignant glioblastoma U251 and A172 cell lines following exposure to the alkylating agent, temozolomide (TMZ). Homologous recombination (HR)-dependent DNA repair-associated genes (i.e. BRCA1, BRCA2, RAD51 and FANCD2) were also increased in U251 and A172 cells after treatment with TMZ. BRCC3 gene knockdown through lentivirus-mediated gene knockdown approach not only significantly reduced the clonogenic and migratory abilities of U251 and A172 cells, but also enhanced their sensitization to TMZ. The increase in phosphorylated H2AX foci (γH2AX) formation, an indicator of DNA damage, persisted in TMZ-treated glioma cells with stable knockdown BRCC3 expression, suggesting that BRCC3 gene deficiency is associated with DNA repair impairment. In summary, we demonstrate that by inducing DNA repair, BRCC3 renders glioma cells resistant to TMZ. The findings point to BRCC3 as a potential target for treatment of alkylating drug-resistant glioma.
Collapse
Affiliation(s)
- Kit Man Chai
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Chih-Yen Wang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Hung-Jiun Liaw
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Kuan-Min Fang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Chung-Shi Yang
- Center for Nanomedicine Research, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan City, 70101, Taiwan
| |
Collapse
|
114
|
Zeniou M, Fève M, Mameri S, Dong J, Salomé C, Chen W, El-Habr EA, Bousson F, Sy M, Obszynski J, Boh A, Villa P, Assad Kahn S, Didier B, Bagnard D, Junier MP, Chneiweiss H, Haiech J, Hibert M, Kilhoffer MC. Chemical Library Screening and Structure-Function Relationship Studies Identify Bisacodyl as a Potent and Selective Cytotoxic Agent Towards Quiescent Human Glioblastoma Tumor Stem-Like Cells. PLoS One 2015; 10:e0134793. [PMID: 26270679 PMCID: PMC4536076 DOI: 10.1371/journal.pone.0134793] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 07/14/2015] [Indexed: 01/11/2023] Open
Abstract
Cancer stem-like cells reside in hypoxic and slightly acidic tumor niches. Such microenvironments favor more aggressive undifferentiated phenotypes and a slow growing "quiescent state" which preserves them from chemotherapeutic agents that essentially target proliferating cells. Our objective was to identify compounds active on glioblastoma stem-like cells, including under conditions that mimick those found in vivo within this most severe and incurable form of brain malignancy. We screened the Prestwick Library to identify cytotoxic compounds towards glioblastoma stem-like cells, either in a proliferating state or in more slow-growing "quiescent" phenotype resulting from non-renewal of the culture medium in vitro. Compound effects were assessed by ATP-level determination using a cell-based assay. Twenty active molecules belonging to different pharmacological classes have thus been identified. Among those, the stimulant laxative drug bisacodyl was the sole to inhibit in a potent and specific manner the survival of quiescent glioblastoma stem-like cells. Subsequent structure-function relationship studies led to identification of 4,4'-dihydroxydiphenyl-2-pyridyl-methane (DDPM), the deacetylated form of bisacodyl, as the pharmacophore. To our knowledge, bisacodyl is currently the only known compound targeting glioblastoma cancer stem-like cells in their quiescent, more resistant state. Due to its known non-toxicity in humans, bisacodyl appears as a new potential anti-tumor agent that may, in association with classical chemotherapeutic compounds, participate in tumor eradication.
Collapse
Affiliation(s)
- Maria Zeniou
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
- * E-mail:
| | - Marie Fève
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Samir Mameri
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Jihu Dong
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Christophe Salomé
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Wanyin Chen
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Elias A. El-Habr
- Neuroscience Paris Seine-IBPS, CNRS UMR 8246/ Inserm U1130/ UPMC UMCR18, 7 quai Saint Bernard, 75005 Paris, France
| | - Fanny Bousson
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Mohamadou Sy
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Julie Obszynski
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Alexandre Boh
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Pascal Villa
- Plateforme de Chimie Biologie Intégrative (PCBIS), Université de Strasbourg / CNRS UMS 3286, Laboratoire d’Excellence Medalis, ESBS Pôle API-Bld Sébastien Brant, 67401 Illkirch, France
| | - Suzana Assad Kahn
- Neuroscience Paris Seine-IBPS, CNRS UMR 8246/ Inserm U1130/ UPMC UMCR18, 7 quai Saint Bernard, 75005 Paris, France
| | - Bruno Didier
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
- Plateforme de Chimie Biologie Intégrative (PCBIS), Université de Strasbourg / CNRS UMS 3286, Laboratoire d’Excellence Medalis, ESBS Pôle API-Bld Sébastien Brant, 67401 Illkirch, France
| | - Dominique Bagnard
- U682, Inserm, Université de Strasbourg, 3, Avenue Molière, 67200 Strasbourg, France
| | - Marie-Pierre Junier
- Neuroscience Paris Seine-IBPS, CNRS UMR 8246/ Inserm U1130/ UPMC UMCR18, 7 quai Saint Bernard, 75005 Paris, France
| | - Hervé Chneiweiss
- Neuroscience Paris Seine-IBPS, CNRS UMR 8246/ Inserm U1130/ UPMC UMCR18, 7 quai Saint Bernard, 75005 Paris, France
| | - Jacques Haiech
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Marcel Hibert
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Marie-Claude Kilhoffer
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg / CNRS UMR7200, Laboratoire d’Excellence Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
115
|
Liu P, Wang Z, Brown S, Kannappan V, Tawari PE, Jiang W, Irache JM, Tang JZ, Armesilla AL, Darling JL, Tang X, Wang W. Liposome encapsulated Disulfiram inhibits NFκB pathway and targets breast cancer stem cells in vitro and in vivo. Oncotarget 2015; 5:7471-85. [PMID: 25277186 PMCID: PMC4202137 DOI: 10.18632/oncotarget.2166] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Breast cancer stem cells (BCSCs) are pan-resistant to different anticancer agents and responsible for cancer relapse. Disulfiram (DS), an antialcoholism drug, targets CSCs and reverses pan-chemoresistance. The anticancer application of DS is limited by its very short half-life in the bloodstream. This prompted us to develop a liposome-encapsulated DS (Lipo-DS) and examine its anticancer effect and mechanisms in vitro and in vivo. The relationship between hypoxia and CSCs was examined by in vitro comparison of BC cells cultured in spheroid and hypoxic conditions. To determine the importance of NFκB activation in bridging hypoxia and CSC-related pan-resistance, the CSC characters and drug sensitivity in BC cell lines were observed in NFκB p65 transfected cell lines. The effect of Lipo-DS on the NFκB pathway, CSCs and chemosensitivity was investigated in vitro and in vivo. The spheroid cultured BC cells manifested CSC characteristics and pan-resistance to anticancer drugs. This was related to the hypoxic condition in the spheres. Hypoxia induced activation of NFκB and chemoresistance. Transfection of BC cells with NFκB p65 also induced CSC characters and pan-resistance. Lipo-DS blocked NFκB activation and specifically targeted CSCs in vitro. Lipo-DS also targeted the CSC population in vivo and showed very strong anticancer efficacy. Mice tolerated the treatment very well and no significant in vivo nonspecific toxicity was observed. Hypoxia induced NFκB activation is responsible for stemness and chemoresistance in BCSCs. Lipo-DS targets NFκB pathway and CSCs. Further study may translate DS into cancer therapeutics.
Collapse
Affiliation(s)
- Peng Liu
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Zhipeng Wang
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Sarah Brown
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Vinodh Kannappan
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Patricia Erebi Tawari
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Wenguo Jiang
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, UK
| | - Juan M Irache
- School of Pharmacy, University of Navarra, Pamplona, Spain
| | - James Z Tang
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Angel L Armesilla
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - John L Darling
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Xing Tang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Weiguang Wang
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| |
Collapse
|
116
|
Lau D, Magill ST, Aghi MK. Molecularly targeted therapies for recurrent glioblastoma: current and future targets. Neurosurg Focus 2015; 37:E15. [PMID: 25434384 DOI: 10.3171/2014.9.focus14519] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECT Glioblastoma is the most aggressive and diffusely infiltrative primary brain tumor. Recurrence is expected and is extremely difficult to treat. Over the past decade, the accumulation of knowledge regarding the molecular and genetic profile of glioblastoma has led to numerous molecularly targeted therapies. This article aims to review the literature and highlight the mechanisms and efficacies of molecularly targeted therapies for recurrent glioblastoma. METHODS A systematic search was performed with the phrase "(name of particular agent) and glioblastoma" as a search term in PubMed to identify all articles published up until 2014 that included this phrase in the title and/or abstract. The references of systematic reviews were also reviewed for additional sources. The review included clinical studies that comprised at least 20 patients and reported results for the treatment of recurrent glioblastoma with molecular targeted therapies. RESULTS A total of 42 articles were included in this review. In the treatment of recurrent glioblastoma, various targeted therapies have been tested over the past 10-15 years. The targets of interest include epidermal growth factor receptor, vascular endothelial growth factor receptor, platelet-derived growth factor receptor, Ras pathway, protein kinase C, mammalian target of rapamycin, histone acetylation, and integrins. Unfortunately, the clinical responses to most available targeted therapies are modest at best. Radiographic responses generally range in the realm of 5%-20%. Progression-free survival at 6 months and overall survival were also modest with the majority of studies reporting a 10%-20% 6-month progression-free survival and 5- to 8-month overall survival. There have been several clinical trials evaluating the use of combination therapy for molecularly targeted treatments. In general, the outcomes for combination therapy tend to be superior to single-agent therapy, regardless of the specific agent studied. CONCLUSIONS Recurrent glioblastoma remains very difficult to treat, even with molecular targeted therapies and anticancer agents. The currently available targeted therapy regimens have poor to modest activity against recurrent glioblastoma. As newer agents are actively being developed, combination regimens have provided the most promising results for improving outcomes. Targeted therapies matched to molecular profiles of individual tumors are predicted to be a critical component necessary for improving efficacy in future trials.
Collapse
Affiliation(s)
- Darryl Lau
- Department of Neurological Surgery, University of California, San Francisco, California
| | | | | |
Collapse
|
117
|
Kast RE, Karpel-Massler G, Halatsch ME. CUSP9* treatment protocol for recurrent glioblastoma: aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, ritonavir, sertraline augmenting continuous low dose temozolomide. Oncotarget 2015; 5:8052-82. [PMID: 25211298 PMCID: PMC4226667 DOI: 10.18632/oncotarget.2408] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CUSP9 treatment protocol for recurrent glioblastoma was published one year ago. We now present a slight modification, designated CUSP9*. CUSP9* drugs--aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, sertraline, ritonavir, are all widely approved by regulatory authorities, marketed for non-cancer indications. Each drug inhibits one or more important growth-enhancing pathways used by glioblastoma. By blocking survival paths, the aim is to render temozolomide, the current standard cytotoxic drug used in primary glioblastoma treatment, more effective. Although esthetically unpleasing to use so many drugs at once, the closely similar drugs of the original CUSP9 used together have been well-tolerated when given on a compassionate-use basis in the cases that have come to our attention so far. We expect similarly good tolerability for CUSP9*. The combined action of this suite of drugs blocks signaling at, or the activity of, AKT phosphorylation, aldehyde dehydrogenase, angiotensin converting enzyme, carbonic anhydrase -2,- 9, -12, cyclooxygenase-1 and -2, cathepsin B, Hedgehog, interleukin-6, 5-lipoxygenase, matrix metalloproteinase -2 and -9, mammalian target of rapamycin, neurokinin-1, p-gp efflux pump, thioredoxin reductase, tissue factor, 20 kDa translationally controlled tumor protein, and vascular endothelial growth factor. We believe that given the current prognosis after a glioblastoma has recurred, a trial of CUSP9* is warranted.
Collapse
Affiliation(s)
| | - Georg Karpel-Massler
- University of Ulm, Department of Neurosurgery, Albert-Einstein-Allee 23, Ulm, Germany
| | - Marc-Eric Halatsch
- University of Ulm, Department of Neurosurgery, Albert-Einstein-Allee 23, Ulm, Germany
| |
Collapse
|
118
|
Papanagnou P, Baltopoulos P, Tsironi M. Marketed nonsteroidal anti-inflammatory agents, antihypertensives, and human immunodeficiency virus protease inhibitors: as-yet-unused weapons of the oncologists' arsenal. Ther Clin Risk Manag 2015; 11:807-19. [PMID: 26056460 PMCID: PMC4445694 DOI: 10.2147/tcrm.s82049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Experimental data indicate that several pharmacological agents that have long been used for the management of various diseases unrelated to cancer exhibit profound in vitro and in vivo anticancer activity. This is of major clinical importance, since it would possibly aid in reassessing the therapeutic use of currently used agents for which clinicians already have experience. Further, this would obviate the time-consuming process required for the development and the approval of novel antineoplastic drugs. Herein, both pre-clinical and clinical data concerning the antineoplastic function of distinct commercially available pharmacological agents that are not currently used in the field of oncology, ie, nonsteroidal anti-inflammatory drugs, antihypertensive agents, and anti-human immunodeficiency virus agents inhibiting viral protease, are reviewed. The aim is to provide integrated information regarding not only the molecular basis of the antitumor function of these agents but also the applicability of the reevaluation of their therapeutic range in the clinical setting.
Collapse
Affiliation(s)
- Panagiota Papanagnou
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Panagiotis Baltopoulos
- Department of Sports Medicine and Biology of Physical Activity, Faculty of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Tsironi
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| |
Collapse
|
119
|
Agomelatine or ramelteon as treatment adjuncts in glioblastoma and other M1- or M2-expressing cancers. Contemp Oncol (Pozn) 2015; 19:157-62. [PMID: 26034396 PMCID: PMC4444449 DOI: 10.5114/wo.2015.51421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/05/2015] [Accepted: 03/09/2015] [Indexed: 01/25/2023] Open
Abstract
The impressive but sad list of over forty clinical studies using various cytotoxic chemotherapies published in the last few years has failed to increase median survival of glioblastoma beyond two years after diagnosis. In view of this apparent brick wall, adjunctive non-cytotoxic growth factor blocking drugs are being tried, as in the CUSP9* protocol. A related theme is searching for agonists at growth inhibiting receptors. One such dataset is that of melatonin agonism at M1 or M2 receptors found on glioblastoma cells, being a negative regulator of these cells’ growth. Melatonin itself is an endogenous hormone, but when used as an exogenously administered drug it has many disadvantages. Agomelatine, marketed as an antidepressant, and ramelteon, marketed as a treatment for insomnia, are currently-available melatonin receptor agonists. These melatonin receptor agonists have significant advantages over the natural ligand: longer half-life, better oral absorption, and higher affinity to melatonin receptors. They have an eminently benign side effect profile. As full agonists they should function to inhibit glioblastoma growth, as demonstrated for melatonin. A potentially helpful ancillary attribute of melatonergic agonists in glioblastoma treatment is an increase in interleukin-2 synthesis, expected, at least partially, to reverse some of the immunosuppression associated with glioblastoma.
Collapse
|
120
|
Alifieris C, Trafalis DT. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol Ther 2015; 152:63-82. [PMID: 25944528 DOI: 10.1016/j.pharmthera.2015.05.005] [Citation(s) in RCA: 512] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 12/12/2022]
Abstract
Each year, about 5-6 cases out of 100,000 people are diagnosed with primary malignant brain tumors, of which about 80% are malignant gliomas (MGs). Glioblastoma multiforme (GBM) accounts for more than half of MG cases. They are associated with high morbidity and mortality. Despite current multimodality treatment efforts including maximal surgical resection if feasible, followed by a combination of radiotherapy and/or chemotherapy, the median survival is short: only about 15months. A deeper understanding of the pathogenesis of these tumors has presented opportunities for newer therapies to evolve and an expectation of better control of this disease. Lately, efforts have been made to investigate tumor resistance, which results from complex alternate signaling pathways, the existence of glioma stem-cells, the influence of the blood-brain barrier as well as the expression of 0(6)-methylguanine-DNA methyltransferase. In this paper, we review up-to-date information on MGs treatment including current approaches, novel drug-delivering strategies, molecular targeted agents and immunomodulative treatments, and discuss future treatment perspectives.
Collapse
Affiliation(s)
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Medical School, University of Athens, Athens, Greece.
| |
Collapse
|
121
|
Prados MD, Byron SA, Tran NL, Phillips JJ, Molinaro AM, Ligon KL, Wen PY, Kuhn JG, Mellinghoff IK, de Groot JF, Colman H, Cloughesy TF, Chang SM, Ryken TC, Tembe WD, Kiefer JA, Berens ME, Craig DW, Carpten JD, Trent JM. Toward precision medicine in glioblastoma: the promise and the challenges. Neuro Oncol 2015; 17:1051-63. [PMID: 25934816 DOI: 10.1093/neuonc/nov031] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/15/2015] [Indexed: 12/17/2022] Open
Abstract
Integrated sequencing strategies have provided a broader understanding of the genomic landscape and molecular classifications of multiple cancer types and have identified various therapeutic opportunities across cancer subsets. Despite pivotal advances in the characterization of genomic alterations in glioblastoma, targeted agents have shown minimal efficacy in clinical trials to date, and patient survival remains poor. In this review, we highlight potential reasons why targeting single alterations has yielded limited clinical efficacy in glioblastoma, focusing on issues of tumor heterogeneity and pharmacokinetic failure. We outline strategies to address these challenges in applying precision medicine to glioblastoma and the rationale for applying targeted combination therapy approaches that match genomic alterations with compounds accessible to the central nervous system.
Collapse
Affiliation(s)
- Michael D Prados
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Sara A Byron
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Nhan L Tran
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Joanna J Phillips
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Annette M Molinaro
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Keith L Ligon
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Patrick Y Wen
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - John G Kuhn
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Ingo K Mellinghoff
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - John F de Groot
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Howard Colman
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Timothy F Cloughesy
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Susan M Chang
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Timothy C Ryken
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Waibhav D Tembe
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Jeffrey A Kiefer
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Michael E Berens
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - David W Craig
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - John D Carpten
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| | - Jeffrey M Trent
- University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute, Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine and Brain Institute, Waterloo, Iowa (T.C.R.)
| |
Collapse
|
122
|
Papanikolaou X, Johnson S, Garg T, Tian E, Tytarenko R, Zhang Q, Stein C, Barlogie B, Epstein J, Heuck C. Artesunate overcomes drug resistance in multiple myeloma by inducing mitochondrial stress and non-caspase apoptosis. Oncotarget 2015; 5:4118-28. [PMID: 24948357 PMCID: PMC4147310 DOI: 10.18632/oncotarget.1847] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although novel drugs have contributed immensely to improving outcomes of patients with multiple myeloma (MM), many patients develop drug resistance and ultimately succumb to MM. Here, we show that artesunate, an anti-malarial drug, reliably induces cell death in vitro in naïve as well as drug-resistant MM cells at concentrations shown to be safe in humans. Artesunate induced apoptosis predominantly through the non-caspase mediated pathway by primarily targeting mitochondria and causing outer mitochondrial membrane permeabilization that led to cytosolic and subsequent nuclear translocation of mitochondrial proteins apoptosis inducing factor (AIF) and endonuclease G (EndoG). Nuclear translocation of AIF and EndoG was accompanied by low levels of reactive oxygen species (ROS) and increased mitochondrial production of superoxide. These effects were present before apoptosis was evident and were related to intracellular levels of bivalent iron (Fe+2). Artesunate's unique mechanism probably was at least partially responsible for, its ability to act synergistically with multiple anti-myeloma agents. Our findings suggest that artesunate acts through iron to affect the mitochondria and induce low ROS and non-caspase-mediated apoptosis. Its potency, toxicity profile, and synergism with other drugs make it an intriguing new candidate for MM treatment.
Collapse
Affiliation(s)
- Xenofon Papanikolaou
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Kast RE. The role of interleukin-18 in glioblastoma pathology implies therapeutic potential of two old drugs-disulfiram and ritonavir. CHINESE JOURNAL OF CANCER 2015; 34:161-5. [PMID: 25963312 PMCID: PMC4593370 DOI: 10.1186/s40880-015-0010-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/12/2015] [Indexed: 11/16/2022]
Abstract
Based on reporting in the last several years, an impressive but dismal list of cytotoxic chemotherapies that fail to prolong the median overall survival of patients with glioblastoma has prompted the development of treatment protocols designed to interfere with growth-facilitating signaling systems by using non-cytotoxic, non-oncology drugs. Recent recognition of the pro-mobility stimulus, interleukin-18, as a driver of centrifugal glioblastoma cell migration allows potential treatment adjuncts with disulfiram and ritonavir. Disulfiram and ritonavir are well-tolerated, non-cytotoxic, non-oncology chemotherapeutic drugs that are marketed for the treatment of alcoholism and human immunodeficiency virus (HIV) infection, respectively. Both drugs exhibit an interleukin-18–inhibiting function. Given the favorable tolerability profile of disulfiram and ritonavir, the unlikely drug-drug interaction with temozolomide, and the poor prognosis of glioblastoma, trials of addition of disulfiram and ritonavir to current standard initial treatment of glioblastoma would be warranted.
Collapse
Affiliation(s)
- Richard E Kast
- International Initiative for Accelerated Improvement of Glioblastoma Care Study Center, 22 Church Street, Burlington, VT, 05401, USA.
| |
Collapse
|
124
|
Brüning A, Jückstock J. Misfolded proteins: from little villains to little helpers in the fight against cancer. Front Oncol 2015; 5:47. [PMID: 25759792 PMCID: PMC4338749 DOI: 10.3389/fonc.2015.00047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/11/2015] [Indexed: 12/15/2022] Open
Abstract
The application of cytostatic drugs targeting the high proliferation rates of cancer cells is currently the most commonly used treatment option in cancer chemotherapy. However, severe side effects and resistance mechanisms may occur as a result of such treatment, possibly limiting the therapeutic efficacy of these agents. In recent years, several therapeutic strategies have been developed that aim at targeting not the genomic integrity and replication machinery of cancer cells but instead their protein homeostasis. During malignant transformation, the cancer cell proteome develops vast aberrations in the expression of mutated proteins, oncoproteins, drug- and apoptosis-resistance proteins, etc. A complex network of protein quality-control mechanisms, including chaperoning by heat shock proteins (HSPs), not only is essential for maintaining the extravagant proteomic lifestyle of cancer cells but also represents an ideal cancer-specific target to be tackled. Furthermore, the high rate of protein synthesis and turnover in certain types of cancer cells can be specifically directed by interfering with the proteasomal and autophagosomal protein recycling and degradation machinery, as evidenced by the clinical application of proteasome inhibitors. Since proteins with loss of their native conformation are prone to unspecific aggregations and have proved to be detrimental to normal cellular function, specific induction of misfolded proteins by HSP inhibitors, proteasome inhibitors, hyperthermia, or inducers of endoplasmic reticulum stress represents a new method of cancer cell killing exploitable for therapeutic purposes. This review describes drugs - approved, repurposed, or under investigation - that can be used to accumulate misfolded proteins in cancer cells, and particularly focuses on the molecular aspects that lead to the cytotoxicity of misfolded proteins in cancer cells.
Collapse
Affiliation(s)
- Ansgar Brüning
- Molecular Biology Laboratory, Ludwig-Maximilians-University , Munich , Germany
| | - Julia Jückstock
- Molecular Biology Laboratory, Ludwig-Maximilians-University , Munich , Germany
| |
Collapse
|
125
|
Gratas C, Séry Q, Rabé M, Oliver L, Vallette FM. Bak and Mcl-1 are essential for Temozolomide induced cell death in human glioma. Oncotarget 2015; 5:2428-35. [PMID: 24811082 PMCID: PMC4058016 DOI: 10.18632/oncotarget.1642] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Temozolomide (TMZ) is an alkylating agent used for the treatment of glioblastoma multiforme (GBM), the main form of human brain tumours in adults. It has been reported that TMZ induced DNA lesions that subsequently trigger cell death but the actual mechanisms involved in the process are still unclear. We investigated the implication of major proteins of the Bcl-2 family in TMZ-induced cell death in GBM cell lines at concentrations closed to that reached in the brain during the treatments. We did not observe modulation of autophagy at these concentrations but we found an induction of apoptosis. Using RNA interference, we showed that TMZ induced apoptosis is dependent on the pro-apoptotic protein Bak but independent of the pro-apoptotic protein Bax. Apoptosis was not enhanced by ABT-737, an inhibitor of Bcl-2/Bcl-Xl/Bcl-W but not Mcl-1. The knock-down of Mcl-1 expression increased TMZ induced apoptosis. Our results identify a Mcl-1/Bak axis for TMZ induced apoptosis in GBM and thus unravel a target to overcome therapeutic resistance toward TMZ.
Collapse
Affiliation(s)
- Catherine Gratas
- Centre de Recherche en Cancérologie Nantes Angers, UMR INSERM 892 / CNRS 6299
| | | | | | | | | |
Collapse
|
126
|
Abstract
OBJECTIVE To review the mechanisms of anti-cancer activity of nelfinavir and other protease inhibitors (PIs) based on evidences reported in the published literature. METHODS We extensively reviewed the literature concerning nelfinavir (NFV) as an off target anti-cancer drug and other PIs. A classification of PIs based on anti-cancer mode of action was proposed. Controversies regarding nelfinavir mode of action were also addressed. CONCLUSIONS The two main mechanisms involved in anti-cancer activity are endoplasmic reticulum stress-unfolded protein response pathway and Akt inhibition. However there are many other effects, partially dependent and independent of those mentioned, that may be useful in cancer treatment, including MMP-9 and MMP-2 inhibition, down-regulation of CDK-2, VEGF, bFGF, NF-kB, STAT-3, HIF-1 alfa, IGF, EGFR, survivin, BCRP, androgen receptor, proteasome, fatty acid synthase (FAS), decrease in cellular ATP concentration and upregulation of TRAIL receptor DR5, Bax, increased radiosensitivity, and autophagy. The end result of all these effects is slower growth, decreased angiogenesis, decreased invasion and increased apoptosis, which means reduced proliferation and increased cancer cells death. PIs may be classified according to their anticancer activity at clinically achievable doses, in AKT inhibitors, ER stressors and Akt inhibitors/ER stressors. Beyond the phase I trials that have been recently completed, adequately powered and well-designed clinical trials are needed in the various cancer type settings, and specific trials where NFV is tested in association with other known anti-cancer pharmaceuticals should be sought, in order to find an appropriate place for NFV in cancer treatment. The analysis of controversies on the molecular mechanisms of NFV hints to the possibility that NFV works in a different way in tumor cells and in hepatocytes and adipocytes.
Collapse
Affiliation(s)
- Tomas Koltai
- Centro de Diagnostico y Tratamiento de la Obra Social del Personal de la Alimentación, Talar de Pacheco, Buenos Aires, 1618, Argentina
| |
Collapse
|
127
|
Olanzapine inhibits proliferation, migration and anchorage-independent growth in human glioblastoma cell lines and enhances temozolomide's antiproliferative effect. J Neurooncol 2014; 122:21-33. [PMID: 25524815 DOI: 10.1007/s11060-014-1688-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 12/14/2014] [Indexed: 10/24/2022]
Abstract
The poor prognosis of patients with glioblastoma fuels the search for more effective therapeutic compounds. We previously hypothesised that the neuroleptic olanzapine may enhance antineoplastic effects of temozolomide the standard chemotherapeutic agent used in this disease. This study tested this hypothesis. The anti-proliferative effect of olanzapine was examined by MTT assays and cell count analysis. Soft-agar assays were performed to examine colony-forming ability. In addition, the inhibitory effect of olanzapine on the migratory capacity of U87MG and A172 cells was analyzed by Transwell(®) assays. Moreover, staining for annexin V/propidium iodide or carboxyfluorescein succinimidyl ester was performed prior to flow cytometric analysis in order to better understand the subjacent cellular mechanism. Our initial hypothesis that olanzapine may enhance temozolomide's anti-tumor activity could be confirmed in U87MG and A172 glioblastoma cell lines. Moreover, treatment with olanzapine alone resulted in a marked anti-proliferative effect on U87MG, A172 and two glioma stem-like cells with IC50 values ranging from 25 to 79.9 µM. In U87MG cells, anchorage-independent growth was dose-dependently inhibited. In A172 cells, migration was also shown to be inhibited in a dose-dependent manner. In addition, olanzapine was shown to exert a cell line-dependent pleomorphism with respect to the induction of apoptosis, necrosis and/or cytostasis. Our data show that the neuroleptic olanzapine enhances the anti-tumor activity of temozolomide against glioblastoma cell lines. Moreover, this is the first study to show that olanzapine provides on its own anti-cancer activity in glioblastoma and thus may have potential for repurposing.
Collapse
|
128
|
Ching J, Amiridis S, Stylli SS, Morokoff AP, O'Brien TJ, Kaye AH. A novel treatment strategy for glioblastoma multiforme and glioma associated seizures: increasing glutamate uptake with PPARγ agonists. J Clin Neurosci 2014; 22:21-8. [PMID: 25439749 DOI: 10.1016/j.jocn.2014.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/30/2014] [Accepted: 09/02/2014] [Indexed: 12/14/2022]
Abstract
The established role of glutamate in the pathogenesis of glioma-associated seizures (GAS) led us to investigate a novel treatment method using an established drug class, peroxisome proliferator activated receptor (PPAR) gamma agonists. Previously, sulfasalazine has been shown to prevent release of glutamate from glioma cells and prevent GAS in rodent models. However, raising protein mediated glutamate transport via excitatory amino acid transporter 2 (EAAT2) has not been investigated previously to our knowledge. PPAR gamma agonists are known to upregulate functional EAAT2 expression in astrocytes and prevent excitotoxicity caused by glutamate excess. These agents are also known to have anti-neoplastic mechanisms. Herein we discuss and review the potential mechanisms of these drugs and highlight a novel potential treatment for GAS.
Collapse
Affiliation(s)
- Jared Ching
- Department of Surgery, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| | - Stephanie Amiridis
- Department of Surgery, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia
| | - Stanley S Stylli
- Department of Surgery, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Andrew P Morokoff
- Department of Surgery, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Terence J O'Brien
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia
| | - Andrew H Kaye
- Department of Surgery, The University of Melbourne, Royal Melbourne Hospital, VIC, Australia; Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
129
|
Rotblat B, Grunewald TGP, Leprivier G, Melino G, Knight RA. Anti-oxidative stress response genes: bioinformatic analysis of their expression and relevance in multiple cancers. Oncotarget 2014; 4:2577-90. [PMID: 24342878 PMCID: PMC3926850 DOI: 10.18632/oncotarget.1658] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cells mount a transcriptional anti-oxidative stress (AOS) response program to scavenge reactive oxygen species (ROS) that arise from chemical, physical, and metabolic challenges. This protective program has been shown to reduce carcinogenesis triggered by chemical and physical insults. However, it is also hijacked by established cancers to thrive and proliferate within the hostile tumor microenvironment and to gain resistance against chemo- and radiotherapies. Therefore, targeting the AOS response proteins that are exploited by cancer cells is an attractive therapeutic strategy. In order to identify the AOS genes that are suspected to support cancer progression and resistance, we analyzed the expression patterns of 285 genes annotated for being involved in oxidative stress in 994 tumors and 353 normal tissues. Thereby we identified a signature of 116 genes that are highly overexpressed in multiple carcinomas while being only minimally expressed in normal tissues. To establish which of these genes are more likely to functionally drive cancer resistance and progression, we further identified those whose overexpression correlates with negative patient outcome in breast and lung carcinoma. Gene-set enrichment, GO, network, and pathway analyses revealed that members of the thioredoxin and glutathione pathways are prominent components of this oncogenic signature and that activation of these pathways is common feature of many cancer entities. Interestingly, a large fraction of these AOS genes are downstream targets of the transcription factors NRF2, NF-kappaB and FOXM1, and relay on NADPH for their enzymatic activities highlighting promising drug targets. We discuss these findings and propose therapeutic strategies that may be applied to overcome cancer resistance.
Collapse
Affiliation(s)
- Barak Rotblat
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK
| | | | | | | | | |
Collapse
|
130
|
Shinsato Y, Furukawa T, Yunoue S, Yonezawa H, Minami K, Nishizawa Y, Ikeda R, Kawahara K, Yamamoto M, Hirano H, Tokimura H, Arita K. Reduction of MLH1 and PMS2 confers temozolomide resistance and is associated with recurrence of glioblastoma. Oncotarget 2014; 4:2261-70. [PMID: 24259277 PMCID: PMC3926825 DOI: 10.18632/oncotarget.1302] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although there is a relationship between DNA repair deficiency and temozolomide (TMZ) resistance in glioblastoma (GBM), it remains unclear which molecule is associated with GBM recurrence. We isolated three TMZ-resistant human GBM cell lines and examined the expression of O6-methylguanine-DNA methyltransferase (MGMT) and mismatch repair (MMR) components. We used immunohistochemical analysis to compare MutL homolog 1 (MLH1), postmeiotic segregation increased 2 (PMS2) and MGMT expression in primary and recurrent GBM specimens obtained from GBM patients during TMZ treatment. We found a reduction in MLH1 expression and a subsequent reduction in PMS2 protein levels in TMZ-resistant cells. Furthermore, MLH1 or PMS2 knockdown confered TMZ resistance. In recurrent GBM tumours, the expression of MLH1 and PMS2 was reduced when compared to primary tumours.
Collapse
Affiliation(s)
- Yoshinari Shinsato
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Westhoff MA, Karpel-Massler G, Brühl O, Enzenmüller S, La Ferla-Brühl K, Siegelin MD, Nonnenmacher L, Debatin KM. A critical evaluation of PI3K inhibition in Glioblastoma and Neuroblastoma therapy. MOLECULAR AND CELLULAR THERAPIES 2014; 2:32. [PMID: 26056598 PMCID: PMC4452069 DOI: 10.1186/2052-8426-2-32] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/16/2014] [Indexed: 12/11/2022]
Abstract
Members of the PI3K/Akt/mTor signaling cascade are among the most frequently altered proteins in cancer, yet the therapeutic application of pharmacological inhibitors of this signaling network, either as monotherapy or in combination therapy (CT) has so far not been particularly successful. In this review we will focus on the role of PI3K/Akt/mTOR in two distinct tumors, Glioblastoma multiforme (GBM), an adult brain tumor which frequently exhibits PTEN inactivation, and Neuroblastoma (NB), a childhood malignancy that affects the central nervous system and does not harbor any classic alterations in PI3K/Akt signaling. We will argue that inhibitors of PI3K/Akt signaling can be components for potentially promising new CTs in both tumor entities, but further understanding of the signal cascade's complexity is essential for successful implementation of these CTs. Importantly, failure to do this might lead to severe adverse effects, such as treatment failure and enhanced therapy resistance.
Collapse
Affiliation(s)
- Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Georg Karpel-Massler
- Department of Neurosurgery, University Medical Center Ulm, Ulm, Germany ; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY USA
| | - Oliver Brühl
- Laboratorio Analisi Sicilia Catania, Lentini, SR Italy
| | - Stefanie Enzenmüller
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | | | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY USA
| | - Lisa Nonnenmacher
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
132
|
Westhoff MA, Karpel-Massler G, Brühl O, Enzenmüller S, La Ferla-Brühl K, Siegelin MD, Nonnenmacher L, Debatin KM. A critical evaluation of PI3K inhibition in Glioblastoma and Neuroblastoma therapy. MOLECULAR AND CELLULAR THERAPIES 2014; 2:32. [PMID: 26056598 PMCID: PMC4452069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/16/2014] [Indexed: 11/21/2023]
Abstract
Members of the PI3K/Akt/mTor signaling cascade are among the most frequently altered proteins in cancer, yet the therapeutic application of pharmacological inhibitors of this signaling network, either as monotherapy or in combination therapy (CT) has so far not been particularly successful. In this review we will focus on the role of PI3K/Akt/mTOR in two distinct tumors, Glioblastoma multiforme (GBM), an adult brain tumor which frequently exhibits PTEN inactivation, and Neuroblastoma (NB), a childhood malignancy that affects the central nervous system and does not harbor any classic alterations in PI3K/Akt signaling. We will argue that inhibitors of PI3K/Akt signaling can be components for potentially promising new CTs in both tumor entities, but further understanding of the signal cascade's complexity is essential for successful implementation of these CTs. Importantly, failure to do this might lead to severe adverse effects, such as treatment failure and enhanced therapy resistance.
Collapse
Affiliation(s)
- Mike-Andrew Westhoff
- />Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Georg Karpel-Massler
- />Department of Neurosurgery, University Medical Center Ulm, Ulm, Germany
- />Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY USA
| | - Oliver Brühl
- />Laboratorio Analisi Sicilia Catania, Lentini, SR Italy
| | - Stefanie Enzenmüller
- />Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | | | - Markus D Siegelin
- />Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY USA
| | - Lisa Nonnenmacher
- />Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Klaus-Michael Debatin
- />Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
133
|
Price RL, Chiocca EA. Evolution of malignant glioma treatment: from chemotherapy to vaccines to viruses. Neurosurgery 2014; 61 Suppl 1:74-83. [PMID: 25032534 PMCID: PMC4104417 DOI: 10.1227/neu.0000000000000390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Richard Lee Price
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Ennio Antonio Chiocca
- Harvey Cushing Neuro-oncology Laboratories, Harvard Institutes of Medicine, Department of Neurosurgery and Institute for the Neurosciences at the Brigham, Brigham and Women’s/Faulkner Hospital and Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
134
|
Affiliation(s)
- Ansgar Brüning
- University Hospital Munich; Department of OB/GYB; Molecular Biology Laboratory; Munich, Germany
| | | |
Collapse
|
135
|
Yin JY, Wang HM, Wang QJ, Dong YS, Han G, Guan YB, Zhao KY, Qu WS, Yuan Y, Gao XX, Jing SF, Ding RG. Subchronic toxicological study of two artemisinin derivatives in dogs. PLoS One 2014; 9:e94034. [PMID: 24739881 PMCID: PMC3989207 DOI: 10.1371/journal.pone.0094034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/10/2014] [Indexed: 01/09/2023] Open
Abstract
The objective of our study was to profile and compare the systematic changes between orally administered artesunate and intramuscularly injected artemether at a low dose over a 3-month period (92 consecutive days) in dogs. Intramuscular administration of 6 mg kg-1 artemether induced a decreased red blood cell (RBC) count (anemia), concurrent extramedullary hematopoiesis in the spleen and inhibition of erythropoiesis in the bone marrow. We also observed a prolonged QT interval and neuropathic changes in the central nervous system, which demonstrated the cortex and motor neuron vulnerability, but no behavioral changes. Following treatment with artesunate, we observed a decreased heart rate, which was most likely due to cardiac conduction system damage, as well as a deceased RBC count, extramedullary hematopoiesis in the spleen and inhibition of erythropoiesis in the bone marrow. However, in contrast to treatment with artemether, neurotoxicity was not observed following treatment with artesunate. In addition, ultra-structural examination by transmission electron microscopy showed mitochondrial damage following treatment with artesunate. These findings demonstrated the spectrum of toxic changes that result upon treatment with artesunate and artemether and show that the prolonged administration of low doses of these derivatives result in diverse toxicity profiles.
Collapse
Affiliation(s)
- Ji-ye Yin
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - He-mei Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- * E-mail: (RD); (HW)
| | - Quan-jun Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yan-sheng Dong
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Gang Han
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yong-biao Guan
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ke-yong Zhao
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wen-sheng Qu
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ye Yuan
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiao-xin Gao
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shu-fang Jing
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ri-gao Ding
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- * E-mail: (RD); (HW)
| |
Collapse
|
136
|
Friesen C, Hormann I, Roscher M, Fichtner I, Alt A, Hilger R, Debatin KM, Miltner E. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma. Cell Cycle 2014; 13:1560-70. [PMID: 24626197 PMCID: PMC4050161 DOI: 10.4161/cc.28493] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma are the most frequent and malignant human brain tumors, having a very poor prognosis. The enhanced radio- and chemoresistance of glioblastoma and the glioblastoma stem cells might be the main reason why conventional therapies fail. The second messenger cyclic AMP (cAMP) controls cell proliferation, differentiation, and apoptosis. Downregulation of cAMP sensitizes tumor cells for anti-cancer treatment. Opioid receptor agonists triggering opioid receptors can activate inhibitory Gi proteins, which, in turn, block adenylyl cyclase activity reducing cAMP. In this study, we show that downregulation of cAMP by opioid receptor activation improves the effectiveness of anti-cancer drugs in treatment of glioblastoma. The µ-opioid receptor agonist D,L-methadone sensitizes glioblastoma as well as the untreatable glioblastoma stem cells for doxorubicin-induced apoptosis and activation of apoptosis pathways by reversing deficient caspase activation and deficient downregulation of XIAP and Bcl-xL, playing critical roles in glioblastomas’ resistance. Blocking opioid receptors using the opioid receptor antagonist naloxone or increasing intracellular cAMP by 3-isobutyl-1-methylxanthine (IBMX) strongly reduced opioid receptor agonist-induced sensitization for doxorubicin. In addition, the opioid receptor agonist D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux, whereas doxorubicin increased opioid receptor expression in glioblastomas. Furthermore, opioid receptor activation using D,L-methadone inhibited tumor growth significantly in vivo. Our findings suggest that opioid receptor activation triggering downregulation of cAMP is a promising strategy to inhibit tumor growth and to improve the effectiveness of anti-cancer drugs in treatment of glioblastoma and in killing glioblastoma stem cells.
Collapse
Affiliation(s)
- Claudia Friesen
- Center for Biomedical Research; University of Ulm; Ulm, Germany; Institute of Legal Medicine; University of Ulm; Ulm, Germany
| | - Inis Hormann
- Center for Biomedical Research; University of Ulm; Ulm, Germany; Institute of Legal Medicine; University of Ulm; Ulm, Germany
| | - Mareike Roscher
- Center for Biomedical Research; University of Ulm; Ulm, Germany; Institute of Legal Medicine; University of Ulm; Ulm, Germany
| | - Iduna Fichtner
- Max Delbrueck Center for Molecular Medicine; Berlin, Germany
| | - Andreas Alt
- Institute of Legal Medicine; University of Ulm; Ulm, Germany
| | - Ralf Hilger
- Department of Internal Medicine; University of Essen; West German Cancer Center; Essen, Germany
| | | | - Erich Miltner
- Center for Biomedical Research; University of Ulm; Ulm, Germany; Institute of Legal Medicine; University of Ulm; Ulm, Germany
| |
Collapse
|
137
|
Westhoff MA, Brühl O, Nonnenmacher L, Karpel-Massler G, Debatin KM. Killing me softly--future challenges in apoptosis research. Int J Mol Sci 2014; 15:3746-67. [PMID: 24595238 PMCID: PMC3975365 DOI: 10.3390/ijms15033746] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/10/2014] [Accepted: 02/19/2014] [Indexed: 12/28/2022] Open
Abstract
The induction of apoptosis, a highly regulated and clearly defined mode of cell dying, is a vital tenet of modern cancer therapy. In this review we focus on three aspects of apoptosis research which we believe are the most crucial and most exciting areas currently investigated and that will need to be better understood in order to enhance the efficacy of therapeutic measures. First, we discuss which target to select for cancer therapy and argue that not the cancer cell as such, but its interaction with the microenvironment is a more promising and genetically stable site of attack. Second, the complexity of combination therapy is elucidated using the PI3-K-mediated signaling network as a specific example. Here we show that the current clinical approach to sensitize malignancies to apoptosis by maximal, prolonged inhibition of so-called survival pathways can actually be counter productive. Third, we propose that under certain conditions which will need to be clearly defined in future, chronification of a tumor might be preferable to the attempt at a cure. Finally, we discuss further problems with utilizing apoptosis induction in cancer therapy and propose a novel potential therapeutic approach that combines the previously discussed features.
Collapse
Affiliation(s)
- Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm 89075, Germany.
| | - Oliver Brühl
- Laboratorio Analisi Sicilia Catania, Lentini (SR) 96016, Italy.
| | - Lisa Nonnenmacher
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm 89075, Germany.
| | | | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm 89075, Germany.
| |
Collapse
|
138
|
Disulfiram/copper causes redox-related proteotoxicity and concomitant heat shock response in ovarian cancer cells that is augmented by auranofin-mediated thioredoxin inhibition. Oncoscience 2013; 1:21-9. [PMID: 25593981 PMCID: PMC4295765 DOI: 10.18632/oncoscience.5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/09/2013] [Indexed: 12/18/2022] Open
Abstract
A valuable strategy to develop new therapeutic options for a variety of diseases has been the identification of new targets and applications for already approved drugs, the so-called drug repositioning. Recurrent ovarian cancer is a nearly incurable malignancy for which new and effective treatments are urgently needed. The alcohol-deterring drug disulfiram has been shown to cause preferential cell death in a variety of cancer cells. In this study, it is shown that disulfiram mediates effective cell death in ovarian cancer cells by promoting a pro-oxidative intracellular environment in a copper-dependent mechanism. Within few hours of application, disulfiram caused irreversible cell damage associated with pronounced induction of the inducible heat shock proteins HSP70, HSP40, and HSP32. The small heat shock protein HSP27 was found to be covalently dimerized via oxidized disulfide bonds and precipitated in para-nuclear protein aggregates. Simultaneous inhibition of the cellular thioredoxin system by auranofin further enhanced the cytotoxic effect of disulfiram. These data indeed indicate that the combination of two approved drugs, the anti-alcoholic disulfiram and the anti-rheumatic auranofin, may be of interest for the treatment of recurrent and genotoxic drug-resistant ovarian cancer by inducing a proteotoxic cell death mechanism.
Collapse
|
139
|
Kast RE, Ellingson BM, Marosi C, Halatsch ME. Glioblastoma treatment using perphenazine to block the subventricular zone’s tumor trophic functions. J Neurooncol 2013; 116:207-12. [DOI: 10.1007/s11060-013-1308-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/10/2013] [Indexed: 02/02/2023]
|
140
|
Paranjpe A, Zhang R, Ali-Osman F, Bobustuc GC, Srivenugopal KS. Disulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage. Carcinogenesis 2013; 35:692-702. [PMID: 24193513 DOI: 10.1093/carcin/bgt366] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The alcohol aversion drug disulfiram (DSF) reacts and conjugates with the protein-bound nucleophilic cysteines and is known to elicit anticancer effects alone or improve the efficacy of many cancer drugs. We investigated the effects of DSF on human O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein and chemotherapy target that removes the mutagenic O(6)-akyl groups from guanines, and thus confers resistance to alkylating agents in brain tumors. We used DSF, copper-chelated DSF or CuCl2-DSF combination and found that all treatments inhibited the MGMT activity in two brain tumor cell lines in a rapid and dose-dependent manner. The drug treatments resulted in the loss of MGMT protein from tumor cells through the ubiquitin-proteasome pathway. Evidence showed that Cys145, a reactive cysteine, critical for DNA repair was the sole site of DSF modification in the MGMT protein. DSF was a weaker inhibitor of MGMT, compared with the established O(6)-benzylguanine; nevertheless, the 24-36h suppression of MGMT activity in cell cultures vastly increased the alkylation-induced DNA interstrand cross-linking, G2/M cell cycle blockade, cytotoxicity and the levels of apoptotic markers. Normal mice treated with DSF showed significantly attenuated levels of MGMT activity and protein in the liver and brain tissues. In nude mice bearing T98 glioblastoma xenografts, there was a preferential inhibition of tumor MGMT. Our studies demonstrate a strong and direct inhibition of MGMT by DSF and support the repurposing of this brain penetrating drug for glioma therapy. The findings also imply an increased risk for alkylation damage in alcoholic patients taking DSF.
Collapse
|
141
|
Robinson TJW, Pai M, Liu JC, Vizeacoumar F, Sun T, Egan SE, Datti A, Huang J, Zacksenhaus E. High-throughput screen identifies disulfiram as a potential therapeutic for triple-negative breast cancer cells: interaction with IQ motif-containing factors. Cell Cycle 2013; 12:3013-24. [PMID: 23974104 PMCID: PMC3875676 DOI: 10.4161/cc.26063] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) represents an aggressive subtype, for which radiation and chemotherapy are the only options. Here we describe the identification of disulfiram, an FDA-approved drug used to treat alcoholism, as well as the related compound thiram, as the most potent growth inhibitors following high-throughput screens of 3185 compounds against multiple TNBC cell lines. The average IC50 for disulfiram was ~300 nM. Drug affinity responsive target stability (DARTS) analysis identified IQ motif-containing factors IQGAP1 and MYH9 as direct binding targets of disulfiram. Indeed, knockdown of these factors reduced, though did not completely abolish, cell growth. Combination treatment with 4 different drugs commonly used to treat TNBC revealed that disulfiram synergizes most effectively with doxorubicin to inhibit cell growth of TNBC cells. Disulfiram and doxorubicin cooperated to induce cell death as well as cellular senescence, and targeted the ESA+/CD24-/low/CD44+ cancer stem cell population. Our results suggest that disulfiram may be repurposed to treat TNBC in combination with doxorubicin.
Collapse
Affiliation(s)
- Tyler J W Robinson
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|