101
|
Bao W, Liu R, Wang Y, Wang F, Xia G, Zhang H, Li X, Yin H, Chen B. PLGA-PLL-PEG-Tf-based targeted nanoparticles drug delivery system enhance antitumor efficacy via intrinsic apoptosis pathway. Int J Nanomedicine 2015; 10:557-66. [PMID: 25609961 PMCID: PMC4298335 DOI: 10.2147/ijn.s75090] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chemotherapy offers a systemic cancer treatment; however, it is limited in clinical administration due to its serious side effects. In cancer medicine, the use of nanoparticles (NPs) drug delivery system (DDS) can sustainedly release anticancer drug at the specific site and reduce the incidence of toxicity in normal tissues. In the present study, we aimed to evaluate the benefit of a novel chemotherapeutic DDS and its underlying mechanisms. Daunorubicin (DNR) was loaded into poly (lactic-co-glycolic acid) (PLGA)-poly-L-lysine (PLL)-polyethylene glycol (PEG)-transferrin (Tf) NPs to construct DNR-PLGA-PLL-PEG-Tf-NPs (DNR-loaded NPs) as a DDS. After incubating with PLGA-PLL-PEG-Tf-NPs, DNR, and DNR-loaded NPs, the leukemia K562 cells were collected and the intracellular concentration of DNR was detected by flow cytometry, respectively. Furthermore, the effect of drugs on the growth of tumors in K562 xenografts was observed and the relevant toxicity of therapeutic drugs on organs was investigated in vivo. Meanwhile, cell apoptosis in the excised xenografts was measured by transferase-mediated dUTP nick-end labeling assay, and the expression of apoptosis-related proteins, including Bcl-2, Bax, Caspase-9, Caspase-3, and cleaved-PARP, was determined by Western blotting analysis. Results showed that DNR-loaded NPs increased intracellular concentration of DNR in K562 cells in vitro and induced a remarkable improvement in anticancer activity in the xenografts in vivo. The expression of Bcl-2 protein was downregulated and that of Bax, Caspase-9, Caspase-3, and cleaved-PARP proteins were obviously upregulated in the DNR-loaded NPs group than that in other ones. Interestingly, pathological assessment showed no apparent damage to the main organs. In summary, the results obtained from this study showed that the novel NPs DDS could improve the efficacy of DNR in the treatment of leukemia and induce apoptosis via intrinsic pathway. Thus, it can be inferred that the new drug delivery may be a useful clinical tool.
Collapse
Affiliation(s)
- Wen Bao
- Department of Hematology and Oncology, Key Medical Disciplines of Jiangsu Province, Zhongda Hospital, Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Ran Liu
- Department of Hematology and Oncology, Key Medical Disciplines of Jiangsu Province, Zhongda Hospital, Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Yonglu Wang
- Department of Hematology and Oncology, Key Medical Disciplines of Jiangsu Province, Zhongda Hospital, Medical School of Southeast University, Nanjing, People’s Republic of China
- College of Pharmacy, Nanjing University of Technology, Nanjing, People’s Republic of China
| | - Fei Wang
- Department of Hematology and Oncology, Key Medical Disciplines of Jiangsu Province, Zhongda Hospital, Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Guohua Xia
- Department of Hematology and Oncology, Key Medical Disciplines of Jiangsu Province, Zhongda Hospital, Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Haijun Zhang
- Department of Hematology and Oncology, Key Medical Disciplines of Jiangsu Province, Zhongda Hospital, Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Xueming Li
- College of Pharmacy, Nanjing University of Technology, Nanjing, People’s Republic of China
| | - Haixiang Yin
- College of Pharmacy, Nanjing University of Technology, Nanjing, People’s Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology, Key Medical Disciplines of Jiangsu Province, Zhongda Hospital, Medical School of Southeast University, Nanjing, People’s Republic of China
| |
Collapse
|
102
|
Pickard AJ, Liu F, Bartenstein TF, Haines LG, Levine KE, Kucera GL, Bierbach U. Redesigning the DNA-targeted chromophore in platinum-acridine anticancer agents: a structure-activity relationship study. Chemistry 2014; 20:16174-87. [PMID: 25302716 PMCID: PMC4244275 DOI: 10.1002/chem.201404845] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Indexed: 01/07/2023]
Abstract
Platinum-acridine hybrid agents show low-nanomolar potency in chemoresistant non-small cell lung cancer (NSCLC), but high systemic toxicity in vivo. To reduce the promiscuous genotoxicity of these agents and improve their pharmacological properties, a modular build-click-screen approach was used to evaluate a small library of twenty hybrid agents containing truncated and extended chromophores of varying basicities. Selected derivatives were resynthesized and tested in five NSCLC cell lines representing large cell, squamous cell, and adenocarcinomas. 7-Aminobenz[c]acridine was identified as a promising scaffold in a hybrid agent (P1-B1) that maintained submicromolar activity in several of the DNA-repair proficient and p53-mutant cancer models, while showing improved tolerability in mice by 32-fold compared to the parent platinum-acridine (P1-A1). The distribution and DNA/RNA adduct levels produced by the acridine- and benz[c]acridine-based analogues in NCI-H460 cells (confocal microscopy, ICP-MS), and their ability to bind G-quadruplex forming DNA sequences (CD spectroscopy, HR-ESMS) were studied. P1-B1 emerges as a less genotoxic, more tolerable, and potentially more target-selective hybrid agent than P1-A1.
Collapse
Affiliation(s)
- Amanda J. Pickard
- Department of Chemistry, Wake Forest University Winston-Salem, NC 27109 (USA)
| | - Fang Liu
- Department of Chemistry, Wake Forest University Winston-Salem, NC 27109 (USA)
| | | | | | | | - Gregory L. Kucera
- Department of Internal Medicine, Section on Hematology and Oncology Wake Forest University Health Sciences Winston-Salem, NC 27157 (USA)
| | - Ulrich Bierbach
- Department of Chemistry, Wake Forest University Winston-Salem, NC 27109 (USA)
| |
Collapse
|
103
|
Impairment of lysosomal activity as a therapeutic modality targeting cancer stem cells of embryonal rhabdomyosarcoma cell line RD. PLoS One 2014; 9:e110340. [PMID: 25329465 PMCID: PMC4203792 DOI: 10.1371/journal.pone.0110340] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/21/2014] [Indexed: 12/23/2022] Open
Abstract
Rhabdomyosarcoma is the most frequent soft tissue sarcoma in children and adolescents, with a high rate of relapse that dramatically affects the clinical outcome. Multiagent chemotherapy, in combination with surgery and/or radiation therapy, is the treatment of choice. However, the relapse rate is disappointingly high and identification of new therapeutic tools is urgently needed. Under this respect, the selective block of key features of cancer stem cells (CSC) appears particularly promising. In this study, we isolated rhabdomyosarcoma CSC with stem-like features (high expression of NANOG and OCT3/4, self-renewal ability, multipotency). Rhabdomyosarcoma CSC showed higher invasive ability and a reduced cytotoxicity to doxorubicin in comparison to native cells, through a mechanism unrelated to the classical multidrug resistance process. This was dependent on a high level of lysosome acidity mediated by a high expression of vacuolar ATPase (V-ATPase). Since it was not associated with other paediatric cancers, like Ewing’s sarcoma and neuroblastoma, V-ATPase higher expression in CSC was rhabdomyosarcoma specific. Inhibition of lysosomal acidification by the V-ATPase inhibitor omeprazole, or by specific siRNA silencing, significantly enhanced doxorubicin cytoxicity. Unexpectedly, lysosomal targeting also blocked cell growth and reduced the invasive potential of rhabdomyosarcoma CSC, even at very low doses of omeprazole (10 and 50 µM, respectively). Based on these observations, we propose lysosome acidity as a valuable target to enhance chemosensitivity of rhabdomyosarcoma CSC, and suggest the use of anti-V-ATPase agents in combination with standard regimens as a promising tool for the eradication of minimal residual disease or the prevention of metastatic disease.
Collapse
|
104
|
Zhuang H, Zhao X, Zhao L, Chang JY, Wang P. Progress of clinical research on targeted therapy combined with thoracic radiotherapy for non-small-cell lung cancer. Drug Des Devel Ther 2014; 8:667-75. [PMID: 24936128 PMCID: PMC4047835 DOI: 10.2147/dddt.s61977] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The combination of radiotherapy and targeted therapy is an important approach in the application of targeted therapy in clinical practice, and represents an important opportunity for the development of radiotherapy itself. Numerous agents, including epidermal growth factor receptor, monoclonal antibodies, tyrosine kinase inhibitors, and antiangiogenic therapies, have been used for targeted therapy. A number of studies of radiotherapy combined with targeted therapy in non-small-cell lung carcinoma have been completed or are ongoing. This paper briefly summarizes the drugs involved and the important related clinical research, and indicates that considerable progress has been made with the joint efforts of the two disciplines. Many issues, including drug selection, identification of populations most likely to benefit, timing of administration of medication, and side effects of treatment require further investigation. However, further fundamental research and accumulation of clinical data will provide a more comprehensive understanding of these therapies. Targeted therapy in combination with radiotherapy has a bright future.
Collapse
Affiliation(s)
- Hongqing Zhuang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, and Tianjin Lung Cancer Center, Tianjin, People’s Republic of China
| | - Xianzhi Zhao
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, and Tianjin Lung Cancer Center, Tianjin, People’s Republic of China
| | - Lujun Zhao
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, and Tianjin Lung Cancer Center, Tianjin, People’s Republic of China
| | - Joe Y Chang
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Wang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, and Tianjin Lung Cancer Center, Tianjin, People’s Republic of China
| |
Collapse
|