101
|
Payapilly A, Guilbert R, Descamps T, White G, Magee P, Zhou C, Kerr A, Simpson KL, Blackhall F, Dive C, Malliri A. TIAM1-RAC1 promote small-cell lung cancer cell survival through antagonizing Nur77-induced BCL2 conformational change. Cell Rep 2021; 37:109979. [PMID: 34758330 PMCID: PMC8595642 DOI: 10.1016/j.celrep.2021.109979] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Small-cell lung cancer (SCLC), an aggressive neuroendocrine malignancy, has limited treatment options beyond platinum-based chemotherapy, whereafter acquired resistance is rapid and common. By analyzing expression data from SCLC tumors, patient-derived models, and established cell lines, we show that the expression of TIAM1, an activator of the small GTPase RAC1, is associated with a neuroendocrine gene program. TIAM1 depletion or RAC1 inhibition reduces viability and tumorigenicity of SCLC cells by increasing apoptosis associated with conversion of BCL2 from its pro-survival to pro-apoptotic function via BH3 domain exposure. This conversion is dependent upon cytoplasmic translocation of Nur77, an orphan nuclear receptor. TIAM1 interacts with and sequesters Nur77 in SCLC cell nuclei and TIAM1 depletion or RAC1 inhibition promotes Nur77 translocation to the cytoplasm. Mutant TIAM1 with reduced Nur77 binding fails to suppress apoptosis triggered by TIAM1 depletion. In conclusion, TIAM1-RAC1 signaling promotes SCLC cell survival via Nur77 nuclear sequestration.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Proliferation
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Protein Conformation
- Proto-Oncogene Proteins c-bcl-2/chemistry
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Small Cell Lung Carcinoma/genetics
- Small Cell Lung Carcinoma/metabolism
- Small Cell Lung Carcinoma/pathology
- T-Lymphoma Invasion and Metastasis-inducing Protein 1/genetics
- T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- rac1 GTP-Binding Protein/genetics
- rac1 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Aishwarya Payapilly
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK
| | - Ryan Guilbert
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK
| | - Tine Descamps
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK; Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Gavin White
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK
| | - Peter Magee
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK
| | - Cong Zhou
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK; Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Alastair Kerr
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK; Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Kathryn L Simpson
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK; Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Fiona Blackhall
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK; The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Caroline Dive
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK; Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK.
| |
Collapse
|
102
|
Chen J, Guanizo A, Luong Q, Jayasekara WSN, Jayasinghe D, Inampudi C, Szczepny A, Garama DJ, Russell PA, Ganju V, Cain JE, Watkins DN, Gough DJ. Lineage-restricted neoplasia driven by Myc defaults to small cell lung cancer when combined with loss of p53 and Rb in the airway epithelium. Oncogene 2021; 41:138-145. [PMID: 34675406 DOI: 10.1038/s41388-021-02070-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/09/2022]
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine cancer characterized by loss of function TP53 and RB1 mutations in addition to mutations in other oncogenes including MYC. Overexpression of MYC together with Trp53 and Rb1 loss in pulmonary neuroendocrine cells of the mouse lung drives an aggressive neuroendocrine low variant subtype of SCLC. However, the transforming potential of MYC amplification alone on airway epithelium is unclear. Therefore, we selectively and conditionally overexpressed MYC stochastically throughout the airway or specifically in neuroendocrine, club, or alveolar type II cells in the adult mouse lung. We observed that MYC overexpression induced carcinoma in situ which did not progress to invasive disease. The formation of adenoma or SCLC carcinoma in situ was dependent on the cell of origin. In contrast, MYC overexpression combined with conditional deletion of both Trp53 and Rb1 exclusively gave rise to SCLC, irrespective of the cell lineage of origin. However, cell of origin influenced disease latency, metastatic potential, and the transcriptional profile of the SCLC phenotype. Together this reveals that MYC overexpression alone provides a proliferative advantage but when combined with deletion of Trp53 and Rb1 it facilitates the formation of aggressive SCLC from multiple cell lineages.
Collapse
Affiliation(s)
- Jasmine Chen
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Science, Monash University, 27-31 Wright Street, Clayton, VIC, 3168, Australia
| | - Aleks Guanizo
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Science, Monash University, 27-31 Wright Street, Clayton, VIC, 3168, Australia
| | - Quinton Luong
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Science, Monash University, 27-31 Wright Street, Clayton, VIC, 3168, Australia
| | - W Samantha N Jayasekara
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Science, Monash University, 27-31 Wright Street, Clayton, VIC, 3168, Australia
| | - Dhilshan Jayasinghe
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Science, Monash University, 27-31 Wright Street, Clayton, VIC, 3168, Australia
| | - Chaitanya Inampudi
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Science, Monash University, 27-31 Wright Street, Clayton, VIC, 3168, Australia
| | - Anette Szczepny
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Science, Monash University, 27-31 Wright Street, Clayton, VIC, 3168, Australia
| | - Daniel J Garama
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Science, Monash University, 27-31 Wright Street, Clayton, VIC, 3168, Australia
| | - Prudence A Russell
- Department of Anatomical Pathology, St Vincent's Hospital, Fitzroy, Melbourne, VIC, Australia
| | - Vinod Ganju
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Science, Monash University, 27-31 Wright Street, Clayton, VIC, 3168, Australia
| | - Jason E Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Science, Monash University, 27-31 Wright Street, Clayton, VIC, 3168, Australia
| | - D Neil Watkins
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB, R3E 0V9, Canada.,Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Daniel J Gough
- Centre for Cancer Research, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia. .,Department of Molecular and Translational Science, Monash University, 27-31 Wright Street, Clayton, VIC, 3168, Australia.
| |
Collapse
|
103
|
What Are the Biomarkers for Immunotherapy in SCLC? Int J Mol Sci 2021; 22:ijms222011123. [PMID: 34681779 PMCID: PMC8538776 DOI: 10.3390/ijms222011123] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Small-cell lung cancer (SCLC) is an aggressive malignancy that exhibits a rapid doubling time, a high growth fraction, and the early development of widespread metastases. The addition of immune checkpoint inhibitors to first-line chemotherapy represents the first significant improvement of systemic therapy in several decades. However, in contrast to its effects on non-SCLC, the advantageous effects of immunotherapy addition are modest in SCLC. In particular, only a small number of SCLC patients benefit from immune checkpoint inhibitors. Additionally, biomarkers selection is lacking for SCLC, with clinical trials largely focusing on unselected populations. Here, we review the data concerning the major biomarkers for immunotherapy, namely, programmed death ligand 1 expression and tumour mutational burden. Furthermore, we explore other potential biomarkers, including the role of the immune microenvironment in SCLC, the role of genetic alterations, and the potential links between neurological paraneoplastic syndromes, serum anti-neuronal nuclear antibodies, and outcomes in SCLC patients treated with immunotherapy.
Collapse
|
104
|
Wu Q, Guo J, Liu Y, Zheng Q, Li X, Wu C, Fang D, Chen X, Ma L, Xu P, Xu X, Liao C, Wu M, Shen L, Song H. YAP drives fate conversion and chemoresistance of small cell lung cancer. SCIENCE ADVANCES 2021; 7:eabg1850. [PMID: 34597132 PMCID: PMC10938532 DOI: 10.1126/sciadv.abg1850] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Small cell lung cancer (SCLC) has a high degree of plasticity and is characterized by a remarkable response to chemotherapy followed by the development of resistance. Here, we use a mouse SCLC model to show that intratumoral heterogeneity of SCLC is progressively established during SCLC tumorigenesis. YAP/TAZ and Notch are required for the generation of non-neuroendocrine (Non-NE) SCLC tumor cells, but not for the initiation of SCLC. YAP signals through Notch-dependent and Notch-independent pathways to promote the fate conversion of SCLC from NE to Non-NE tumor cells by inducing Rest expression. In addition, YAP activation enhances the chemoresistance in NE SCLC tumor cells, while the inactivation of YAP in Non-NE SCLC tumor cells switches cell death induced by chemotherapy drugs from apoptosis to pyroptosis. Our study demonstrates that YAP plays critical roles in the establishment of intratumoral heterogeneity and highlights the potential of targeting YAP for chemoresistant SCLC.
Collapse
Affiliation(s)
- Qingzhe Wu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jingxin Guo
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuning Liu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qi Zheng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xiaoling Li
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chuanqiang Wu
- Department of Thoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Dong Fang
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Liang Ma
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaofang Xu
- Department of Thoracic Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Cheng Liao
- Jiangsu Hengrui Medicine Co. Ltd., No. 1288, Haike Road, Pudong, Shanghai, China
| | - Ming Wu
- Department of Thoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hai Song
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Thoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
105
|
ASCL1, NKX2-1, and PROX1 co-regulate subtype-specific genes in small-cell lung cancer. iScience 2021; 24:102953. [PMID: 34466783 PMCID: PMC8384902 DOI: 10.1016/j.isci.2021.102953] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/05/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022] Open
Abstract
Lineage-defining transcription factors (LTFs) play key roles in small-cell lung cancer (SCLC) pathophysiology. Delineating the LTF-regulated genes operative in SCLC could provide a road map to identify SCLC dependencies. We integrated chromatin landscape and transcriptome analyses of patient-derived SCLC preclinical models to identify super-enhancers (SEs) and their associated genes in the ASCL1-, NEUROD1-, and POU2F3-high SCLC subtypes. We find SE signatures predict LTF-based classification of SCLC, and the SE-associated genes are enriched with those defined as common essential genes in DepMap. In addition, in ASCL1-high SCLC, we show ASCL1 complexes with NKX2-1 and PROX1 to co-regulate genes functioning in NOTCH signaling, catecholamine biosynthesis, and cell-cycle processes. Depletion of ASCL1 demonstrates it is a key dependency factor in preclinical SCLC models and directly regulates multiple DepMap-defined essential genes. We provide LTF/SE-based subtype-specific gene sets for SCLC for further therapeutic investigation. Super-enhancers support lineage-defining transcription factor SCLC classification SCLC super-enhancer-associated genes represent essential and lineage-identity genes ASCL1, NKX2-1, and PROX1 proteins interact in a complex in SCLC-A ASCL1, NKX2-1, and PROX1 regulate Notch-signaling, NE-specific, and cell-cycle genes
Collapse
|
106
|
Bai R, Li L, Chen X, Zhao Y, Song W, Tian H, Cui J. Advances in novel molecular typing and precise treatment strategies for small cell lung cancer. Chin J Cancer Res 2021; 33:522-534. [PMID: 34584377 PMCID: PMC8435821 DOI: 10.21147/j.issn.1000-9604.2021.04.09] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Small cell lung cancer (SCLC) is a high-grade neuroendocrine (NE) cancer characterized by high circulating tumor-cell burden and early extensive metastasis. Considering the complexity of SCLC genes and the immune microenvironment, their unique molecular heterogeneity profiles have been continuously explored. The understanding of SCLC subtypes has recently changed from traditional "classical" and "variant" types to "NE" and "non-NE" phenotypes and to the subtypes defined by major transcriptional regulators, which indicates the gradual revelation of high intratumoral heterogeneity and plasticity characteristics of SCLCs. Advances in genomics as well as the development of single-cell sequencing analysis and new preclinical models have helped investigators gain many new insights into SCLCs and the development of targeted therapy and immunotherapy strategies. This article provides an overview of changes in molecular typing, tumor heterogeneity, and plasticity and that of advances in the precise treatment of different subtypes of SCLC.
Collapse
Affiliation(s)
- Rilan Bai
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Lingyu Li
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Xiao Chen
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Wei Song
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Huimin Tian
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
107
|
Fahrmann JF, Katayama H, Irajizad E, Chakraborty A, Kato T, Mao X, Park S, Murage E, Rusling L, Yu CY, Cai Y, Hsiao FC, Dennison JB, Tran H, Ostrin E, Wilson DO, Yuan JM, Vykoukal J, Hanash S. Plasma Based Protein Signatures Associated with Small Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13163972. [PMID: 34439128 PMCID: PMC8391533 DOI: 10.3390/cancers13163972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/04/2023] Open
Abstract
Small-cell-lung cancer (SCLC) is associated with overexpression of oncogenes including Myc family genes and YAP1 and inactivation of tumor suppressor genes. We performed in-depth proteomic profiling of plasmas collected from 15 individuals with newly diagnosed early stage SCLC and from 15 individuals before the diagnosis of SCLC and compared findings with plasma proteomic profiles of 30 matched controls to determine the occurrence of signatures that reflect disease pathogenesis. A total of 272 proteins were elevated (area under the receiver operating characteristic curve (AUC) ≥ 0.60) among newly diagnosed cases compared to matched controls of which 31 proteins were also elevated (AUC ≥ 0.60) in case plasmas collected within one year prior to diagnosis. Ingenuity Pathway analyses of SCLC-associated proteins revealed enrichment of signatures of oncogenic MYC and YAP1. Intersection of proteins elevated in case plasmas with proteomic profiles of conditioned medium from 17 SCLC cell lines yielded 52 overlapping proteins characterized by YAP1-associated signatures of cytoskeletal re-arrangement and epithelial-to-mesenchymal transition. Among samples collected more than one year prior to diagnosis there was a predominance of inflammatory markers. Our integrated analyses identified novel circulating protein features in early stage SCLC associated with oncogenic drivers.
Collapse
Affiliation(s)
- Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Ehsan Irajizad
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Ashish Chakraborty
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Taketo Kato
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Xiangying Mao
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Soyoung Park
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Eunice Murage
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Leona Rusling
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Chuan-Yih Yu
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Yinging Cai
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Fu Chung Hsiao
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Jennifer B. Dennison
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Hai Tran
- Department of Thoracic-Head & Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - Edwin Ostrin
- Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - David O. Wilson
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA;
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
- Correspondence:
| |
Collapse
|
108
|
Jo U, Senatorov IS, Zimmermann A, Saha LK, Murai Y, Kim SH, Rajapakse VN, Elloumi F, Takahashi N, Schultz CW, Thomas A, Zenke FT, Pommier Y. Novel and Highly Potent ATR Inhibitor M4344 Kills Cancer Cells With Replication Stress, and Enhances the Chemotherapeutic Activity of Widely Used DNA Damaging Agents. Mol Cancer Ther 2021; 20:1431-1441. [PMID: 34045232 PMCID: PMC9398135 DOI: 10.1158/1535-7163.mct-20-1026] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/26/2021] [Accepted: 05/25/2021] [Indexed: 01/07/2023]
Abstract
Although several ATR inhibitors are in development, there are unresolved questions regarding their differential potency, molecular signatures of patients with cancer for predicting activity, and most effective therapeutic combinations. Here, we elucidate how to improve ATR-based chemotherapy with the newly developed ATR inhibitor, M4344 using in vitro and in vivo models. The potency of M4344 was compared with the clinically developed ATR inhibitors BAY1895344, berzosertib, and ceralasertib. The anticancer activity of M4344 was investigated as monotherapy and combination with clinical DNA damaging agents in multiple cancer cell lines, patient-derived tumor organoids, and mouse xenograft models. We also elucidated the anticancer mechanisms and potential biomarkers for M4344. We demonstrate that M4344 is highly potent among the clinically developed ATR inhibitors. Replication stress (RepStress) and neuroendocrine (NE) gene expression signatures are significantly associated with a response to M4344 treatment. M4344 kills cancer cells by inducing cellular catastrophe and DNA damage. M4344 is highly synergistic with a broad range of DNA-targeting anticancer agents. It significantly synergizes with topotecan and irinotecan in patient-derived tumor organoids and xenograft models. Taken together, M4344 is a promising and highly potent ATR inhibitor. It enhances the activity of clinical DNA damaging agents commonly used in cancer treatment including topoisomerase inhibitors, gemcitabine, cisplatin, and talazoparib. RepStress and NE gene expression signatures can be exploited as predictive markers for M4344.
Collapse
Affiliation(s)
- Ukhyun Jo
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland.,Corresponding Authors: Ukhyun Jo and Yves Pommier, 37 Convent Dr., Building 37-Room 5068, Bethesda, MD 20892. Phone: 240-760-6142; Fax: 240-541-4475; E-mail: and
| | - Ilya S. Senatorov
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Astrid Zimmermann
- Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Darmstadt, Germany
| | - Liton Kumar Saha
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Yasuhisa Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Se Hyun Kim
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland.,Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Vinodh N. Rajapakse
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Fathi Elloumi
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland.,General Dynamics Information Technology Inc., Fairfax, Virginia
| | - Nobuyuki Takahashi
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Christopher W. Schultz
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Anish Thomas
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Frank T. Zenke
- Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Darmstadt, Germany
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland.,Corresponding Authors: Ukhyun Jo and Yves Pommier, 37 Convent Dr., Building 37-Room 5068, Bethesda, MD 20892. Phone: 240-760-6142; Fax: 240-541-4475; E-mail: and
| |
Collapse
|
109
|
Notch signaling and efficacy of PD-1/PD-L1 blockade in relapsed small cell lung cancer. Nat Commun 2021; 12:3880. [PMID: 34162872 PMCID: PMC8222224 DOI: 10.1038/s41467-021-24164-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/01/2021] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint blockade (ICB) benefits only a small subset of patients with small cell lung cancer (SCLC), yet the mechanisms driving benefit are poorly understood. To identify predictors of clinical benefit to ICB, we performed immunogenomic profiling of tumor samples from patients with relapsed SCLC. Tumors of patients who derive clinical benefit from ICB exhibit cytotoxic T-cell infiltration, high expression of antigen processing and presentation machinery (APM) genes, and low neuroendocrine (NE) differentiation. However, elevated Notch signaling, which positively correlates with low NE differentiation, most significantly predicts clinical benefit to ICB. Activation of Notch signaling in a NE human SCLC cell line induces a low NE phenotype, marked by increased expression of APM genes, demonstrating a mechanistic link between Notch activation, low NE differentiation and increased intrinsic tumor immunity. Our findings suggest Notch signaling as a determinant of response to ICB in SCLC. Immune checkpoint blockade (ICB) benefits only a small subset of patients with small cell lung cancer (SCLC) and the mechanisms driving benefit are poorly understood. Here, the authors show that elevated Notch signaling predicts clinical benefit in ICB in relapsed SCLC.
Collapse
|
110
|
Kim M, Chung YS, Kim KA, Shim HS. Genomic Profiling and Clinicopathological Characteristics of Neuroendocrine Tumors of the Lung in East Asian Patients. In Vivo 2021; 34:3375-3385. [PMID: 33144445 DOI: 10.21873/invivo.12176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIM In recent years, the genomic landscape of neuroendocrine tumors (NETs) of the lung has been investigated. However, more data are necessary to elucidate the heterogeneous nature of NETs, especially in East Asian patients. PATIENTS AND METHODS A total of 64 patients who underwent surgical resection for lung NETs [26 typical or atypical carcinoid tumors, 21 large-cell neuroendocrine carcinomas (LCNECs), and 19 small-cell lung carcinomas (SCLCs)] were enrolled, and samples from 46 patients were subjected to targeted next-generation sequencing. RESULTS Co-mutations of tumor protein p53 (TP53) and RB transcriptional corepressor 1 (RB1) were detected in 15%, 42%, and 93% of carcinoid tumors, LCNECs, and SCLCs, respectively. Oncogenic or targetable genetic alterations identified in this study included mutations of KRAS proto-oncogene (KRAS), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), ALK receptor tyrosine kinase (ALK), mitogen-activated protein kinase kinase 1 (MAP2K1), and isocitrate dehydrogenase 1 (IDH1), as well as amplifications of erb-b2 receptor tyrosine kinase 2 (ERBB2), fibroblast growth factor receptor 1 (FGFR1), CD274 molecule (CD274), and MYCN proto-oncogene (MYCN). These alterations were more frequently found in high-grade NETs than in carcinoid tumors (33.3% vs. 7.7%). Programmed cell death-ligand 1 expression was strongly associated with the LCNEC subtype among NETs (p=0.002). CONCLUSION The mutational status of TP53 and RB1 was significantly associated with NET subtypes in East Asian patients. Targeted therapy or immunotherapy may serve as a treatment option in a subset of patients with high-grade NETs.
Collapse
Affiliation(s)
- Moonsik Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeon Seung Chung
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung A Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Sup Shim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
111
|
Inoue Y, Nikolic A, Farnsworth D, Shi R, Johnson FD, Liu A, Ladanyi M, Somwar R, Gallo M, Lockwood WW. Extracellular signal-regulated kinase mediates chromatin rewiring and lineage transformation in lung cancer. eLife 2021; 10:66524. [PMID: 34121659 PMCID: PMC8337080 DOI: 10.7554/elife.66524] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Lineage transformation between lung cancer subtypes is a poorly understood phenomenon associated with resistance to treatment and poor patient outcomes. Here, we aimed to model this transition to define underlying biological mechanisms and identify potential avenues for therapeutic intervention. Small cell lung cancer (SCLC) is neuroendocrine in identity and, in contrast to non-SCLC (NSCLC), rarely contains mutations that drive the MAPK pathway. Likewise, NSCLCs that transform to SCLC concomitantly with development of therapy resistance downregulate MAPK signaling, suggesting an inverse relationship between pathway activation and lineage state. To test this, we activated MAPK in SCLC through conditional expression of mutant KRAS or EGFR, which revealed suppression of the neuroendocrine differentiation program via ERK. We found that ERK induces the expression of ETS factors that mediate transformation into a NSCLC-like state. ATAC-seq demonstrated ERK-driven changes in chromatin accessibility at putative regulatory regions and global chromatin rewiring at neuroendocrine and ETS transcriptional targets. Further, ERK-mediated induction of ETS factors as well as suppression of neuroendocrine differentiation were dependent on histone acetyltransferase activities of CBP/p300. Overall, we describe how the ERK-CBP/p300-ETS axis promotes a lineage shift between neuroendocrine and non-neuroendocrine lung cancer phenotypes and provide rationale for the disruption of this program during transformation-driven resistance to targeted therapy.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Ana Nikolic
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Dylan Farnsworth
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Rocky Shi
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Fraser D Johnson
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Alvin Liu
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Marc Ladanyi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Romel Somwar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Marco Gallo
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - William W Lockwood
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada.,Department of Pathology & Laboratory Medicine, University of British Columbia, Columbia, Canada
| |
Collapse
|
112
|
Tokgun O, Tokgun PE, Inci K, Akca H. lncRNAs as Potential Targets in Small Cell Lung Cancer: MYC -dependent Regulation. Anticancer Agents Med Chem 2021; 20:2074-2081. [PMID: 32698750 DOI: 10.2174/1871520620666200721130700] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/31/2020] [Accepted: 06/25/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Small Cell Lung Cancer (SCLC) is a highly aggressive malignancy. MYC family oncogenes are amplified and overexpressed in 20% of SCLCs, showing that MYC oncogenes and MYC regulated genes are strong candidates as therapeutic targets for SCLC. c-MYC plays a fundamental role in cancer stem cell properties and malignant transformation. Several targets have been identified by the activation/repression of MYC. Deregulated expression levels of lncRNAs have also been observed in many cancers. OBJECTIVE The aim of the present study is to investigate the lncRNA profiles which depend on MYC expression levels in SCLC. METHODS Firstly, we constructed lentiviral vectors for MYC overexpression/inhibition. MYC expression is suppressed by lentiviral shRNA vector in MYC amplified H82 and N417 cells, and overexpressed by lentiviral inducible overexpression vector in MYC non-amplified H345 cells. LncRNA cDNA is transcribed from total RNA samples, and 91 lncRNAs are evaluated by qRT-PCR. RESULTS We observed that N417, H82 and H345 cells require MYC for their growth. Besides, MYC is not only found to regulate the expressions of genes related to invasion, stem cell properties, apoptosis and cell cycle (p21, Bcl2, cyclinD1, Sox2, Aldh1a1, and N-Cadherin), but also found to regulate lncRNAs. With this respect, expressions of AK23948, ANRIL, E2F4AS, GAS5, MEG3, H19, L1PA16, SFMBT2, ZEB2NAT, HOTAIR, Sox2OT, PVT1, and BC200 were observed to be in parallel with MYC expression, whereas expressions of Malat1, PTENP1, Neat1, UCA1, SNHG3, and SNHG6 were inversely correlated. CONCLUSION Targeting MYC-regulated genes as a therapeutic strategy can be important for SCLC therapy. This study indicated the importance of identifying MYC-regulated lncRNAs and that these can be utilized to develop a therapeutic strategy for SCLC.
Collapse
Affiliation(s)
- Onur Tokgun
- Department of Medical Genetics, Faculty of Medicine, Pamukkale University, Denizli, Turkey,Department of Cancer Molecular Biology, Institute of Medical Sciences, Pamukkale University, Denizli, Turkey
| | - Pervin E Tokgun
- Department of Medical Genetics, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Kubilay Inci
- Department of Cancer Molecular Biology, Institute of Medical Sciences, Pamukkale University, Denizli, Turkey
| | - Hakan Akca
- Department of Medical Genetics, Faculty of Medicine, Pamukkale University, Denizli, Turkey,Department of Cancer Molecular Biology, Institute of Medical Sciences, Pamukkale University, Denizli, Turkey
| |
Collapse
|
113
|
Olsen RR, Ireland AS, Kastner DW, Groves SM, Spainhower KB, Pozo K, Kelenis DP, Whitney CP, Guthrie MR, Wait SJ, Soltero D, Witt BL, Quaranta V, Johnson JE, Oliver TG. ASCL1 represses a SOX9 + neural crest stem-like state in small cell lung cancer. Genes Dev 2021; 35:847-869. [PMID: 34016693 PMCID: PMC8168563 DOI: 10.1101/gad.348295.121] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
ASCL1 is a neuroendocrine lineage-specific oncogenic driver of small cell lung cancer (SCLC), highly expressed in a significant fraction of tumors. However, ∼25% of human SCLC are ASCL1-low and associated with low neuroendocrine fate and high MYC expression. Using genetically engineered mouse models (GEMMs), we show that alterations in Rb1/Trp53/Myc in the mouse lung induce an ASCL1+ state of SCLC in multiple cells of origin. Genetic depletion of ASCL1 in MYC-driven SCLC dramatically inhibits tumor initiation and progression to the NEUROD1+ subtype of SCLC. Surprisingly, ASCL1 loss promotes a SOX9+ mesenchymal/neural crest stem-like state and the emergence of osteosarcoma and chondroid tumors, whose propensity is impacted by cell of origin. ASCL1 is critical for expression of key lineage-related transcription factors NKX2-1, FOXA2, and INSM1 and represses genes involved in the Hippo/Wnt/Notch developmental pathways in vivo. Importantly, ASCL1 represses a SOX9/RUNX1/RUNX2 program in vivo and SOX9 expression in human SCLC cells, suggesting a conserved function for ASCL1. Together, in a MYC-driven SCLC model, ASCL1 promotes neuroendocrine fate and represses the emergence of a SOX9+ nonendodermal stem-like fate that resembles neural crest.
Collapse
Affiliation(s)
- Rachelle R Olsen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Abbie S Ireland
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - David W Kastner
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sarah M Groves
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37212, USA
| | - Kyle B Spainhower
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Karine Pozo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Demetra P Kelenis
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Christopher P Whitney
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Matthew R Guthrie
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sarah J Wait
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Danny Soltero
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Benjamin L Witt
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, USA
- ARUP Laboratories at University of Utah, Salt Lake City, Utah 84108, USA
| | - Vito Quaranta
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37212, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
114
|
Norton JP, Augert A, Eastwood E, Basom R, Rudin CM, MacPherson D. Protein neddylation as a therapeutic target in pulmonary and extrapulmonary small cell carcinomas. Genes Dev 2021; 35:870-887. [PMID: 34016692 PMCID: PMC8168556 DOI: 10.1101/gad.348316.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Small cell lung carcinoma (SCLC) is among the most lethal of all solid tumor malignancies. In an effort to identify novel therapeutic approaches for this recalcitrant cancer type, we applied genome-scale CRISPR/Cas9 inactivation screens to cell lines that we derived from a murine model of SCLC. SCLC cells were particularly sensitive to the deletion of NEDD8 and other neddylation pathway genes. Genetic suppression or pharmacological inhibition of this pathway using MLN4924 caused cell death not only in mouse SCLC cell lines but also in patient-derived xenograft (PDX) models of pulmonary and extrapulmonary small cell carcinoma treated ex vivo or in vivo. A subset of PDX models were exceptionally sensitive to neddylation inhibition. Neddylation inhibition suppressed expression of major regulators of neuroendocrine cell state such as INSM1 and ASCL1, which a subset of SCLC rely upon for cell proliferation and survival. To identify potential mechanisms of resistance to neddylation inhibition, we performed a genome-scale CRISPR/Cas9 suppressor screen. Deletion of components of the COP9 signalosome strongly mitigated the effects of neddylation inhibition in small cell carcinoma, including the ability of MLN4924 to suppress neuroendocrine transcriptional program expression. This work identifies neddylation as a regulator of neuroendocrine cell state and potential therapeutic target for small cell carcinomas.
Collapse
Affiliation(s)
- Justin P Norton
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Arnaud Augert
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Emily Eastwood
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Ryan Basom
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - David MacPherson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
115
|
Martín-Martorell P, Gonzalez-Barrallo I, Gambardella V, Cejalvo JM, Cervantes A. In the literature: April 2021. ESMO Open 2021; 6:100116. [PMID: 33887688 PMCID: PMC8086009 DOI: 10.1016/j.esmoop.2021.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- P Martín-Martorell
- Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| | - I Gonzalez-Barrallo
- Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| | - V Gambardella
- Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - J M Cejalvo
- Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - A Cervantes
- Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
116
|
Thomas A, Takahashi N, Rajapakse VN, Zhang X, Sun Y, Ceribelli M, Wilson KM, Zhang Y, Beck E, Sciuto L, Nichols S, Elenbaas B, Puc J, Dahmen H, Zimmermann A, Varonin J, Schultz CW, Kim S, Shimellis H, Desai P, Klumpp-Thomas C, Chen L, Travers J, McKnight C, Michael S, Itkin Z, Lee S, Yuno A, Lee MJ, Redon CE, Kindrick JD, Peer CJ, Wei JS, Aladjem MI, Figg WD, Steinberg SM, Trepel JB, Zenke FT, Pommier Y, Khan J, Thomas CJ. Therapeutic targeting of ATR yields durable regressions in small cell lung cancers with high replication stress. Cancer Cell 2021; 39:566-579.e7. [PMID: 33848478 PMCID: PMC8048383 DOI: 10.1016/j.ccell.2021.02.014] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/11/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Small cell neuroendocrine cancers (SCNCs) are recalcitrant cancers arising from diverse primary sites that lack effective treatments. Using chemical genetic screens, we identified inhibition of ataxia telangiectasia and rad3 related (ATR), the primary activator of the replication stress response, and topoisomerase I (TOP1), nuclear enzyme that suppresses genomic instability, as synergistically cytotoxic in small cell lung cancer (SCLC). In a proof-of-concept study, we combined M6620 (berzosertib), first-in-class ATR inhibitor, and TOP1 inhibitor topotecan in patients with relapsed SCNCs. Objective response rate among patients with SCLC was 36% (9/25), achieving the primary efficacy endpoint. Durable tumor regressions were observed in patients with platinum-resistant SCNCs, typically fatal within weeks of recurrence. SCNCs with high neuroendocrine differentiation, characterized by enhanced replication stress, were more likely to respond. These findings highlight replication stress as a potentially transformative vulnerability of SCNCs, paving the way for rational patient selection in these cancers, now treated as a single disease.
Collapse
Affiliation(s)
- Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Yilun Sun
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Yang Zhang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erin Beck
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Linda Sciuto
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samantha Nichols
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian Elenbaas
- EMD Serono Research and Development Institute Inc., Biopharma R&D, Translational Innovation Platform Oncology, Billerica, MA 01821, USA; A business of Merck KGaA, Darmstadt, Germany
| | - Janusz Puc
- EMD Serono Research and Development Institute Inc., Biopharma R&D, Translational Innovation Platform Oncology, Billerica, MA 01821, USA; A business of Merck KGaA, Darmstadt, Germany
| | - Heike Dahmen
- Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Frankfurter Street 250, 64293 Darmstadt, Germany
| | - Astrid Zimmermann
- Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Frankfurter Street 250, 64293 Darmstadt, Germany
| | - Jillian Varonin
- Technology Transfer Center, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD 20850, USA
| | - Christopher W Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sehyun Kim
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hirity Shimellis
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Parth Desai
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carleen Klumpp-Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Lu Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Jameson Travers
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Crystal McKnight
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Sam Michael
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Zina Itkin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Akira Yuno
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica D Kindrick
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cody J Peer
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun S Wei
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - William Douglas Figg
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frank T Zenke
- Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Frankfurter Street 250, 64293 Darmstadt, Germany
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA; Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
117
|
Drapkin BJ, Rudin CM. Advances in Small-Cell Lung Cancer (SCLC) Translational Research. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038240. [PMID: 32513672 DOI: 10.1101/cshperspect.a038240] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past several years, we have witnessed a resurgence of interest in the biology and therapeutic vulnerabilities of small-cell lung cancer (SCLC). This has been driven in part through the development of a more extensive array of representative models of disease, including a diverse variety of genetically engineered mouse models and human tumor xenografts. Herein, we review recent progress in SCLC model development, and consider some of the particularly active avenues of translational research in SCLC, including interrogation of intratumoral heterogeneity, insights into the cell of origin and oncogenic drivers, mechanisms of chemoresistance, and new therapeutic opportunities including biomarker-directed targeted therapies and immunotherapies. Whereas SCLC remains a highly lethal disease, these new avenues of translational research, bringing together mechanism-based preclinical and clinical research, offer new hope for patients with SCLC.
Collapse
Affiliation(s)
- Benjamin J Drapkin
- University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Charles M Rudin
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
118
|
Schwendenwein A, Megyesfalvi Z, Barany N, Valko Z, Bugyik E, Lang C, Ferencz B, Paku S, Lantos A, Fillinger J, Rezeli M, Marko-Varga G, Bogos K, Galffy G, Renyi-Vamos F, Hoda MA, Klepetko W, Hoetzenecker K, Laszlo V, Dome B. Molecular profiles of small cell lung cancer subtypes: therapeutic implications. Mol Ther Oncolytics 2021; 20:470-483. [PMID: 33718595 PMCID: PMC7917449 DOI: 10.1016/j.omto.2021.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Small cell lung cancer (SCLC; accounting for approximately 13%-15% of all lung cancers) is an exceptionally lethal malignancy characterized by rapid doubling time and high propensity to metastasize. In contrast to the increasingly personalized therapies in other types of lung cancer, SCLC is still regarded as a homogeneous disease and the prognosis of SCLC patients remains poor. Recently, however, substantial progress has been made in our understanding of SCLC biology. Advances in genomics and development of new preclinical models have facilitated insights into the intratumoral heterogeneity and specific genetic alterations of this disease. This worldwide resurgence of studies on SCLC has ultimately led to the development of novel subtype-specific classifications primarily based on the neuroendocrine features and distinct molecular profiles of SCLC. Importantly, these biologically distinct subtypes might define unique therapeutic vulnerabilities. Herein, we summarize the current knowledge on the molecular profiles of SCLC subtypes with a focus on their potential clinical implications.
Collapse
Affiliation(s)
- Anna Schwendenwein
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Nandor Barany
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Zsuzsanna Valko
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Edina Bugyik
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Bence Ferencz
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Sandor Paku
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Andras Lantos
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Janos Fillinger
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Melinda Rezeli
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | - Gyorgy Marko-Varga
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | - Krisztina Bogos
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Gabriella Galffy
- Torokbalint County Institute of Pulmonology, 2045 Torokbalint, Hungary
| | - Ferenc Renyi-Vamos
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Viktoria Laszlo
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| | - Balazs Dome
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, 1122 Budapest, Hungary
- National Koranyi Institute of Pulmonology, 1121 Budapest, Hungary
| |
Collapse
|
119
|
Metovic J, Bianchi F, Rossi G, Barella M, Sonzogni A, Harari S, Papotti M, Pelosi G. Recent advances and current controversies in lung neuroendocrine neoplasms ✰. Semin Diagn Pathol 2021; 38:90-97. [PMID: 33810912 DOI: 10.1053/j.semdp.2021.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 11/11/2022]
Abstract
In the lung, neuroendocrine tumors (NETs), namely typical and atypical carcinoids, and neuroendocrine carcinomas (NECs), grouping small cell carcinoma (SCLC) and large cell neuroendocrine carcinoma (LCNEC), make up for distinct tumor entities according to epidemiological, genetic, pathologic and clinical data. The proper classification is essential in clinical practice for diagnosis, prognosis and therapy purposes. Through an extensive literature survey, three perspectives on lung NENs have been revised: i) criteria and terminology on biopsy or cytology samples of primaries or metastases; ii) carcinoids with elevated mitotic counts and/or Ki-67 proliferation rates; iii) relevance of molecular landscape to identify new tumor entities and therapeutic targets. Furthermore, a dispute about lung NEN development has been raised according to emerging molecular models. We herein provide a pathology update on practical topics in the setting of lung NENs according to the current classification (recent advances). We have also reappraised the development of these tumors by modeling risk factors and natural history of disease (recent controversies). Combining recent advances and controversies may help clarify our biological understanding of lung NENs and give practical information for the clinical decision-making process.
Collapse
Affiliation(s)
- Jasna Metovic
- Department of Oncology, University of Turin, Turin, Italy
| | - Fabrizio Bianchi
- Cancer Biomarker Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Giulio Rossi
- Operative Unit of Pathologic Anatomy, Azienda USL Romagna, Hospital Santa Maria delle Croci, Ravenna, Italy
| | - Marco Barella
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Angelica Sonzogni
- Department of Pathology and Laboratory Medicine, IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sergio Harari
- Department of Medical Sciences and Community Health, University of Milan, Milan, Italy; Division of Pneumology, San Giuseppe Hospital, IRCCS MultiMedica, Milan, Italy
| | - Mauro Papotti
- Department of Oncology, University of Turin, Turin, Italy
| | - Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Inter-Hospital Pathology Division, IRCCS MultiMedica, Milan, Italy.
| |
Collapse
|
120
|
Neuroendocrine-Related Circulating Transcripts in Small-Cell Lung Cancers: Detection Methods and Future Perspectives. Cancers (Basel) 2021; 13:cancers13061339. [PMID: 33809582 PMCID: PMC8061767 DOI: 10.3390/cancers13061339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/28/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The recent implementation of techniques to study circulating tumor cells allowed a rapid increase in knowledge about the molecular basis of Small-Cell Lung Cancer (SCLC), which appears to be more heterogeneous and dynamic than expected. Here, we present a summary of current knowledge and new findings about some of the neuroendocrine-related transcripts expressed in SCLC patients that could offer a great opportunity in distinguishing and managing different SCLC phenotypes. Abstract No well-established prognostic or predictive molecular markers of small-cell lung cancer (SCLC) are currently available; therefore, all patients receive standard treatment. Adequate quantities and quality of tissue samples are frequently unavailable to perform a molecular analysis of SCLC, which appears more heterogeneous and dynamic than expected. The implementation of techniques to study circulating tumor cells could offer a suitable alternative to expand the knowledge of the molecular basis of a tumor. In this context, the advantage of SCLC circulating cells to express some specific markers to be explored in blood as circulating transcripts could offer a great opportunity in distinguishing and managing different SCLC phenotypes. Here, we present a summary of published data and new findings about the detection methods and potential application of a group of neuroendocrine related transcripts in the peripheral blood of SCLC patients. In the era of new treatments, easy and rapid detection of informative biomarkers in blood warrants further investigation, since it represents an important option to obtain essential information for disease monitoring and/or better treatment choices.
Collapse
|
121
|
Cai L, Liu H, Huang F, Fujimoto J, Girard L, Chen J, Li Y, Zhang YA, Deb D, Stastny V, Pozo K, Kuo CS, Jia G, Yang C, Zou W, Alomar A, Huffman K, Papari-Zareei M, Yang L, Drapkin B, Akbay EA, Shames DS, Wistuba II, Wang T, Johnson JE, Xiao G, DeBerardinis RJ, Minna JD, Xie Y, Gazdar AF. Cell-autonomous immune gene expression is repressed in pulmonary neuroendocrine cells and small cell lung cancer. Commun Biol 2021; 4:314. [PMID: 33750914 PMCID: PMC7943563 DOI: 10.1038/s42003-021-01842-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Small cell lung cancer (SCLC) is classified as a high-grade neuroendocrine (NE) tumor, but a subset of SCLC has been termed “variant” due to the loss of NE characteristics. In this study, we computed NE scores for patient-derived SCLC cell lines and xenografts, as well as human tumors. We aligned NE properties with transcription factor-defined molecular subtypes. Then we investigated the different immune phenotypes associated with high and low NE scores. We found repression of immune response genes as a shared feature between classic SCLC and pulmonary neuroendocrine cells of the healthy lung. With loss of NE fate, variant SCLC tumors regain cell-autonomous immune gene expression and exhibit higher tumor-immune interactions. Pan-cancer analysis revealed this NE lineage-specific immune phenotype in other cancers. Additionally, we observed MHC I re-expression in SCLC upon development of chemoresistance. These findings may help guide the design of treatment regimens in SCLC. Ling Cai et al. used transcriptomic profiling data of healthy lung, patient-derived small cell lung cancer cell lines, xenografts, and primary tumors to examine a link between neuroendocrine (NE) signatures and immune gene expression. Their findings suggest that cell-autonomous immune gene repression is a shared feature between healthy and tumor cells of NE lineage and may influence tumor-immune cell interaction and response to immunotherapy.
Collapse
Affiliation(s)
- Ling Cai
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA. .,Children's Research Institute, UT Southwestern Medical Center, Dallas, TX, USA. .,Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Hongyu Liu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fang Huang
- Children's Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luc Girard
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.,Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jun Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu-An Zhang
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Dhruba Deb
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Victor Stastny
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Karine Pozo
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Christin S Kuo
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Gaoxiang Jia
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chendong Yang
- Children's Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Wei Zou
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, CA, USA
| | - Adeeb Alomar
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kenneth Huffman
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mahboubeh Papari-Zareei
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lin Yang
- Department of Pathology, National Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Benjamin Drapkin
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.,Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Esra A Akbay
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - David S Shames
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, CA, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA.,Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jane E Johnson
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA.,Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Children's Research Institute, UT Southwestern Medical Center, Dallas, TX, USA.,Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA. .,Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA. .,Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA. .,Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA. .,Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA. .,Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Adi F Gazdar
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.,Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
122
|
Gay CM, Stewart CA, Park EM, Diao L, Groves SM, Heeke S, Nabet BY, Fujimoto J, Solis LM, Lu W, Xi Y, Cardnell RJ, Wang Q, Fabbri G, Cargill KR, Vokes NI, Ramkumar K, Zhang B, Della Corte CM, Robson P, Swisher SG, Roth JA, Glisson BS, Shames DS, Wistuba II, Wang J, Quaranta V, Minna J, Heymach JV, Byers LA. Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell 2021; 39:346-360.e7. [PMID: 33482121 PMCID: PMC8143037 DOI: 10.1016/j.ccell.2020.12.014] [Citation(s) in RCA: 470] [Impact Index Per Article: 156.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/28/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Despite molecular and clinical heterogeneity, small cell lung cancer (SCLC) is treated as a single entity with predictably poor results. Using tumor expression data and non-negative matrix factorization, we identify four SCLC subtypes defined largely by differential expression of transcription factors ASCL1, NEUROD1, and POU2F3 or low expression of all three transcription factor signatures accompanied by an Inflamed gene signature (SCLC-A, N, P, and I, respectively). SCLC-I experiences the greatest benefit from the addition of immunotherapy to chemotherapy, while the other subtypes each have distinct vulnerabilities, including to inhibitors of PARP, Aurora kinases, or BCL-2. Cisplatin treatment of SCLC-A patient-derived xenografts induces intratumoral shifts toward SCLC-I, supporting subtype switching as a mechanism of acquired platinum resistance. We propose that matching baseline tumor subtype to therapy, as well as manipulating subtype switching on therapy, may enhance depth and duration of response for SCLC patients.
Collapse
Affiliation(s)
- Carl M Gay
- Department of Thoracic/Head & Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C Allison Stewart
- Department of Thoracic/Head & Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth M Park
- Department of Thoracic/Head & Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah M Groves
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon Heeke
- Department of Thoracic/Head & Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Barzin Y Nabet
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco CA, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M Solis
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Lu
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert J Cardnell
- Department of Thoracic/Head & Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Kasey R Cargill
- Department of Thoracic/Head & Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie I Vokes
- Department of Thoracic/Head & Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kavya Ramkumar
- Department of Thoracic/Head & Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bingnan Zhang
- Department of Thoracic/Head & Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carminia M Della Corte
- Department of Precision Medicine, Oncology Division, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bonnie S Glisson
- Department of Thoracic/Head & Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S Shames
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco CA, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vito Quaranta
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John Minna
- Department of Internal Medicine and Simmons Cancer Center, the University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John V Heymach
- Department of Thoracic/Head & Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren Averett Byers
- Department of Thoracic/Head & Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
123
|
Uccella S, La Rosa S, Metovic J, Marchiori D, Scoazec JY, Volante M, Mete O, Papotti M. Genomics of High-Grade Neuroendocrine Neoplasms: Well-Differentiated Neuroendocrine Tumor with High-Grade Features (G3 NET) and Neuroendocrine Carcinomas (NEC) of Various Anatomic Sites. Endocr Pathol 2021; 32:192-210. [PMID: 33433884 DOI: 10.1007/s12022-020-09660-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
High-grade neuroendocrine neoplasms (HG-NENs) are clinically aggressive diseases, the classification of which has recently been redefined. They now include both poorly differentiated NENs (neuroendocrine carcinoma, NECs) and high proliferating well-differentiated NENs (called grade 3 neuroendocrine tumors, G3 NETs, in the digestive system). In the last decade, the "molecular revolution" that has affected all fields of medical oncology has also shed light in the understanding of HG NENs heterogeneity and has provided new diagnostic and therapeutic tools, useful in the management of these malignancies. Considering the kaleidoscopic aspects of HG NENs in various anatomical sites, this review systematically addresses the genomic landscape of such neoplasm throughout the more common thoracic and digestive locations, as well as it will consider other rare but not exceptional primary sites, including the skin, the head and neck, and the urogenital system. The revision of the available literature will then be oriented to understand the translational relevance of molecular data, by analyzing conceptual issues, clinicopathological correlations, and unmet needs in this field.
Collapse
Affiliation(s)
- Silvia Uccella
- Pathology Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - Stefano La Rosa
- Institute of Pathology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jasna Metovic
- Department of Oncology, University of Turin, Torino, Italy
| | - Deborah Marchiori
- Pathology Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Jean-Yves Scoazec
- Department of Pathology, Gustave Roussy Cancer Campus, Paris, France
| | - Marco Volante
- Department of Oncology, University of Turin, Torino, Italy
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mauro Papotti
- Department of Oncology, University of Turin, Torino, Italy
| |
Collapse
|
124
|
Heng WS, Pore M, Meijer C, Hiltermann TJN, Cheah SC, Gosens R, Kruyt FAE. A unique small cell lung carcinoma disease progression model shows progressive accumulation of cancer stem cell properties and CD44 as a potential diagnostic marker. Lung Cancer 2021; 154:13-22. [PMID: 33607458 DOI: 10.1016/j.lungcan.2021.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Cancer stem cells (CSCs) have been implicated in disease progression of aggressive cancers including small cell lung carcinoma (SCLC). Here, we have examined the possible contribution of CSCs to SCLC progression and aggressiveness. MATERIALS AND METHODS GLC-14, GLC-16 and GLC-19 SCLC cell lines derived from one patient, representing increasing progressive stages of disease were used. CSC marker expressions was determined by RT-qPCR and western blotting analyses, and heterogeneity was studied by CSC marker expression by immunofluorescence microscopy and flow cytometry. Colony formation assays were used to assess stem cell properties and therapy sensitivity. RESULTS Increasing expression of stem cell markers MYC, SOX2 and particularly CD44 were found in association with advancing disease. Single and overlapping expression of these markers indicated the presence of different CSC populations. The accumulation of more homogeneous double- and triple-positive CSC populations evolved with disease progression. Functional characterization of CSC properties affirmed higher proficiency of colony forming ability and increased resistance to γ-irradiation in GLC-16 and GLC-19 compared to GLC-14. GLC-19 colony formation was significantly inhibited by a human anti-CD44 antibody. CONCLUSION The progressive increase of MYC, SOX2 and particularly CD44 expression that was accompanied with enhanced colony forming capacity and resistance in the in vitro GLC disease progression model, supports the potential clinical relevance of CSC populations in malignancy and disease relapse of SCLC.
Collapse
Affiliation(s)
- Win Sen Heng
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Milind Pore
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Coby Meijer
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - T Jeroen N Hiltermann
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, the Netherlands
| | - Frank A E Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
125
|
Luna A, Elloumi F, Varma S, Wang Y, Rajapakse VN, Aladjem MI, Robert J, Sander C, Pommier Y, Reinhold WC. CellMiner Cross-Database (CellMinerCDB) version 1.2: Exploration of patient-derived cancer cell line pharmacogenomics. Nucleic Acids Res 2021; 49:D1083-D1093. [PMID: 33196823 DOI: 10.1093/nar/gkaa968] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
CellMiner Cross-Database (CellMinerCDB, discover.nci.nih.gov/cellminercdb) allows integration and analysis of molecular and pharmacological data within and across cancer cell line datasets from the National Cancer Institute (NCI), Broad Institute, Sanger/MGH and MD Anderson Cancer Center (MDACC). We present CellMinerCDB 1.2 with updates to datasets from NCI-60, Broad Cancer Cell Line Encyclopedia and Sanger/MGH, and the addition of new datasets, including NCI-ALMANAC drug combination, MDACC Cell Line Project proteomic, NCI-SCLC DNA copy number and methylation data, and Broad methylation, genetic dependency and metabolomic datasets. CellMinerCDB (v1.2) includes several improvements over the previously published version: (i) new and updated datasets; (ii) support for pattern comparisons and multivariate analyses across data sources; (iii) updated annotations with drug mechanism of action information and biologically relevant multigene signatures; (iv) analysis speedups via caching; (v) a new dataset download feature; (vi) improved visualization of subsets of multiple tissue types; (vii) breakdown of univariate associations by tissue type; and (viii) enhanced help information. The curation and common annotations (e.g. tissues of origin and identifiers) provided here across pharmacogenomic datasets increase the utility of the individual datasets to address multiple researcher question types, including data reproducibility, biomarker discovery and multivariate analysis of drug activity.
Collapse
Affiliation(s)
- Augustin Luna
- cBio Center, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Fathi Elloumi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.,General Dynamics Information Technology Inc., Fairfax, VA 22042, USA
| | - Sudhir Varma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.,HiThru Analytics LLC, Princeton, NJ 08540, USA
| | - Yanghsin Wang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.,General Dynamics Information Technology Inc., Fairfax, VA 22042, USA
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jacques Robert
- Inserm unité 1218, Université de Bordeaux, Bordeaux 33076, France
| | - Chris Sander
- cBio Center, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - William C Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
126
|
Rodakowska E, Walczak-Drzewiecka A, Borowiec M, Gorzkiewicz M, Grzesik J, Ratajewski M, Rozanski M, Dastych J, Ginalski K, Rychlewski L. Recombinant immunotoxin targeting GPC3 is cytotoxic to H446 small cell lung cancer cells. Oncol Lett 2021; 21:222. [PMID: 33613711 PMCID: PMC7859473 DOI: 10.3892/ol.2021.12483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Glypican-3 (GPC3) is a cell membrane glycoprotein that regulates cell growth and proliferation. Aberrant expression or distribution of GPC3 underlies developmental abnormalities and the development of solid tumours. The strongest evidence for the participation of GPC3 in carcinogenesis stems from studies on hepatocellular carcinoma and lung squamous cell carcinoma. To the best of our knowledge, the role of the GPC3 protein and its potential therapeutic application have never been studied in small cell lung carcinoma (SCLC), despite the known involvement of associated pathways and the high mortality caused by this disease. Therefore, the aim of the present study was to examine GPC3 targeting for SCLC immunotherapy. An immunotoxin carrying an anti-GPC3 antibody (hGC33) and Pseudomonas aeruginosa exotoxin A 38 (PE38) was generated. This hGC33-PE38 protein was overexpressed in E. coli and purified. ADP-ribosylation activity was tested in vitro against eukaryotic translation elongation factor 2. Cell internalisation ability was confirmed by confocal microscopy. Cytotoxicity was analysed by treating liver cancer (HepG2, SNU-398 and SNU-449) and lung cancer (NCI-H510A, NCI-H446, A549 and SK-MES1) cell lines with hGC33-PE38 and estimating viable cells number. A BrdU assay was employed to verify anti-proliferative activity of hGC33-PE38 on treated cells. Fluorescence-activated cell sorting was used for the detection of cell membrane-bound GPC3. The hGC33-PE38 immunotoxin displayed enzymatic activity comparable to native PE38. The protein was efficiently internalised by GPC3-positive cells. Moreover, hGC33-PE38 was cytotoxic to HepG2 cells but had no effect on known GPC3-negative cell lines. The H446 cells were sensitive to hGC33-PE38 (IC50, 70.6±4.6 ng/ml), whereas H510A cells were resistant. Cell surface-bound GPC3 was abundant on the membranes of H446 cells, but absent on H510A. Altogether, the present findings suggested that GPC3 could be considered as a potential therapeutic target for SCLC immunotherapy.
Collapse
Affiliation(s)
| | - Aurelia Walczak-Drzewiecka
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
| | - Marta Borowiec
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-89 Warsaw, Poland
| | - Michal Gorzkiewicz
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland.,Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Joanna Grzesik
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-89 Warsaw, Poland
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
| | - Michal Rozanski
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
| | - Jaroslaw Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-89 Warsaw, Poland
| | | |
Collapse
|
127
|
Morphologic and molecular classification of lung neuroendocrine neoplasms. Virchows Arch 2021; 478:5-19. [PMID: 33474631 PMCID: PMC7966641 DOI: 10.1007/s00428-020-03015-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
Neuroendocrine neoplasms (NENs) of the lung encompass neuroendocrine tumors (NETs) composed of typical (TC) and atypical (AC) carcinoids and full-fledged carcinomas (NECs) inclusive of large cell neuroendocrine carcinoma (LCNEC) and small cell carcinoma (SCLC). NETs and NECs are thought to represent distinct and separate lesions with neither molecular overlap nor common developmental continuum. Two perspectives were addressed regarding the morphologic and molecular classification of lung NENs: (i) a supervised approach by browsing the traditional classification, the relevant gene alterations, and their clinical implications; and (ii) an unsupervised approach, by reappraising neoplasms according to risk factors and natural history of disease to construct an interpretation model relied on biological data. We herein emphasize lights and shadows of the current classification of lung NENs and provide an alternative outlook on these tumors focused on what we currently know about the biological determinants and the natural history of disease.
Collapse
|
128
|
Yang K, Zhao Y, Du Y, Tang R. Evaluation of Hippo Pathway and CD133 in Radiation Resistance in Small-Cell Lung Cancer. JOURNAL OF ONCOLOGY 2021; 2021:8842554. [PMID: 33519935 PMCID: PMC7817273 DOI: 10.1155/2021/8842554] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/16/2020] [Accepted: 01/01/2021] [Indexed: 01/11/2023]
Abstract
Although the Hippo pathway and CD133 have been reported to play pertinent roles in a variety of cancer, knowledge about their contribution to radiation resistance in small-cell lung cancer (SCLC) is limited. In this first-of-a-kind study, we have reported the expression of key Hippo pathway proteins in SCLC patients by immunohistochemical staining. We assessed the involvement of yes-associated protein 1 (YAP1) in radiation resistance by Cell Counting Kit-8 (CCK-8) and flow cytometry. In addition, we analysed the impact of CD133 on radiotherapy for SCLC. The mammalian Ste20-like serine/threonine kinase 2(MST2), pMST2, and pYAP1 in the Hippo pathway were not significantly associated with the disease stage and survival time in patients with SCLC. However, the pYAP1 expression showed some significance in the "YAP/TAZ subgroup" of SCLC patients. The proportion of CD133 in the SCLC cells was controlled by the YAP1 expression. The CD133 and YAP1 levels were significantly correlation with each other in tissues of SCLC patients. We sorted and isolated the CD133+ and CD133-cells in H69 and found that the cell surface glycoprotein may be associated with the radiation resistance of SCLC.In summary, we have firstly reported the expression of key Hippo pathway proteins in SCLC patients. Furthermore, we also identified that CD133 may be controlled by the expression of YAP1 in the Hippo pathway and that CD133 may be associated with the radiation resistance of SCLC.
Collapse
Affiliation(s)
- Kui Yang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
| | - Yang Zhao
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400000, China
| | - Yonghao Du
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
| | - Ruixiang Tang
- Department of Oncology Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
| |
Collapse
|
129
|
Patel AS, Yoo S, Kong R, Sato T, Sinha A, Karam S, Bao L, Fridrikh M, Emoto K, Nudelman G, Powell CA, Beasley MB, Zhu J, Watanabe H. Prototypical oncogene family Myc defines unappreciated distinct lineage states of small cell lung cancer. SCIENCE ADVANCES 2021; 7:7/5/eabc2578. [PMID: 33514539 PMCID: PMC7846160 DOI: 10.1126/sciadv.abc2578] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/10/2020] [Indexed: 05/11/2023]
Abstract
Comprehensive genomic analyses of small cell lung cancer (SCLC) have revealed frequent mutually exclusive genomic amplification of MYC family members. Hence, it has been long suggested that they are functionally equivalent; however, more recently, their expression has been associated with specific neuroendocrine markers and distinct histopathology. Here, we explored a previously undescribed role of L-Myc and c-Myc as lineage-determining factors contributing to SCLC molecular subtypes and histology. Integrated transcriptomic and epigenomic analyses showed that L-Myc and c-Myc impart neuronal and non-neuroendocrine-associated transcriptional programs, respectively, both associated with distinct SCLC lineage. Genetic replacement of c-Myc with L-Myc in c-Myc-SCLC induced a neuronal state but was insufficient to induce ASCL1-SCLC. In contrast, c-Myc induced transition from ASCL1-SCLC to NEUROD1-SCLC characterized by distinct large-cell neuroendocrine carcinoma-like histopathology. Collectively, we characterize a role of historically defined general oncogenes, c-Myc and L-Myc, for regulating lineage plasticity across molecular and histological subtypes.
Collapse
Affiliation(s)
- Ayushi S Patel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Ranran Kong
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Thoracic Surgery, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Takashi Sato
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Abhilasha Sinha
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah Karam
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Li Bao
- Ningxia People's Hospital, Yinchuan, Ningxia Province 750001, China
| | - Maya Fridrikh
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Katsura Emoto
- Department of Diagnostic Pathology, Keio University Hospital, Tokyo 160-8582, Japan
| | - German Nudelman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Charles A Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mary Beth Beasley
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jun Zhu
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Hideo Watanabe
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
130
|
Tenjin Y, Matsuura K, Kudoh S, Usuki S, Yamada T, Matsuo A, Sato Y, Saito H, Fujino K, Wakimoto J, Ichimura T, Kohrogi H, Sakagami T, Niwa H, Ito T. Distinct transcriptional programs of SOX2 in different types of small cell lung cancers. J Transl Med 2020; 100:1575-1588. [PMID: 32801334 DOI: 10.1038/s41374-020-00479-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
SOX2 is recognized as an oncogene in human small cell lung cancer (SCLC), which is an aggressive neuroendocrine (NE) tumor. However, the role of SOX2 in SCLC is not completely understood, and strategies to selectively target SOX2 in SCLC cells remain elusive. Here, we show, using next-generation sequencing, that SOX2 expressed in the ASCL1-high SCLC (SCLC-A) subtype cell line is dependent on ASCL1, which is a lineage-specific transcriptional factor, and is involved in NE differentiation and tumorigenesis. ASCL1 recruits SOX2, which promotes INSM1 and WNT11 expression. Immunohistochemical studies revealed that SCLC tissue samples expressed SOX2, ASCL1, and INSM1 in 18 out of the 30 cases (60%). Contrary to the ASCL1-SOX2 signaling axis controlling SCLC biology in the SCLC-A subtype, SOX2 targets distinct genes such as those related to the Hippo pathway in the ASCL1-negative, YAP1-high SCLC (SCLC-Y) subtype. Although SOX2 knockdown experiments suppressed NE differentiation and cell proliferation in the SCLC-A subtype, they did not sufficiently impair the growth of the SCLC-Y subtype cell lines in vitro and ex vivo. The present results support the importance of the ASCL1-SOX2 axis as a main subtype of SCLC, and suggest the therapeutic potential of targeting the ASCL1-SOX2 axis.
Collapse
Affiliation(s)
- Yuki Tenjin
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan.,Department of Respiratory Medicine, Graduate School of Medical Science, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kumi Matsuura
- Department of Pluripotent Stem Cell Biology, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center (LILA), Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Tatsuya Yamada
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan.,Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Akira Matsuo
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Younosuke Sato
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Haruki Saito
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan.,Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kosuke Fujino
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan.,Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Joeji Wakimoto
- Division of Pathology, Minami Kyushu National Hospital, Kagoshima, 899-5293, Japan
| | - Takaya Ichimura
- Department of Pathology, Faculty of Medicine, Saitama Medical University, Saitama, 350-0495, Japan
| | - Hirotsugu Kohrogi
- Department of Respiratory Medicine, Omuta Tenryo Hospital, Tenryo 1-100, Omuta, Fukuoka, 836-8556, Japan
| | - Takuro Sakagami
- Department of Respiratory Medicine, Graduate School of Medical Science, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Graduate School of Medical Science, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
131
|
Pearsall SM, Humphrey S, Revill M, Morgan D, Frese KK, Galvin M, Kerr A, Carter M, Priest L, Blackhall F, Simpson KL, Dive C. The Rare YAP1 Subtype of SCLC Revisited in a Biobank of 39 Circulating Tumor Cell Patient Derived Explant Models: A Brief Report. J Thorac Oncol 2020; 15:1836-1843. [PMID: 32721553 PMCID: PMC7718082 DOI: 10.1016/j.jtho.2020.07.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/25/2020] [Accepted: 07/19/2020] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Recent consensus defines four SCLC subtypes on the basis of transcription factor expression: ASCL1, NEUROD1, POU2F3, and YAP1. The rare YAP1 subtype is associated with "neuroendocrine (NE)-low" cells among SCLC cell lines and patient samples. We evaluated YAP1 in 39 patients with phenotypically diverse circulating tumor cell-derived explant (CDX) models and revisited YAP1 in terms of prevalence, cell phenotype, and intertumor and intratumor heterogeneity. METHODS YAP1 transcript and protein expression were assessed by RNA sequencing and immunohistochemistry or multiplexed immunofluorescence of NE and non-NE CDX subpopulations. Physically separated NE and non-NE CDX ex vivo culture lysates were Western blotted for YAP1, NE marker SYP, and AXL. RESULTS RNA sequencing normalized for the four subtype transcription factors identified YAP1 expression in 14 of 39 CDX. A total of 10 CDX expressed YAP1 protein, and eight had strong YAP1 expression confined to rare non-NE cell clusters. This was confirmed in ex vivo CDX cultures in which adherent non-NE cells lacking SYP expression expressed YAP1. However, in two CDX, weaker cellular YAP1 expression was observed, widely dispersed in SYP-positive NE cells. CONCLUSIONS YAP1 was predominantly expressed in non-NE cell clusters in SCLC CDX, but two of 39 CDX expressed YAP1 in NE cells. CDX22P, with relatively high YAP1 expression, is an ASCL1 NE subtype with a low NE score and an outlier within this subtype in our CDX biobank. These descriptive data reveal subtly different YAP1 expression profiles, paving the way for functional studies to compare YAP1 signaling in non-NE and low NE cell contexts for potentially personalized therapeutic approaches.
Collapse
Affiliation(s)
- Sarah M Pearsall
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Sam Humphrey
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Mitchell Revill
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Derrick Morgan
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Kristopher K Frese
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Melanie Galvin
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Alastair Kerr
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Mathew Carter
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Lynsey Priest
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Fiona Blackhall
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom; Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Kathryn L Simpson
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom
| | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
132
|
Baine MK, Hsieh MS, Lai WV, Egger JV, Jungbluth AA, Daneshbod Y, Beras A, Spencer R, Lopardo J, Bodd F, Montecalvo J, Sauter JL, Chang JC, Buonocore DJ, Travis WD, Sen T, Poirier JT, Rudin CM, Rekhtman N. SCLC Subtypes Defined by ASCL1, NEUROD1, POU2F3, and YAP1: A Comprehensive Immunohistochemical and Histopathologic Characterization. J Thorac Oncol 2020; 15:1823-1835. [PMID: 33011388 PMCID: PMC8362797 DOI: 10.1016/j.jtho.2020.09.009] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/21/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Recent studies have identified subtypes of small cell lung carcinoma (SCLC) defined by the RNA expression of ASCL1, NEUROD1, POU2F3, and YAP1 transcriptional regulators. There are only limited data on the distribution of these markers at the protein level and associated pathologic characteristics in clinical SCLC samples. METHODS The expression of ASCL1, NEUROD1, POU2F3, and YAP1 was analyzed by immunohistochemistry in 174 patient samples with SCLC. Subtypes defined by these markers were correlated with histologic characteristics, expression of classic neuroendocrine markers (synaptophysin, chromogranin A, CD56, INSM1), and other SCLC markers, including the neuroendocrine phenotype-associated markers TTF-1 and DLL3. RESULTS ASCL1 and NEUROD1 expression had the following distribution: (1) 41% ASCL1+/NEUROD1-; (2) 37% ASCL1+/NEUROD1+; (3) 8% ASCL1-/NEUROD1+; and (4) 14% ASCL1-/NEUROD1-. On the basis of their relative expression, 69% of cases were ASCL1-dominant and 17% were NEUROD1-dominant. POU2F3 was expressed in 7% of SCLC and was mutually exclusive of ASCL1 and NEUROD1. YAP1 was expressed at low levels, primarily in combined SCLC, and was not exclusive of other subtypes. Both ASCL1-dominant and NEUROD1-dominant subtypes were associated with neuroendocrine markerhigh/TTF-1high/DLL3high profile, whereas POU2F3 and other ASCL1/NEUROD1 double-negative tumors were neuroendocrine markerlow/TTF-1low/DLL3low. CONCLUSIONS This is the first comprehensive immunohistochemical and histopathologic analysis of novel SCLC subtypes in patient samples. We confirm that ASCL1/NEUROD1 double-negative tumors represent a distinct neuroendocrine-low subtype of SCLC, which is either uniquely associated with POU2F3 or lacks a known dominant regulator. The expression profiles of these markers appear more heterogeneous in native samples than in experimental models, particularly with regard to the high prevalence of ASCL1/NEUROD1 coexpression. These findings may have prognostic and therapeutic implications and warrant further clinical investigation.
Collapse
Affiliation(s)
- Marina K Baine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - W Victoria Lai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jacklynn V Egger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Achim A Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yahya Daneshbod
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Loma Linda University School of Medicine, Loma Linda, California
| | - Amanda Beras
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rowanne Spencer
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jessica Lopardo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Francis Bodd
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph Montecalvo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Henry Ford Hospital, Detroit, Michigan
| | - Jennifer L Sauter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason C Chang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Darren J Buonocore
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William D Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Triparna Sen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John T Poirier
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Perlmutter Cancer Center, New York University Langone Health, New York, New York
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
133
|
Layeghi-Ghalehsoukhteh S, Pal Choudhuri S, Ocal O, Zolghadri Y, Pashkov V, Niederstrasser H, Posner BA, Kantheti HS, Azevedo-Pouly AC, Huang H, Girard L, MacDonald RJ, Brekken RA, Wilkie TM. Concerted cell and in vivo screen for pancreatic ductal adenocarcinoma (PDA) chemotherapeutics. Sci Rep 2020; 10:20662. [PMID: 33244070 PMCID: PMC7693321 DOI: 10.1038/s41598-020-77373-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
PDA is a major cause of US cancer-related deaths. Oncogenic Kras presents in 90% of human PDAs. Kras mutations occur early in pre-neoplastic lesions but are insufficient to cause PDA. Other contributing factors early in disease progression include chronic pancreatitis, alterations in epigenetic regulators, and tumor suppressor gene mutation. GPCRs activate heterotrimeric G-proteins that stimulate intracellular calcium and oncogenic Kras signaling, thereby promoting pancreatitis and progression to PDA. By contrast, Rgs proteins inhibit Gi/q-coupled GPCRs to negatively regulate PDA progression. Rgs16::GFP is expressed in response to caerulein-induced acinar cell dedifferentiation, early neoplasia, and throughout PDA progression. In genetically engineered mouse models of PDA, Rgs16::GFP is useful for pre-clinical rapid in vivo validation of novel chemotherapeutics targeting early lesions in patients following successful resection or at high risk for progressing to PDA. Cultured primary PDA cells express Rgs16::GFP in response to cytotoxic drugs. A histone deacetylase inhibitor, TSA, stimulated Rgs16::GFP expression in PDA primary cells, potentiated gemcitabine and JQ1 cytotoxicity in cell culture, and Gem + TSA + JQ1 inhibited tumor initiation and progression in vivo. Here we establish the use of Rgs16::GFP expression for testing drug combinations in cell culture and validation of best candidates in our rapid in vivo screen.
Collapse
Affiliation(s)
- Somayeh Layeghi-Ghalehsoukhteh
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Drive, Dallas, TX, 75390, USA
- Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Shreoshi Pal Choudhuri
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Drive, Dallas, TX, 75390, USA
| | - Ozhan Ocal
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Drive, Dallas, TX, 75390, USA
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Ankara, Turkey
| | - Yalda Zolghadri
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Drive, Dallas, TX, 75390, USA
- Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Victor Pashkov
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Drive, Dallas, TX, 75390, USA
| | - Hanspeter Niederstrasser
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Bruce A Posner
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Havish S Kantheti
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Drive, Dallas, TX, 75390, USA
- Cancer Discovery (CanDisc) Group, UT Southwestern Medical Center, 6001 Forest Park Drive, Dallas, TX, 75390, USA
| | - Ana C Azevedo-Pouly
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Huocong Huang
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Luc Girard
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Drive, Dallas, TX, 75390, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Raymond J MacDonald
- Department of Molecular Biology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas M Wilkie
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Drive, Dallas, TX, 75390, USA.
| |
Collapse
|
134
|
Khan P, Siddiqui JA, Maurya SK, Lakshmanan I, Jain M, Ganti AK, Salgia R, Batra SK, Nasser MW. Epigenetic landscape of small cell lung cancer: small image of a giant recalcitrant disease. Semin Cancer Biol 2020; 83:57-76. [PMID: 33220460 PMCID: PMC8218609 DOI: 10.1016/j.semcancer.2020.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Small cell lung cancer (SCLC) is a particular subtype of lung cancer with high mortality. Recent advances in understanding SCLC genomics and breakthroughs of immunotherapy have substantially expanded existing knowledge and treatment modalities. However, challenges associated with SCLC remain enigmatic and elusive. Most of the conventional drug discovery approaches targeting altered signaling pathways in SCLC end up in the 'grave-yard of drug discovery', which mandates exploring novel approaches beyond inhibiting cell signaling pathways. Epigenetic modifications have long been documented as the key contributors to the tumorigenesis of almost all types of cancer, including SCLC. The last decade witnessed an exponential increase in our understanding of epigenetic modifications for SCLC. The present review highlights the central role of epigenetic regulations in acquiring neoplastic phenotype, metastasis, aggressiveness, resistance to chemotherapy, and immunotherapeutic approaches of SCLC. Different types of epigenetic modifications (DNA/histone methylation or acetylation) that can serve as predictive biomarkers for prognostication, treatment stratification, neuroendocrine lineage determination, and development of potential SCLC therapies are also discussed. We also review the utility of epigenetic targets/epidrugs in combination with first-line chemotherapy and immunotherapy that are currently under investigation in preclinical and clinical studies. Altogether, the information presents the inclusive landscape of SCLC epigenetics and epidrugs that will help to improve SCLC outcomes.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar Kishor Ganti
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA; Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte 91010, CA, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
135
|
Wei J, Liu L, Guo Y, Zhang J, Wang X, Dong J, Xing P, Ying J, Yang L, Li J. Clinicopathological features and prognostic implications of ASCL1 expression in surgically resected small cell lung cancer. Thorac Cancer 2020; 12:40-47. [PMID: 33191657 PMCID: PMC7779202 DOI: 10.1111/1759-7714.13705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
Background Small cell lung cancer (SCLC) is one of the most aggressive lung cancers. Treatment of SCLC has remained unchanged during the past decades. Preclinical studies have revealed ASCL1 as a transcription regulator in the neuroendocrine (NE) differentiation and carcinogenesis of SCLC. However, there are few studies on correlation of ASCL1 expression and clinicopathological factors in resected SCLCs. Here, we aimed to analyze the ASCL1 expression of SCLC and investigate its associations with clinicopathological factors and survival. Methods A total of 247 surgically resected pure SCLC specimens were included in this retrospective study, all of which were processed using tissue microarrays for immunohistochemistry analysis of ASCL1. A total of 48 of 247 cases were tested by NanoString for mRNA expression analysis on 50 SCLC related genes. Statistical analysis was performed using R studio and SPSS software. Results NE scores of 48 pure SCLC specimens were calculated by analyzing 50 preselected genes. A significant correlation between NE score with both ASCL1 mRNA expression and ASCL1 protein expression were observed. For the entire cohort of 247 patients, ASCL1 was highly expressed in 42.5% of pure SCLC patients according to IHC results. Significant differences were observed between ASCL1 high and low expression groups in variables including staging, lymph node metastasis, nerve invasion and overall survival. Conclusions In limited staged pure SCLC, ASCL1 expression was positively correlated with NE signature, pTNM stage, nerve invasion and OS. ASCL1 may therefore serve as a potential biomarker to predict prognosis as well as in the selection of patients for therapies targeting ASCL1‐regulated downstream molecules.
Collapse
Affiliation(s)
- Jiacong Wei
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Liu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiying Guo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinyao Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiyan Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Yang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junling Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
136
|
Kodama M, Nakayama KI. A second Warburg-like effect in cancer metabolism: The metabolic shift of glutamine-derived nitrogen: A shift in glutamine-derived nitrogen metabolism from glutaminolysis to de novo nucleotide biosynthesis contributes to malignant evolution of cancer. Bioessays 2020; 42:e2000169. [PMID: 33165972 DOI: 10.1002/bies.202000169] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/28/2020] [Indexed: 12/18/2022]
Abstract
Carbon and nitrogen are essential elements for life. Glucose as a carbon source and glutamine as a nitrogen source are important nutrients for cell proliferation. About 100 years ago, it was discovered that cancer cells that have acquired unlimited proliferative capacity and undergone malignant evolution in their host manifest a cancer-specific remodeling of glucose metabolism (the Warburg effect). Only recently, however, was it shown that the metabolism of glutamine-derived nitrogen is substantially shifted from glutaminolysis to nucleotide biosynthesis during malignant progression of cancer-which might be referred to as a "second" Warburg effect. In this review, address the mechanism and relevance of this metabolic shift of glutamine-derived nitrogen in human cancer. We also examine the clinical potential of anticancer therapies that modulate the metabolic pathways of glutamine-derived nitrogen. This shift may be as important as the shift in carbon metabolism, which has long been known as the Warburg effect.
Collapse
Affiliation(s)
- Manabu Kodama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
137
|
Tlemsani C, Pongor L, Elloumi F, Girard L, Huffman KE, Roper N, Varma S, Luna A, Rajapakse VN, Sebastian R, Kohn KW, Krushkal J, Aladjem MI, Teicher BA, Meltzer PS, Reinhold WC, Minna JD, Thomas A, Pommier Y. SCLC-CellMiner: A Resource for Small Cell Lung Cancer Cell Line Genomics and Pharmacology Based on Genomic Signatures. Cell Rep 2020; 33:108296. [PMID: 33086069 PMCID: PMC7643325 DOI: 10.1016/j.celrep.2020.108296] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/06/2020] [Accepted: 09/30/2020] [Indexed: 01/23/2023] Open
Abstract
CellMiner-SCLC (https://discover.nci.nih.gov/SclcCellMinerCDB/) integrates drug sensitivity and genomic data, including high-resolution methylome and transcriptome from 118 patient-derived small cell lung cancer (SCLC) cell lines, providing a resource for research into this "recalcitrant cancer." We demonstrate the reproducibility and stability of data from multiple sources and validate the SCLC consensus nomenclature on the basis of expression of master transcription factors NEUROD1, ASCL1, POU2F3, and YAP1. Our analyses reveal transcription networks linking SCLC subtypes with MYC and its paralogs and the NOTCH and HIPPO pathways. SCLC subsets express specific surface markers, providing potential opportunities for antibody-based targeted therapies. YAP1-driven SCLCs are notable for differential expression of the NOTCH pathway, epithelial-mesenchymal transition (EMT), and antigen-presenting machinery (APM) genes and sensitivity to mTOR and AKT inhibitors. These analyses provide insights into SCLC biology and a framework for future investigations into subtype-specific SCLC vulnerabilities.
Collapse
Affiliation(s)
- Camille Tlemsani
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Lorinc Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Fathi Elloumi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenneth E Huffman
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nitin Roper
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sudhir Varma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Augustin Luna
- cBio Center, Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Robin Sebastian
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Kurt W Kohn
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Beverly A Teicher
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - William C Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
138
|
Lantuejoul S, Fernandez-Cuesta L, Damiola F, Girard N, McLeer A. New molecular classification of large cell neuroendocrine carcinoma and small cell lung carcinoma with potential therapeutic impacts. Transl Lung Cancer Res 2020; 9:2233-2244. [PMID: 33209646 PMCID: PMC7653155 DOI: 10.21037/tlcr-20-269] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
Large cell neuroendocrine carcinoma (LCNECs) and small cell lung carcinomas (SCLCs) are high-grade neuroendocrine carcinomas of the lung with very aggressive behavior and poor prognosis. Their histological classification as well as their therapeutic management has not changed much in recent years, but genomic and transcriptomic analyses have revealed different molecular subtypes raising hopes for more personalized treatment. Indeed, four subtypes of SCLCs have been recently described, SCLC-A driven by the master gene ASCL1, SCLC-N driven by NEUROD1, SCLC-Y by YAP1 and SCLC-P by POU2F3. Whereas SCLC standard of care is based on concurrent chemoradiation for limited stages and on chemotherapy alone or chemotherapy combined with anti-PD-L1 checkpoint inhibitors for extensive stage SCLC, SCLC-A variants could benefit from DLL3 or BCL2 inhibitors, and SCLC-N variants from Aurora kinase inhibitors combined with chemotherapy, or PI3K/mTOR or HSP90 inhibitors. In addition, a new SCLC variant (SCLC-IM) with high-expression of immune checkpoints has been also reported, which could benefit from immunotherapies. PARP inhibitors also gave promising results in combination with chemotherapy in a subset of SCLCs. Regarding LCNECs, they represent a heterogeneous group of tumors, some of them exhibiting mutations also found in SCLC but with a pattern of expression of NSCLC, while others harbor mutations also found in NSCLC but with a pattern of expression of SCLC, questioning their clinical management as NSCLCs or SCLCs. Overall, we are probably entering a new area, which, if personalized treatments are effective, will also lead to the implementation in practice of molecular testing or biomarkers detection for the selection of patients who can benefit from them.
Collapse
Affiliation(s)
- Sylvie Lantuejoul
- Department of Biopathology, Pathology Research Platform- Synergie Lyon Cancer- CRCL, Centre Léon Bérard Unicancer, Lyon, France
- Université Grenoble Alpes, Grenoble, France
| | | | - Francesca Damiola
- Department of Biopathology, Pathology Research Platform- Synergie Lyon Cancer- CRCL, Centre Léon Bérard Unicancer, Lyon, France
| | - Nicolas Girard
- Institut Curie, Institut du Thorax Curie Montsouris, Paris, France
| | - Anne McLeer
- Université Grenoble Alpes, Grenoble, France
- Department of Pathology and Cancer Molecular Genetics Platform, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
139
|
Dora D, Rivard C, Yu H, Bunn P, Suda K, Ren S, Lueke Pickard S, Laszlo V, Harko T, Megyesfalvi Z, Moldvay J, Hirsch FR, Dome B, Lohinai Z. Neuroendocrine subtypes of small cell lung cancer differ in terms of immune microenvironment and checkpoint molecule distribution. Mol Oncol 2020; 14:1947-1965. [PMID: 32506804 PMCID: PMC7463307 DOI: 10.1002/1878-0261.12741] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/08/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Small cell lung cancer (SCLC) has recently been subcategorized into neuroendocrine (NE)-high and NE-low subtypes showing 'immune desert' and 'immune oasis' phenotypes, respectively. Here, we aimed to characterize the tumor microenvironment according to immune checkpoints and NE subtypes in human SCLC tissue samples at the protein level. In this cross-sectional study, we included 32 primary tumors and matched lymph node (LN) metastases of resected early-stage, histologically confirmed SCLC patients, which were previously clustered into NE subtypes using NE-associated key RNA genes. Immunohistochemistry (IHC) was performed on formalin-fixed paraffin-embedded TMAs with antibodies against CD45, CD3, CD8, MHCII, TIM3, immune checkpoint poliovirus receptor (PVR), and indoleamine 2,3-dioxygenase (IDO). The stroma was significantly more infiltrated by immune cells both in primary tumors and in LN metastases compared to tumor nests. Immune cell (CD45+ cell) density was significantly higher in tumor nests (P = 0.019), with increased CD8+ effector T-cell infiltration (P = 0.003) in NE-low vs NE-high tumors. The expression of IDO was confirmed on stromal and endothelial cells and was positively correlated with higher immune cell density both in primary tumors and in LN metastases, regardless of the NE pattern. Expression of IDO and PVR in tumor nests was significantly higher in NE-low primary tumors (vs NE-high, P < 0.05). We also found significantly higher MHC II expression by malignant cells in NE-low (vs NE-high, P = 0.004) tumors. TIM3 expression was significantly increased in NE-low (vs NE-high, P < 0.05) tumors and in LN metastases (vs primary tumors, P < 0.05). To our knowledge, this is the first human study that demonstrates in situ that NE-low SCLCs are associated with increased immune cell infiltration compared to NE-high tumors. PVR, IDO, MHCII, and TIM3 are emerging checkpoints in SCLC, with increased expression in the NE-low subtype, providing key insight for further prospective studies on potential biomarkers and targets for SCLC immunotherapies.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and EmbryologyFaculty of MedicineSemmelweis UniversityBudapestHungary
| | - Christopher Rivard
- Division of Medical OncologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Hui Yu
- Division of Medical OncologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Paul Bunn
- Division of Medical OncologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Kenichi Suda
- Division of Thoracic SurgeryDepartment of SurgeryFaculty of MedicineKindai UniversityOsaka‐SayamaJapan
| | - Shengxiang Ren
- Shanghai Pulmonary HospitalTongji UniversityShanghaiChina
| | - Shivaun Lueke Pickard
- Division of Medical OncologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Viktoria Laszlo
- National Korányi Institute of PulmonologyBudapestHungary
- Department of Thoracic SurgerySemmelweis University and National Institute of OncologyBudapestHungary
- Division of Thoracic SurgeryDepartment of SurgeryComprehensive Cancer CenterMedical University of ViennaAustria
| | - Tunde Harko
- National Korányi Institute of PulmonologyBudapestHungary
| | - Zsolt Megyesfalvi
- National Korányi Institute of PulmonologyBudapestHungary
- Department of Thoracic SurgerySemmelweis University and National Institute of OncologyBudapestHungary
- Division of Thoracic SurgeryDepartment of SurgeryComprehensive Cancer CenterMedical University of ViennaAustria
| | - Judit Moldvay
- National Korányi Institute of PulmonologyBudapestHungary
| | - Fred R. Hirsch
- Division of Medical OncologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Tisch Cancer InstituteCenter for Thoracic OncologyMount Sinai Health SystemNew YorkNYUSA
| | - Balazs Dome
- National Korányi Institute of PulmonologyBudapestHungary
- Department of Thoracic SurgerySemmelweis University and National Institute of OncologyBudapestHungary
- Division of Thoracic SurgeryDepartment of SurgeryComprehensive Cancer CenterMedical University of ViennaAustria
| | - Zoltan Lohinai
- National Korányi Institute of PulmonologyBudapestHungary
| |
Collapse
|
140
|
Ireland AS, Micinski AM, Kastner DW, Guo B, Wait SJ, Spainhower KB, Conley CC, Chen OS, Guthrie MR, Soltero D, Qiao Y, Huang X, Tarapcsák S, Devarakonda S, Chalishazar MD, Gertz J, Moser JC, Marth G, Puri S, Witt BL, Spike BT, Oliver TG. MYC Drives Temporal Evolution of Small Cell Lung Cancer Subtypes by Reprogramming Neuroendocrine Fate. Cancer Cell 2020; 38:60-78.e12. [PMID: 32473656 PMCID: PMC7393942 DOI: 10.1016/j.ccell.2020.05.001] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/23/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Small cell lung cancer (SCLC) is a neuroendocrine tumor treated clinically as a single disease with poor outcomes. Distinct SCLC molecular subtypes have been defined based on expression of ASCL1, NEUROD1, POU2F3, or YAP1. Here, we use mouse and human models with a time-series single-cell transcriptome analysis to reveal that MYC drives dynamic evolution of SCLC subtypes. In neuroendocrine cells, MYC activates Notch to dedifferentiate tumor cells, promoting a temporal shift in SCLC from ASCL1+ to NEUROD1+ to YAP1+ states. MYC alternatively promotes POU2F3+ tumors from a distinct cell type. Human SCLC exhibits intratumoral subtype heterogeneity, suggesting that this dynamic evolution occurs in patient tumors. These findings suggest that genetics, cell of origin, and tumor cell plasticity determine SCLC subtype.
Collapse
Affiliation(s)
- Abbie S Ireland
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexi M Micinski
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - David W Kastner
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Bingqian Guo
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Sarah J Wait
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyle B Spainhower
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher C Conley
- Huntsman Cancer Institute Bioinformatic Analysis Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Opal S Chen
- Huntsman Cancer Institute High-Throughput Genomics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew R Guthrie
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Danny Soltero
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Yi Qiao
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Xiaomeng Huang
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Szabolcs Tarapcsák
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Siddhartha Devarakonda
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Milind D Chalishazar
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Justin C Moser
- HonorHealth Research Institute, Scottsdale, AZ 85254, USA
| | - Gabor Marth
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Sonam Puri
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Benjamin L Witt
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA; ARUP Laboratories at University of Utah, Salt Lake City, UT 84108, USA
| | - Benjamin T Spike
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
141
|
Vue TY, Kollipara RK, Borromeo MD, Smith T, Mashimo T, Burns DK, Bachoo RM, Johnson JE. ASCL1 regulates neurodevelopmental transcription factors and cell cycle genes in brain tumors of glioma mouse models. Glia 2020; 68:2613-2630. [PMID: 32573857 PMCID: PMC7587013 DOI: 10.1002/glia.23873] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022]
Abstract
Glioblastomas (GBMs) are incurable brain tumors with a high degree of cellular heterogeneity and genetic mutations. Transcription factors that normally regulate neural progenitors and glial development are aberrantly coexpressed in GBM, conferring cancer stem‐like properties to drive tumor progression and therapeutic resistance. However, the functional role of individual transcription factors in GBMs in vivo remains elusive. Here, we demonstrate that the basic‐helix–loop–helix transcription factor ASCL1 regulates transcriptional targets that are central to GBM development, including neural stem cell and glial transcription factors, oncogenic signaling molecules, chromatin modifying genes, and cell cycle and mitotic genes. We also show that the loss of ASCL1 significantly reduces the proliferation of GBMs induced in the brain of a genetically relevant glioma mouse model, resulting in extended survival times. RNA‐seq analysis of mouse GBM tumors reveal that the loss of ASCL1 is associated with downregulation of cell cycle genes, illustrating an important role for ASCL1 in controlling the proliferation of GBM.
Collapse
Affiliation(s)
- Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rahul K Kollipara
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mark D Borromeo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tyler Smith
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tomoyuki Mashimo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dennis K Burns
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert M Bachoo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
142
|
Ikematsu Y, Tanaka K, Toyokawa G, Ijichi K, Ando N, Yoneshima Y, Iwama E, Inoue H, Tagawa T, Nakanishi Y, Okamoto I. NEUROD1 is highly expressed in extensive-disease small cell lung cancer and promotes tumor cell migration. Lung Cancer 2020; 146:97-104. [PMID: 32526603 DOI: 10.1016/j.lungcan.2020.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Small cell lung cancer (SCLC) manifests high-grade neuroendocrine features, and the transcription factors ASCL1 and NEUROD1 play an important role in the survival and growth as well as contribute to the heterogeneity of SCLC cells. The relative abundance of ASCL1 and NEUROD1 mRNAs differs among human SCLC cell lines, but the expression pattern of the encoded proteins in clinical SCLC specimens and its relation to clinicopathologic characteristics of patients have been unclear. MATERIALS AND METHODS We retrospectively analyzed tumor specimens collected from 95 previously untreated SCLC patients between June 1988 and December 2017 for ASCL1 and NEUROD1 expression by immunohistochemical staining. We also examined the effects of overexpression or depletion of NEUROD1 on cell migration in SCLC cell lines. RESULTS Overall survival did not differ significantly between SCLC patients with a high or low expression score for ASCL1 or NEUROD1 in their tumor samples. The staining score for NEUROD1 was significantly higher in extensive-disease (ED) samples than in limited-disease (LD) samples (median of 160 versus 80 out of a maximum of 300, P = 0.0389), and the proportion of tumors with an ASCL1highNEUROD1low phenotype was smaller for ED-SCLC. Overexpression or depletion of NEUROD1 in SCLC cell lines promoted or attenuated cell migratory activity, respectively. CONCLUSION Our clinical and experimental data indicate that the expression of NEUROD1 is increased in ED-SCLC and promotes the migration of SCLC cells. NEUROD1 might thus contribute to metastasis in ED-SCLC.
Collapse
Affiliation(s)
- Yuki Ikematsu
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Tanaka
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Goji Toyokawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kayo Ijichi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhisa Ando
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuto Yoneshima
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Iwama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Inoue
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuzo Tagawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoichi Nakanishi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Isamu Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
143
|
Wu Y, Liu Y, Sun C, Wang H, Zhao S, Li W, Chen B, Wang L, Ye L, He Y, Zhou C. Immunotherapy as a treatment for small cell lung cancer: a case report and brief review. Transl Lung Cancer Res 2020; 9:393-400. [PMID: 32420081 PMCID: PMC7225158 DOI: 10.21037/tlcr.2020.03.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Small cell lung cancer (SCLC), an aggressive disease characterized by rapid progression, early relapse and widespread metastasis, accounts for about 13–15% of lung cancer cases. Despite its initial sensitivity to chemotherapy and radiotherapy, SCLC commonly develops resistance to these treatments and, as such, has high recurrence rates. In recent years, immunotherapy has shown promising antitumor activity and the approach to tumor treatment has been changed, in particular, by programmed death receptor-1/ligand 1 (PD-1/L1) and cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) checkpoint inhibitors. SCLC has high immunogenicity, a high mutation burden, and other favorable immune factors, meaning immune checkpoint inhibitors (ICIs) could become a breakthrough in the treatment of SCLC. In our case report, we found that ICIs resulted in partial response (PR), and in our review, we focused on clinical trials of immunotherapy, especially in relation to ICIs in SCLC.
Collapse
Affiliation(s)
- Yan Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Yu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China.,Department of Medical School, Tongji University, Shanghai 200433, China
| | - Chenglong Sun
- Medical College of Soochow University, Suzhou 215006, China.,Department of Radiation Oncology Department, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China.,Department of Medical School, Tongji University, Shanghai 200433, China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Bin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Lei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Lingyun Ye
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China.,Department of Medical School, Tongji University, Shanghai 200433, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
144
|
Clonal Evolution and Heterogeneity of Osimertinib Acquired Resistance Mechanisms in EGFR Mutant Lung Cancer. CELL REPORTS MEDICINE 2020; 1. [PMID: 32483558 PMCID: PMC7263628 DOI: 10.1016/j.xcrm.2020.100007] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Clonal evolution of osimertinib-resistance mechanisms in EGFR mutant lung adenocarcinoma is poorly understood. Using multi-region whole-exome and RNA sequencing of prospectively collected pre- and post-osimertinib-resistant tumors, including at rapid autopsies, we identify a likely mechanism driving osimertinib resistance in all patients analyzed. The majority of patients acquire two or more resistance mechanisms either concurrently or in temporal sequence. Focal copy-number amplifications occur subclonally and are spatially and temporally separated from common resistance mutations such as EGFR C797S. MET amplification occurs in 66% (n = 6/9) of first-line osimertinib-treated patients, albeit spatially heterogeneous, often co-occurs with additional acquired focal copy-number amplifications and is associated with early progression. Noteworthy osimertinib-resistance mechanisms discovered include neuroendocrine differentiation without histologic transformation, PD-L1, KRAS amplification, and ESR1-AKAP12, MKRN1-BRAF fusions. The subclonal co-occurrence of acquired genomic alterations upon osimertinib resistance will likely require targeting multiple resistance mechanisms by combination therapies. Two or more subclonal genomic alterations are acquired upon osimertinib resistance 66% of first-line osimertinib-treated patients acquire MET amplification Acquired focal copy-number alterations are associated with early progression Neuroendocrine differentiation with NSCLC histology is revealed by RNA-seq analysis
Collapse
|
145
|
Simpson KL, Stoney R, Frese KK, Simms N, Rowe W, Pearce SP, Humphrey S, Booth L, Morgan D, Dynowski M, Trapani F, Catozzi A, Revill M, Helps T, Galvin M, Girard L, Nonaka D, Carter L, Krebs MG, Cook N, Carter M, Priest L, Kerr A, Gazdar AF, Blackhall F, Dive C. A biobank of small cell lung cancer CDX models elucidates inter- and intratumoral phenotypic heterogeneity. NATURE CANCER 2020; 1:437-451. [PMID: 35121965 DOI: 10.1038/s43018-020-0046-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/26/2020] [Indexed: 12/17/2022]
Abstract
Although small cell lung cancer (SCLC) is treated as a homogeneous disease, biopsies and preclinical models reveal heterogeneity in transcriptomes and morphology. SCLC subtypes were recently defined by neuroendocrine transcription factor (NETF) expression. Circulating-tumor-cell-derived explant models (CDX) recapitulate donor patients' tumor morphology, diagnostic NE marker expression and chemotherapy responses. We describe a biobank of 38 CDX models, including six CDX pairs generated pretreatment and at disease progression revealing complex intra- and intertumoral heterogeneity. Transcriptomic analysis confirmed three of four previously described subtypes based on ASCL1, NEUROD1 and POU2F3 expression and identified a previously unreported subtype based on another NETF, ATOH1. We document evolution during disease progression exemplified by altered MYC and NOTCH gene expression, increased 'variant' cell morphology, and metastasis without strong evidence of epithelial to mesenchymal transition. This CDX biobank provides a research resource to facilitate SCLC personalized medicine.
Collapse
Affiliation(s)
- Kathryn L Simpson
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Ruth Stoney
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Kristopher K Frese
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Nicole Simms
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - William Rowe
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Simon P Pearce
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Sam Humphrey
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Laura Booth
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Derrick Morgan
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Marek Dynowski
- Scientific Computing Core Facility, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Francesca Trapani
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Alessia Catozzi
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Mitchell Revill
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Thomas Helps
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Melanie Galvin
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Louise Carter
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Matthew G Krebs
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Natalie Cook
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mathew Carter
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Lynsey Priest
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Alastair Kerr
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Adi F Gazdar
- Hamon Center for Therapeutic Oncology Research, Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Fiona Blackhall
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK
| | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK.
| |
Collapse
|
146
|
Stewart CA, Gay CM, Xi Y, Sivajothi S, Sivakamasundari V, Fujimoto J, Bolisetty M, Hartsfield PM, Balasubramaniyan V, Chalishazar MD, Moran C, Kalhor N, Stewart J, Tran H, Swisher SG, Roth JA, Zhang J, de Groot J, Glisson B, Oliver TG, Heymach JV, Wistuba I, Robson P, Wang J, Byers LA. Single-cell analyses reveal increased intratumoral heterogeneity after the onset of therapy resistance in small-cell lung cancer. NATURE CANCER 2020; 1:423-436. [PMID: 33521652 PMCID: PMC7842382 DOI: 10.1038/s43018-019-0020-z] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/12/2019] [Indexed: 01/10/2023]
Abstract
The natural history of small cell lung cancer (SCLC) includes rapid evolution from chemosensitivity to chemoresistance, although mechanisms underlying this evolution remain obscure due to scarcity of post-relapse tissue samples. We generated circulating tumor cell (CTC)-derived xenografts (CDXs) from SCLC patients to study intratumoral heterogeneity (ITH) via single-cell RNAseq of chemo-sensitive and -resistant CDXs and patient CTCs. We found globally increased ITH including heterogeneous expression of therapeutic targets and potential resistance pathways, such as EMT, between cellular subpopulations following treatment-resistance. Similarly, serial profiling of patient CTCs directly from blood confirmed increased ITH post-relapse. These data suggest that treatment-resistance in SCLC is characterized by coexisting subpopulations of cells with heterogeneous gene expression leading to multiple, concurrent resistance mechanisms. These findings emphasize the need for clinical efforts to focus on rational combination therapies for treatment-naïve SCLC tumors to maximize initial responses and counteract the emergence of ITH and diverse resistance mechanisms.
Collapse
Affiliation(s)
- C Allison Stewart
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohan Bolisetty
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Patrice M Hartsfield
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Milind D Chalishazar
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Cesar Moran
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neda Kalhor
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Stewart
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hai Tran
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bonnie Glisson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren Averett Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
147
|
Poirier JT, George J, Owonikoko TK, Berns A, Brambilla E, Byers LA, Carbone D, Chen HJ, Christensen CL, Dive C, Farago AF, Govindan R, Hann C, Hellmann MD, Horn L, Johnson JE, Ju YS, Kang S, Krasnow M, Lee J, Lee SH, Lehman J, Lok B, Lovly C, MacPherson D, McFadden D, Minna J, Oser M, Park K, Park KS, Pommier Y, Quaranta V, Ready N, Sage J, Scagliotti G, Sos ML, Sutherland KD, Travis WD, Vakoc CR, Wait SJ, Wistuba I, Wong KK, Zhang H, Daigneault J, Wiens J, Rudin CM, Oliver TG. New Approaches to SCLC Therapy: From the Laboratory to the Clinic. J Thorac Oncol 2020; 15:520-540. [PMID: 32018053 PMCID: PMC7263769 DOI: 10.1016/j.jtho.2020.01.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/12/2022]
Abstract
The outcomes of patients with SCLC have not yet been substantially impacted by the revolution in precision oncology, primarily owing to a paucity of genetic alterations in actionable driver oncogenes. Nevertheless, systemic therapies that include immunotherapy are beginning to show promise in the clinic. Although, these results are encouraging, many patients do not respond to, or rapidly recur after, current regimens, necessitating alternative or complementary therapeutic strategies. In this review, we discuss ongoing investigations into the pathobiology of this recalcitrant cancer and the therapeutic vulnerabilities that are exposed by the disease state. Included within this discussion, is a snapshot of the current biomarker and clinical trial landscapes for SCLC. Finally, we identify key knowledge gaps that should be addressed to advance the field in pursuit of reduced SCLC mortality. This review largely summarizes work presented at the Third Biennial International Association for the Study of Lung Cancer SCLC Meeting.
Collapse
Affiliation(s)
- John T Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, New York
| | - Julie George
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne Germany
| | | | - Anton Berns
- The Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | | | | | | | | | - Caroline Dive
- Cancer Research United Kingdom, Manchester Institute, Manchester, United Kingdom
| | - Anna F Farago
- Massachusetts General Hospital, Boston, Massachusetts
| | | | - Christine Hann
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Leora Horn
- Vanderbilt University, Nashville, Tennessee
| | | | | | - Sumin Kang
- Emory University, Winship Cancer Institute, Atlanta, Georgia
| | - Mark Krasnow
- Stanford University School of Medicine, Stanford, California
| | - James Lee
- The Ohio State University, Columbus, Ohio
| | - Se-Hoon Lee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | - Benjamin Lok
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | | | | | - John Minna
- UT Southwestern Medical Center, Dallas, Texas
| | - Matthew Oser
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Keunchil Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | - Yves Pommier
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | - Julien Sage
- Stanford University School of Medicine, Stanford, California
| | | | - Martin L Sos
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne Germany; Molecular Pathology, Institute of Pathology, University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Kate D Sutherland
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | | | | | - Sarah J Wait
- Huntsman Cancer Institute and University of Utah, Salt Lake City, Utah
| | | | - Kwok Kin Wong
- Perlmutter Cancer Center, New York University Langone Health, New York, New York
| | - Hua Zhang
- Perlmutter Cancer Center, New York University Langone Health, New York, New York
| | - Jillian Daigneault
- International Association for the Study of Lung Cancer, Aurora, Colorado
| | - Jacinta Wiens
- International Association for the Study of Lung Cancer, Aurora, Colorado
| | | | - Trudy G Oliver
- Huntsman Cancer Institute and University of Utah, Salt Lake City, Utah.
| |
Collapse
|
148
|
Significance of achaete-scute complex homologue 1 (ASCL1) in pulmonary neuroendocrine carcinomas; RNA sequence analyses using small cell lung cancer cells and Ascl1-induced pulmonary neuroendocrine carcinoma cells. Histochem Cell Biol 2020; 153:443-456. [PMID: 32170367 DOI: 10.1007/s00418-020-01863-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
ASCL1 is one of the master transcription factors of small cell lung carcinoma (SCLC). To investigate the significance of ASCL1 in pulmonary neuroendocrine carcinoma, we performed 2 comparative RNA-seq studies between H69 (ASCL1-positive, classical type SCLC) and H69AR (ASCL1-negative, variant type SCLC) and between ASCL1-transfected A549 adenocarcinoma cell lines (A549(ASCL1+) cell lines) and A549(control) cell lines. RNA-seq analyses revealed that 940 genes were significantly different between the H69 and H69AR cell lines, and 728 between the A549(ASCL1+) and A549(control) cell lines. In total, 120 common genes between these analyses were selected as candidate ASCL1-related genes, and included genes with various cellular functions, such as neural development, secretion, growth, and morphology. Their expression degrees in three classical and two variant SCLC cell lines, two A549(ASCL1+) and two A549(control) cell lines were subjected to quantitative PCR analyses. Since the candidate ASCL1-related genes were strongly expressed in the classical SCLC and A549(ASCL1+) cell lines and more weakly expressed in the variant SCLC and A549(control) cell lines, the ASCL1-related 7 molecules INSM1, ISL1, SYT4, KCTD16, SEZ6, MS4A8, and COBL were further selected. These molecules suggested diverse functions for A549(ASCL1+): INSM1 and ISL1 are transcription factors associated with neuroendocrine differentiation, while SYT4, KTCD16, and SEZ6 may be related to neurosecretory functions and MS4A8 and COBL to cell growth and morphology. An immunohistochemistry of these seven molecules was performed on lung carcinoma tissues and the xenotransplanted tumors of A549(ASCL1+), and they were preferentially and positively stained in ASCL1-postive tumor tissues.
Collapse
|
149
|
Rubio K, Castillo-Negrete R, Barreto G. Non-coding RNAs and nuclear architecture during epithelial-mesenchymal transition in lung cancer and idiopathic pulmonary fibrosis. Cell Signal 2020; 70:109593. [PMID: 32135188 DOI: 10.1016/j.cellsig.2020.109593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022]
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths worldwide. On the other hand, idiopathic pulmonary fibrosis (IPF) is the most common interstitial lung disease showing a prevalence of 20 new cases per 100,000 persons per year. Despite differences in cellular origin and pathological phenotypes, LC and IPF are lung diseases that share common features, including hyperproliferation of specific cell types in the lung, involvement of epithelial-mesenchymal transition (EMT) and enhanced activity of signaling pathways, such as tissue growth factor (TGFB), epidermal growth factor (EGF), fibroblast growth factor (FGF), wingless secreted glycoprotein (WNT) signaling, among others. EMT is a process during which epithelial cells lose their cell polarity and cell-cell adhesion, and acquire migratory and invasive properties to become mesenchymal cells. EMT involves numerous morphological hallmarks of hyperproliferative diseases, like cell plasticity, resistance to apoptosis, dedifferentiation and proliferation, thereby playing a central role during organ fibrosis and cancer progression. EMT was considered as an "all-or-none" process. In contrast to these outdated dichotomist interpretations, recent reports suggest that EMT occurs gradually involving different epithelial cell intermediate states with mesenchyme-like characteristics. These cell intermediate states of EMT differ from each other in their cell plasticity, invasiveness and metastatic potential, which in turn are induced by signals from their microenvironment. EMT is regulated by several transcription factors (TFs), which are members of prominent families of master regulators of transcription. In addition, there is increasing evidence for the important contribution of noncoding RNAs (ncRNAs) to EMT. In our review we highlight articles dissecting the function of different ncRNAs subtypes and nuclear architecture in cell intermediate states of EMT, as well as their involvement in LC and IPF.
Collapse
Affiliation(s)
- Karla Rubio
- Brain and Lung Epigenetics (BLUE), Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris-Est Créteil (UPEC), 94010 Créteil, France; Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Parkstraße 1, 61231 Bad Nauheim, Germany
| | - Rafael Castillo-Negrete
- Brain and Lung Epigenetics (BLUE), Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris-Est Créteil (UPEC), 94010 Créteil, France; Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Parkstraße 1, 61231 Bad Nauheim, Germany
| | - Guillermo Barreto
- Brain and Lung Epigenetics (BLUE), Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris-Est Créteil (UPEC), 94010 Créteil, France; Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, Parkstraße 1, 61231 Bad Nauheim, Germany; Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russian Federation; Universities of Giessen and Marburg Lung Center (UGMLC), The German Center of Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Germany.
| |
Collapse
|
150
|
Sui JSY, Martin P, Gray SG. Pre-clinical models of small cell lung cancer and the validation of therapeutic targets. Expert Opin Ther Targets 2020; 24:187-204. [PMID: 32068452 DOI: 10.1080/14728222.2020.1732353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Small-cell lung cancer (SCLC) is an aggressive form of lung cancer that has a dismal prognosis. One of the factors hindering therapeutic developments for SCLC is that most SCLC is not surgically resected resulting in a paucity of material for analysis. To address this, significant efforts have been made by investigators to develop pre-clinical models of SCLC allowing for downstream target identification in this difficult to treat cancer.Areas covered: In this review, we describe the current pre-clinical models that have been developed to interrogate SCLC, and outline the benefits and limitations associated with each. Using examples we show how each has been used to (i) improve our knowledge of this intractable cancer, and (ii) identify and validate potential therapeutic targets that (iii) are currently under development and testing within the clinic.Expert opinion: The large numbers of preclinical models that have been developed have dramatically improved the ways in which we can examine SCLC and test therapeutic targets/interventions. The newer models are rapidly providing novel avenues for the design and testing of new therapeutics. Despite this many of these models have inherent flaws that limit the possibility of their use for individualized therapy decision-making for SCLC.
Collapse
Affiliation(s)
- Jane S Y Sui
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, Ireland.,Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Petra Martin
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, Ireland.,Labmed Directorate, St. James's Hospital, Dublin, Ireland.,School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|