Mitchell KJ, Tsuboi T, Rutter GA. Role for plasma membrane-related Ca2+-ATPase-1 (ATP2C1) in pancreatic beta-cell Ca2+ homeostasis revealed by RNA silencing.
Diabetes 2004;
53:393-400. [PMID:
14747290 DOI:
10.2337/diabetes.53.2.393]
[Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Changes in intracellular Ca(2+) concentration play a key role in the regulation of insulin secretion by glucose and other secretagogues. Here, we explore the importance of the secretory pathway Ca(2+)-ATPase, plasma membrane-related Ca(2+)-ATPase-1 (PMR1; human orthologue ATP2C1) in intracellular Ca(2+) homeostasis in pancreatic islet beta-cells. Endogenous PMR1 mRNA and protein were detected in both isolated rat islets and beta-cell-derived lines (MIN6 and INS1). Subcellular fractionation of the cell lines revealed PMR1 immunoreactivity in both microsomal and dense-core secretory vesicle-enriched fractions. Correspondingly, depletion of cellular PMR1 with small interfering RNAs inhibited Ca(2+) uptake into the endoplasmic reticulum and secretory vesicles by approximately 20%, as assessed using organelle-targeted aequorins in permeabilized INS1 cells. In intact cells, PMR1 depletion markedly enhanced flux though L-type Ca(2+) channels and augmented glucose-stimulated, but not basal, insulin secretion. Whereas average cytosolic [Ca(2+)] increases in response to 30.0 mmol/l glucose were unaffected by PMR1 depletion, [Ca(2+)] oscillation shape, duration, and decay rate in response to glucose plus tetraethylammonium were modified in PMR1-depleted single cells, imaged using fluo-3-acetoxymethylester. PMR1 thus plays an important role, which is at least partially nonoverlapping with that of sarco(endo-)plasmic reticulum Ca(2+)-ATPases, in the control of beta-cell Ca(2+) homeostasis and insulin secretion.
Collapse