101
|
Joshi H, Seniya SP, Suryanarayanan V, Patidar ND, Singh SK, Jain V. Dissecting the structure-function relationship in lysozyme domain of mycobacteriophage D29-encoded peptidoglycan hydrolase. FEBS Lett 2017; 591:3276-3287. [PMID: 28901529 DOI: 10.1002/1873-3468.12848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/31/2022]
Abstract
Most bacteriophages rapidly infect and kill bacteria and, therefore, qualify as the next generation therapeutics for rapidly emerging drug-resistant bacteria such as Mycobacterium tuberculosis. We have previously characterized the mycobacteriophage D29-generated endolysin, Lysin A, for its activity against mycobacteria. Here, we present a detailed characterization of the lysozyme domain (LD) of D29 Lysin A that hydrolyzes peptidoglycan of both gram-positive and gram-negative bacteria with high potency. By characterizing an exhaustive LD protein variant library, we have identified critical residues important for LD activity and stability. We further complement our in vitro experiments with detailed in silico investigations. We present LD as a potent candidate for developing phage-based broad-spectrum therapeutics.
Collapse
Affiliation(s)
- Himanshu Joshi
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Surya P Seniya
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Venkatesan Suryanarayanan
- Computer Aided Drug Designing and Molecular Modeling Laboratory, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Neelam D Patidar
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Sanjeev K Singh
- Computer Aided Drug Designing and Molecular Modeling Laboratory, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| |
Collapse
|
102
|
Yan G, Liu J, Ma Q, Zhu R, Guo Z, Gao C, Wang S, Yu L, Gu J, Hu D, Han W, Du R, Yang J, Lei L. The N-terminal and central domain of colicin A enables phage lysin to lyse Escherichia coli extracellularly. Antonie van Leeuwenhoek 2017; 110:1627-1635. [DOI: 10.1007/s10482-017-0912-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/12/2017] [Indexed: 11/29/2022]
|
103
|
Recent advances in therapeutic delivery systems of bacteriophage and bacteriophage-encoded endolysins. Ther Deliv 2017. [DOI: 10.4155/tde-2017-0040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Antibiotics have been the cornerstone of clinical management of bacterial infection since their discovery in the early 20th century. However, their widespread and often indiscriminate use has now led to reports of multidrug resistance becoming globally commonplace. Bacteriophage therapy has undergone a recent revival in battle against pathogenic bacteria, as the self-replicating and co-evolutionary features of these predatory virions offer several advantages over conventional therapeutic agents. In particular, the use of targeted bacteriophage therapy from specialized delivery platforms has shown particular promise owing to the control of delivery location, administration conditions and dosage of the therapeutic cargo. This review presents an overview of the recent formulations and applications of such delivery vehicles as an innovative and elegant tool for bacterial control.
Collapse
|
104
|
Wu X, Kwon SJ, Kim J, Kane RS, Dordick JS. Biocatalytic Nanocomposites for Combating Bacterial Pathogens. Annu Rev Chem Biomol Eng 2017; 8:87-113. [DOI: 10.1146/annurev-chembioeng-060816-101612] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xia Wu
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ravi S. Kane
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
| |
Collapse
|
105
|
Himatanthus drasticus Leaves: Chemical Characterization and Evaluation of Their Antimicrobial, Antibiofilm, Antiproliferative Activities. Molecules 2017; 22:molecules22060910. [PMID: 28561790 PMCID: PMC6152732 DOI: 10.3390/molecules22060910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 05/25/2017] [Accepted: 05/27/2017] [Indexed: 12/14/2022] Open
Abstract
Plant-derived products have played a fundamental role in the development of new therapeutic agents. This study aimed to analyze antimicrobial, antibiofilm, cytotoxicity and antiproliferative potentials of the extract and fractions from leaves of Himatanthusdrasticus, a plant from the Apocynaceae family. After harvesting, H. drasticus leaves were macerated and a hydroalcoholic extract (HDHE) and fractions were prepared. Antimicrobial tests, such as agar-diffusion, Minimum Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) were carried out against several bacterial species. Staphylococcus aureus, Pseudomonas aeruginosa, Listeria monocytogenes and Klebsiella pneumoniae were inhibited by at least one extract or fraction in the agar-diffusion assay (inhibition halos from 12 mm to 30 mm). However, the lowest MIC value was found for HDHE against K. pneumoniae. In addition, HDHE and its fractions were able to inhibit biofilm formation at sub-inhibitory concentrations (780 µg/mL and 1.56 µg/mL). As the best activities were found for HDHE, we selected it for further assays. HDHE was able to increase ciprofloxacin (CIP) activity against K. pneumoniae, displaying synergistic (initial concentration CIP + HDHE: 2 µg/mL + 600 µg/mL and 2.5 µg/mL + 500 µg/mL) and additive effects (CIP + HDHE: 3 µg/mL + 400 µg/mL). This action seems to be associated with the alteration in bacterial membrane permeability induced by HDHE (as seen by propidium iodide labeling). This extract was non-toxic for red blood cell or human peripheral blood mononuclear cells (PBMCs). Additionally, it inhibited the lipopolysaccharide-induced proliferation of PBMCs. The following compounds were detected in HDHE using HPLC-ESI-MS analysis: plumieride, plumericin or isoplumericin, rutin, quercetin and derivatives, and chlorogenic acid. Based on these results we suggest that compounds from H. drasticus have antimicrobial and antibiofilm activities against K. pneumoniae and display low cytotoxicity and anti-proliferative action in PBMC stimulated with lipopolysaccharide.
Collapse
|
106
|
Bacteriophages and Their Immunological Applications against Infectious Threats. J Immunol Res 2017; 2017:3780697. [PMID: 28484722 PMCID: PMC5412166 DOI: 10.1155/2017/3780697] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/19/2017] [Indexed: 01/06/2023] Open
Abstract
Bacteriophage therapy dates back almost a century, but the discovery of antibiotics led to a rapid decline in the interests and investments within this field of research. Recently, the novel threat of multidrug-resistant bacteria highlighted the alarming drop in research and development of new antibiotics: 16 molecules were discovered during 1983–87, 10 new therapeutics during the nineties, and only 5 between 2003 and 2007. Phages are therefore being reconsidered as alternative therapeutics. Phage display technique has proved to be extremely promising for the identification of effective antibodies directed against pathogens, as well as for vaccine development. At the same time, conventional phage therapy uses lytic bacteriophages for treatment of infections and recent clinical trials have shown great potential. Moreover, several other approaches have been developed in vitro and in vivo using phage-derived proteins as antibacterial agents. Finally, their use has also been widely considered for public health surveillance, as biosensor phages can be used to detect food and water contaminations and prevent bacterial epidemics. These novel approaches strongly promote the idea that phages and their proteins can be exploited as an effective weapon in the near future, especially in a world which is on the brink of a “postantibiotic era.”
Collapse
|
107
|
The antibacterial activity of E. coli bacteriophage lysin lysep3 is enhanced by fusing the Bacillus amyloliquefaciens bacteriophage endolysin binding domain D8 to the C-terminal region. J Microbiol 2017; 55:403-408. [DOI: 10.1007/s12275-017-6431-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 01/21/2023]
|
108
|
Carvalho C, Costa AR, Silva F, Oliveira A. Bacteriophages and their derivatives for the treatment and control of food-producing animal infections. Crit Rev Microbiol 2017; 43:583-601. [DOI: 10.1080/1040841x.2016.1271309] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carla Carvalho
- CEB-UM: Centre of Biological Engineering, University of Minho, Braga, Portugal
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Ana Rita Costa
- CEB-UM: Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Filipe Silva
- CECAV-UTAD, Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Ana Oliveira
- CEB-UM: Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
109
|
Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front Cell Infect Microbiol 2016; 6:194. [PMID: 28083516 PMCID: PMC5186781 DOI: 10.3389/fcimb.2016.00194] [Citation(s) in RCA: 1127] [Impact Index Per Article: 125.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides, are short and generally positively charged peptides found in a wide variety of life forms from microorganisms to humans. Most AMPs have the ability to kill microbial pathogens directly, whereas others act indirectly by modulating the host defense systems. Against a background of rapidly increasing resistance development to conventional antibiotics all over the world, efforts to bring AMPs into clinical use are accelerating. Several AMPs are currently being evaluated in clinical trials as novel anti-infectives, but also as new pharmacological agents to modulate the immune response, promote wound healing, and prevent post-surgical adhesions. In this review, we provide an overview of the biological role, classification, and mode of action of AMPs, discuss the opportunities and challenges to develop these peptides for clinical applications, and review the innovative formulation strategies for application of AMPs.
Collapse
Affiliation(s)
- Margit Mahlapuu
- Promore Pharma AB, Karolinska Institutet Science ParkSolna, Sweden; The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at University of GothenburgGothenburg, Sweden
| | - Joakim Håkansson
- SP Technical Research Institute of Sweden, Chemistry, Materials, and Surfaces Borås, Sweden
| | - Lovisa Ringstad
- SP Technical Research Institute of Sweden, Chemistry, Materials, and Surfaces Borås, Sweden
| | - Camilla Björn
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at University of GothenburgGothenburg, Sweden; SP Technical Research Institute of Sweden, Chemistry, Materials, and SurfacesBorås, Sweden
| |
Collapse
|
110
|
Ma Q, Guo Z, Gao C, Zhu R, Wang S, Yu L, Qin W, Xia X, Gu J, Yan G, Lei L. Enhancement of the direct antimicrobial activity of Lysep3 against Escherichia coli by inserting cationic peptides into its C terminus. Antonie van Leeuwenhoek 2016; 110:347-355. [DOI: 10.1007/s10482-016-0806-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/15/2016] [Indexed: 01/22/2023]
|
111
|
From endolysins to Artilysin®s: novel enzyme-based approaches to kill drug-resistant bacteria. Biochem Soc Trans 2016; 44:123-8. [PMID: 26862197 DOI: 10.1042/bst20150192] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
One of the last untapped reservoirs in nature for the identification of new anti-microbials is bacteriophages, the natural killers of bacteria. Lytic bacteriophages encode peptidoglycan (PG) lytic enzymes able to degrade the PG layer in different steps of their infection cycle. Endolysins degrade the bacterial cell wall at the end of the infection cycle, causing lysis of the host to release the viral progeny. Recombinant endolysins have been successfully applied as anti-bacterial agent against antibiotic-resistant Gram-positive pathogens. This has boosted the study of these enzymes as new anti-microbials in different fields (e.g. medical, food technology). A key example is the recent development of endolysin-based anti-bacterials against Gram-negative pathogens in which the exogenous application of endolysins is hindered by the outer membrane (OM). These novel anti-microbials, termed Artilysin®s, are able to pass through the OM and reach the PG where they exert their action. In addition, mycobacteria whose cell wall is structurally different from both Gram-positive and Gram-negative bacteria have also been reported to be inhibited by mycobacteriophage-encoded endolysins. Endolysins and endolysin-based anti-microbials can be considered as ideal candidates for an alternative to antibiotics for several reasons: (1) their unique mode of action and activity against bacterial persisters (independent of an active host metabolism), (2) their selective activity against both Gram-positive and Gram-negative pathogens (including antibiotic resistant strains) and mycobacteria, (3) the limited resistance development reported so far. The present review summarizes and discusses the potential applications of endolysins as new anti-microbials.
Collapse
|
112
|
'Artilysation' of endolysin λSa2lys strongly improves its enzymatic and antibacterial activity against streptococci. Sci Rep 2016; 6:35382. [PMID: 27775093 PMCID: PMC5075790 DOI: 10.1038/srep35382] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/23/2016] [Indexed: 11/08/2022] Open
Abstract
Endolysins constitute a promising class of antibacterials against Gram-positive bacteria. Recently, endolysins have been engineered with selected peptides to obtain a new generation of lytic proteins, Artilysins, with specific activity against Gram-negative bacteria. Here, we demonstrate that artilysation can also be used to enhance the antibacterial activity of endolysins against Gram-positive bacteria and to reduce the dependence on external conditions. Art-240, a chimeric protein of the anti-streptococcal endolysin λSa2lys and the polycationic peptide PCNP, shows a similar species specificity as the parental endolysin, but the bactericidal activity against streptococci increases and is less affected by elevated NaCl concentrations and pH variations. Time-kill experiments and time-lapse microscopy demonstrate that the killing rate of Art-240 is approximately two-fold higher compared to wildtype endolysin λSa2lys, with a reduction in viable bacteria of 3 log units after 10 min. In addition, lower doses of Art-240 are required to achieve the same bactericidal effect.
Collapse
|
113
|
Moraïs S, Cockburn DW, Ben-David Y, Koropatkin NM, Martens EC, Duncan SH, Flint HJ, Mizrahi I, Bayer EA. Lysozyme activity of theRuminococcus champanellensiscellulosome. Environ Microbiol 2016; 18:5112-5122. [DOI: 10.1111/1462-2920.13501] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 08/16/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Sarah Moraïs
- Biomolecular Sciences Department; The Weizmann Institute of Science; Rehovot Israel
| | - Darrell W. Cockburn
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor MI 48109 USA
| | - Yonit Ben-David
- Biomolecular Sciences Department; The Weizmann Institute of Science; Rehovot Israel
| | - Nicole M. Koropatkin
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor MI 48109 USA
| | - Eric C. Martens
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor MI 48109 USA
| | - Sylvia H. Duncan
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen; Aberdeen UK
| | - Harry J. Flint
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen; Aberdeen UK
| | - Itzhak Mizrahi
- The Department of Life Sciences & the National Institute for Biotechnology in the Negev; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Edward A. Bayer
- Biomolecular Sciences Department; The Weizmann Institute of Science; Rehovot Israel
| |
Collapse
|
114
|
DUF3380 Domain from a Salmonella Phage Endolysin Shows Potent N-Acetylmuramidase Activity. Appl Environ Microbiol 2016; 82:4975-81. [PMID: 27287318 DOI: 10.1128/aem.00446-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/02/2016] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Bacteriophage-encoded endolysins are highly diverse enzymes that cleave the bacterial peptidoglycan layer. Current research focuses on their potential applications in medicine, in food conservation, and as biotechnological tools. Despite the wealth of applications relying on the use of endolysin, little is known about the enzymatic properties of these enzymes, especially in the case of endolysins of bacteriophages infecting Gram-negative species. Automated genome annotations therefore remain to be confirmed. Here, we report the biochemical analysis and cleavage site determination of a novel Salmonella bacteriophage endolysin, Gp110, which comprises an uncharacterized domain of unknown function (DUF3380; pfam11860) in its C terminus and shows a higher specific activity (34,240 U/μM) than that of 14 previously characterized endolysins active against peptidoglycan from Gram-negative bacteria (corresponding to 1.7- to 364-fold higher activity). Gp110 is a modular endolysin with an optimal pH of enzymatic activity of pH 8 and elevated thermal resistance. Reverse-phase high-performance liquid chromatography (RP-HPLC) analysis coupled to mass spectrometry showed that DUF3380 has N-acetylmuramidase (lysozyme) activity cleaving the β-(1,4) glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine residues. Gp110 is active against directly cross-linked peptidoglycans with various peptide stem compositions, making it an attractive enzyme for developing novel antimicrobial agents. IMPORTANCE We report the functional and biochemical characterization of the Salmonella phage endolysin Gp110. This endolysin has a modular structure with an enzymatically active domain and a cell wall binding domain. The enzymatic activity of this endolysin exceeds that of all other endolysins previously characterized using the same methods. A domain of unknown function (DUF3380) is responsible for this high enzymatic activity. We report that DUF3380 has N-acetylmuramidase activity against directly cross-linked peptidoglycans with various peptide stem compositions. This experimentally verified activity allows better classification and understanding of the enzymatic activities of endolysins, which mostly are inferred by sequence similarities. Three-dimensional structure predictions for Gp110 suggest a fold that is completely different from that of known structures of enzymes with the same peptidoglycan cleavage specificity, making this endolysin quite unique. All of these features, combined with increased thermal resistance, make Gp110 an attractive candidate for engineering novel endolysin-based antibacterials.
Collapse
|
115
|
Wang W, Li M, Lin H, Wang J, Mao X. The Vibrio parahaemolyticus-infecting bacteriophage qdvp001: genome sequence and endolysin with a modular structure. Arch Virol 2016; 161:2645-52. [DOI: 10.1007/s00705-016-2957-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/27/2016] [Indexed: 12/16/2022]
|
116
|
da Silva APS, Nascimento da Silva LC, Martins da Fonseca CS, de Araújo JM, Correia MTDS, Cavalcanti MDS, Lima VLDM. Antimicrobial Activity and Phytochemical Analysis of Organic Extracts from Cleome spinosa Jaqc. Front Microbiol 2016; 7:963. [PMID: 27446005 PMCID: PMC4924519 DOI: 10.3389/fmicb.2016.00963] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 06/03/2016] [Indexed: 11/24/2022] Open
Abstract
Due to the use of Cleome spinosa Jacq. (Cleomaceae) in traditional medicine against inflammatory and infectious processes, this study evaluated the in vitro antimicrobial potential and phytochemical composition of extracts from its roots and leaves. From leaves (L) and roots (R) of C. spinosa different extracts were obtained (cyclohexane: ChL and ChR; chloroform: CL and CR; ethyl acetate: EAL and EAR, methanol: ML and MR). The antimicrobial activity was evaluated by the broth microdilution method to obtain the minimum inhibitory (MIC) and microbicidal (MMC) concentrations against 17 species, including bacteria and yeasts. Additionally, antimicrobial and combinatory effects with oxacillin were assessed against eight clinical isolates of Staphylococcus aureus. All C. spinosa extracts showed a broad spectrum of antimicrobial activity, as they have inhibited all tested bacteria and yeasts. This activity seems to be related to the phytochemicals (flavonoid, terpenoids and saponins) detected into the extracts of C. spinosa. ChL and CL extracts were the most actives, with MIC less than 1 mg/mL against S. aureus, Bacillus subtilis, and Micrococcus luteus. It is important to note that these concentrations are much lower than their 50% hemolysis concentration (HC50) values. Strong correlations were found between the average MIC against S. aureus and their phenolic (r = −0.89) and flavonoid content (r = −0.87), reinforcing the possible role of these metabolite classes on the antimicrobial activity of C. spinosa derived extracts. Moreover, CL and CR showed the best inhibitory activity against S. aureus clinical isolates, they also showed synergistic action with oxacillin against all these strains (at least at one combined proportion). These results encourage the identification of active substances which could be used as lead(s) molecules in the development of new antimicrobial drugs.
Collapse
Affiliation(s)
- Ana P Sant'Anna da Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco Recife, Brazil
| | | | - Caíque S Martins da Fonseca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco Recife, Brazil
| | - Janete M de Araújo
- Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco Recife, Brazil
| | - Maria T Dos Santos Correia
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco Recife, Pernambuco, Brazil
| | - Marilene da Silva Cavalcanti
- Departamento de Micologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco Recife, Pernambuco, Brazil
| | - Vera L de Menezes Lima
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco Recife, Brazil
| |
Collapse
|
117
|
Efficacy of Artilysin Art-175 against Resistant and Persistent Acinetobacter baumannii. Antimicrob Agents Chemother 2016; 60:3480-8. [PMID: 27021321 DOI: 10.1128/aac.00285-16] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/17/2016] [Indexed: 01/21/2023] Open
Abstract
Bacteriophage-encoded endolysins have shown promise as a novel class of antibacterials with a unique mode of action, i.e., peptidoglycan degradation. However, Gram-negative pathogens are generally not susceptible due to their protective outer membrane. Artilysins overcome this barrier. Artilysins are optimized, engineered fusions of selected endolysins with specific outer membrane-destabilizing peptides. Artilysin Art-175 comprises a modified variant of endolysin KZ144 with an N-terminal fusion to SMAP-29. Previously, we have shown the high susceptibility of Pseudomonas aeruginosa to Art-175. Here, we report that Art-175 is highly bactericidal against stationary-phase cells of multidrug-resistant Acinetobacter baumannii, even resulting in a complete elimination of large inocula (≥10(8) CFU/ml). Besides actively dividing cells, Art-175 also kills persisters. Instantaneous killing of A. baumannii upon contact with Art-175 could be visualized after immobilization of the bacteria in a microfluidic flow cell. Effective killing of a cell takes place through osmotic lysis after peptidoglycan degradation. The killing rate is enhanced by the addition of 0.5 mM EDTA. No development of resistance to Art-175 under selection pressure and no cross-resistance with existing resistance mechanisms could be observed. In conclusion, Art-175 represents a highly active Artilysin against both A. baumannii and P. aeruginosa, two of the most life-threatening pathogens of the order Pseudomonadales.
Collapse
|
118
|
Affiliation(s)
- Natasha Leeson
- Future Medicine Ltd, Unitec House, 2 Albert Place, London, N3 1QB, UK
| | | |
Collapse
|
119
|
Yang H, Wang M, Yu J, Wei H. Antibacterial Activity of a Novel Peptide-Modified Lysin Against Acinetobacter baumannii and Pseudomonas aeruginosa. Front Microbiol 2015; 6:1471. [PMID: 26733995 PMCID: PMC4686776 DOI: 10.3389/fmicb.2015.01471] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/07/2015] [Indexed: 12/31/2022] Open
Abstract
The global emergence of multidrug-resistant (MDR) bacteria is a growing threat to public health worldwide. Natural bacteriophage lysins are promising alternatives in the treatment of infections caused by Gram-positive pathogens, but not Gram-negative ones, like Acinetobacter baumannii and Pseudomonas aeruginosa, due to the barriers posed by their outer membranes. Recently, modifying a natural lysin with an antimicrobial peptide was found able to break the barriers, and to kill Gram-negative pathogens. Herein, a new peptide-modified lysin (PlyA) was constructed by fusing the cecropin A peptide residues 1–8 (KWKLFKKI) with the OBPgp279 lysin and its antibacterial activity was studied. PlyA showed good and broad antibacterial activities against logarithmic phase A. baumannii and P. aeruginosa, but much reduced activities against the cells in stationary phase. Addition of outer membrane permeabilizers (EDTA and citric acid) could enhance the antibacterial activity of PlyA against stationary phase cells. Finally, no antibacterial activity of PlyA could be observed in some bio-matrices, such as culture media, milk, and sera. In conclusion, we reported here a novel peptide-modified lysin with significant antibacterial activity against both logarithmic (without OMPs) and stationary phase (with OMPs) A. baumannii and P. aeruginosa cells in buffer, but further optimization is needed to achieve broad activity in diverse bio-matrices.
Collapse
Affiliation(s)
- Hang Yang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China
| | - Mengyue Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China
| | - Junping Yu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China
| |
Collapse
|
120
|
Schmelcher M, Loessner MJ. Bacteriophage endolysins: applications for food safety. Curr Opin Biotechnol 2015; 37:76-87. [PMID: 26707470 DOI: 10.1016/j.copbio.2015.10.005] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/12/2015] [Accepted: 10/26/2015] [Indexed: 01/13/2023]
Abstract
Bacteriophage endolysins (peptidoglycan hydrolases) have emerged as a new class of antimicrobial agents useful for controlling bacterial infection or other unwanted contaminations in various fields, particularly in the light of the worldwide increasing frequency of drug-resistant pathogens. This review summarizes and discusses recent developments regarding the use of endolysins for food safety. Besides the use of native and engineered endolysins for controlling bacterial contamination at different points within the food production chain, this also includes the application of high-affinity endolysin-derived cell wall binding domains for rapid detection of pathogenic bacteria. Novel approaches to extend the lytic action of endolysins towards Gram-negative cells will also be highlighted.
Collapse
Affiliation(s)
- Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| |
Collapse
|
121
|
Dreher-Lesnick SM, Schreier JE, Stibitz S. Development of Phage Lysin LysA2 for Use in Improved Purity Assays for Live Biotherapeutic Products. Viruses 2015; 7:6675-88. [PMID: 26694451 PMCID: PMC4690888 DOI: 10.3390/v7122965] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 01/21/2023] Open
Abstract
Live biotherapeutic products (LBPs), commonly referred to as probiotics, are typically preparations of live bacteria, such as Lactobacillus and Bifidobacterium species that are considered normal human commensals. Popular interest in probiotics has been increasing with general health benefits being attributed to their consumption, but there is also growing interest in evaluating such products for treatment of specific diseases. While over-the-counter probiotics are generally viewed as very safe, at least in healthy individuals, it must be remembered that clinical studies to assess these products may be done in individuals whose defenses are compromised, such as through a disease process, immunosuppressive clinical treatment, or an immature or aging immune system. One of the major safety criteria for LBPs used in clinical studies is microbial purity, i.e., the absence of extraneous, undesirable microorganisms. The main goal of this project is to develop recombinant phage lysins as reagents for improved purity assays for LBPs. Phage lysins are hydrolytic enzymes containing a cell binding domain that provides specificity and a catalytic domain responsible for lysis and killing. Our approach is to use recombinant phage lysins to selectively kill target product bacteria, which when used for purity assays will allow for outgrowth of potential contaminants under non-selective conditions, thus allowing an unbiased assessment of the presence of contaminants. To develop our approach, we used LysA2, a phage lysin with reported activity against a broad range of Lactobacillus species. We report the lytic profile of a non-tagged recombinant LysA2 against Lactobacillus strains in our collection. We also present a proof-of-concept experiment, showing that addition of partially purified LysA2 to a culture of Lactobacillus jensenii (L. jensenii) spiked with low numbers of Escherichia coli (E. coli) or Staphylococcus aureus (S. aureus ) effectively eliminates or knocks down L. jensenii, allowing for clear detection of the contaminating strains. With continued identification and characterization of phage lysins, we hope that the use of recombinant phage lysins in purity assays for products containing live microbials may offer additional tools to help advance product development of LBPs.
Collapse
Affiliation(s)
- Sheila M Dreher-Lesnick
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Jeremy E Schreier
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Scott Stibitz
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
122
|
Plotka M, Kaczorowska AK, Morzywolek A, Makowska J, Kozlowski LP, Thorisdottir A, Skírnisdottir S, Hjörleifsdottir S, Fridjonsson OH, Hreggvidsson GO, Kristjansson JK, Dabrowski S, Bujnicki JM, Kaczorowski T. Biochemical Characterization and Validation of a Catalytic Site of a Highly Thermostable Ts2631 Endolysin from the Thermus scotoductus Phage vB_Tsc2631. PLoS One 2015; 10:e0137374. [PMID: 26375388 PMCID: PMC4573324 DOI: 10.1371/journal.pone.0137374] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/17/2015] [Indexed: 01/21/2023] Open
Abstract
Phage vB_Tsc2631 infects the extremophilic bacterium Thermus scotoductus MAT2631 and uses the Ts2631 endolysin for the release of its progeny. The Ts2631 endolysin is the first endolysin from thermophilic bacteriophage with an experimentally validated catalytic site. In silico analysis and computational modelling of the Ts2631 endolysin structure revealed a conserved Zn2+ binding site (His30, Tyr58, His131 and Cys139) similar to Zn2+ binding site of eukaryotic peptidoglycan recognition proteins (PGRPs). We have shown that the Ts2631 endolysin lytic activity is dependent on divalent metal ions (Zn2+ and Ca2+). The Ts2631 endolysin substitution variants H30N, Y58F, H131N and C139S dramatically lost their antimicrobial activity, providing evidence for the role of the aforementioned residues in the lytic activity of the enzyme. The enzyme has proven to be not only thermoresistant, retaining 64.8% of its initial activity after 2 h at 95°C, but also highly thermodynamically stable (Tm = 99.82°C, ΔHcal = 4.58 × 104 cal mol-1). Substitutions of histidine residues (H30N and H131N) and a cysteine residue (C139S) resulted in variants aggregating at temperatures ≥75°C, indicating a significant role of these residues in enzyme thermostability. The substrate spectrum of the Ts2631 endolysin included extremophiles of the genus Thermus but also Gram-negative mesophiles, such as Escherichia coli, Salmonella panama, Pseudomonas fluorescens and Serratia marcescens. The broad substrate spectrum and high thermostability of this endolysin makes it a good candidate for use as an antimicrobial agent to combat Gram-negative pathogens.
Collapse
Affiliation(s)
- Magdalena Plotka
- Department of Microbiology, University of Gdansk, Gdansk, Poland
| | | | | | | | - Lukasz P. Kozlowski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | | | | | | | - Gudmundur O. Hreggvidsson
- Matis, Reykjavik, Iceland
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Janusz M. Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
- Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | | |
Collapse
|