101
|
Radlinska BA, Blunk Y, Leppert IR, Minuk J, Pike GB, Thiel A. Changes in callosal motor fiber integrity after subcortical stroke of the pyramidal tract. J Cereb Blood Flow Metab 2012; 32:1515-24. [PMID: 22434071 PMCID: PMC3421088 DOI: 10.1038/jcbfm.2012.37] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the healthy brain, there are close correlations between task-related activation of the primary motor cortex (M1), the magnitude of interhemispheric inhibition, and microstructural properties of transcallosal fiber tracts. After subcortical stroke affecting the pyramidal tract (PT), an abnormal pattern of bilateral activity develops in M1. With this prospective longitudinal study, we aimed to determine whether a morphological correlate of poststroke disinhibition could be measured within 20 days and 6 months of PT stroke. Using diffusion tensor imaging with tractography, we delineated transcallosal motor fibers (CMF) in nine PT stroke patients, six patients with subcortical infarct not affecting the PT (NonPT) and six transient ischemic attack patients. We compared changes in CMF fractional anisotropy ratios (rFA) with rFA in a distinct bundle of callosal occipital fibers (COF). At the initial time point, there were no significant differences in rFA between groups and fiber bundles. At follow-up, PT-group rFA(CMF) was significantly lower than PT-group rFA(COF) and NonPT-group rFA(CMF). PT-group rFA(CMF) decreased over time and correlated with rFA of the PT (rFA(PT)) retrograde to the infarct at 6 months. Our data suggest a progressive degenerative transsynaptic effect of PT stroke on CMF, which could be a morphological correlate of transcallosal disinhibition.
Collapse
Affiliation(s)
- Basia A Radlinska
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, Montréal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
102
|
Jacobs AH, Tavitian B. Noninvasive molecular imaging of neuroinflammation. J Cereb Blood Flow Metab 2012; 32:1393-415. [PMID: 22549622 PMCID: PMC3390799 DOI: 10.1038/jcbfm.2012.53] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/05/2012] [Accepted: 03/23/2012] [Indexed: 12/23/2022]
Abstract
Inflammation is a highly dynamic and complex adaptive process to preserve and restore tissue homeostasis. Originally viewed as an immune-privileged organ, the central nervous system (CNS) is now recognized to have a constant interplay with the innate and the adaptive immune systems, where resident microglia and infiltrating immune cells from the periphery have important roles. Common diseases of the CNS, such as stroke, multiple sclerosis (MS), and neurodegeneration, elicit a neuroinflammatory response with the goal to limit the extent of the disease and to support repair and regeneration. However, various disease mechanisms lead to neuroinflammation (NI) contributing to the disease process itself. Molecular imaging is the method of choice to try to decipher key aspects of the dynamic interplay of various inducers, sensors, transducers, and effectors of the orchestrated inflammatory response in vivo in animal models and patients. Here, we review the basic principles of NI with emphasis on microglia and common neurologic disease mechanisms, the molecular targets which are being used and explored for imaging, and molecular imaging of NI in frequent neurologic diseases, such as stroke, MS, neurodegeneration, epilepsy, encephalitis, and gliomas.
Collapse
Affiliation(s)
- Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI) at the Westfalian Wilhelms-University of Münster (WWU), Münster, Germany.
| | | |
Collapse
|
103
|
Microglia activation along the corticospinal tract following traumatic brain injury in the rat: A neuroanatomical study. Brain Res 2012; 1465:80-9. [DOI: 10.1016/j.brainres.2012.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 04/30/2012] [Accepted: 05/06/2012] [Indexed: 11/23/2022]
|
104
|
Hetz RA, Bedi SS, Olson S, Olsen A, Cox CS. Progenitor cells: therapeutic targets after traumatic brain injury. Transl Stroke Res 2012; 3:318-23. [PMID: 24323807 DOI: 10.1007/s12975-012-0192-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 04/24/2012] [Accepted: 05/04/2012] [Indexed: 01/15/2023]
Abstract
Traumatic brain injuries and their associated treatments carry high cost in both financial impact and morbidity to human life. Recent studies and trials present promising results in reducing secondary injury in the days and weeks following the primary insult. A number of studies, both pre-clinical and clinical, have found that different populations of stem/progenitor cells result in a reduction of inflammation, maintenance of the blood brain barrier, and an overall improved prognosis. The mechanism of action of these cellular therapies appears to rely upon the ability of the cells to influence microglia/macrophage phenotype and alter the state of the inflammatory response. The spleen has become an area of intense interest as an arena where therapeutic cells interact with reactive macrophages to cause system-level changes in immune activity. Additionally, the spleen enacts anti-inflammatory responses originating in the CNS, delivered through vagal activity with a recently described mechanism culminating in acetylcholine release. This review provides a summary of recent findings as to the mechanisms of action observed in current cellular therapies.
Collapse
Affiliation(s)
- Robert A Hetz
- Department of Pediatric Surgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 5.234, Houston, TX, 77030, USA
| | | | | | | | | |
Collapse
|
105
|
Guo Y, Saunders T, Su H, Kim H, Akkoc D, Saloner DA, Hetts SW, Hess C, Lawton MT, Bollen AW, Pourmohamad T, McCulloch CE, Tihan T, Young WL. Silent intralesional microhemorrhage as a risk factor for brain arteriovenous malformation rupture. Stroke 2012; 43:1240-6. [PMID: 22308253 DOI: 10.1161/strokeaha.111.647263] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE We investigated whether brain arteriovenous malformation silent intralesional microhemorrhage, that is, asymptomatic bleeding in the nidal compartment, might serve as a marker for increased risk of symptomatic intracranial hemorrhage (ICH). We evaluated 2 markers to assess the occurrence of silent intralesional microhemorrhage: neuroradiological assessment of evidence of old hemorrhage-imaging evidence of bleeding before the outcome events-and hemosiderin positivity in hematoxylin and eosin-stained paraffin block sections. METHODS We identified cases from our brain arteriovenous malformation database with recorded neuroradiological data or available surgical paraffin blocks. Using 2 end points, index ICH or new ICH after diagnosis (censored at treatment, loss to follow-up, or death), we performed logistic or Cox regression to assess evidence of old hemorrhage and hemosiderin positivity adjusting for age, sex, deep-only venous drainage, maximal brain arteriovenous malformation size, deep location, and associated arterial aneurysms. RESULTS Evidence of old hemorrhage was present in 6.5% (n=975) of patients and highly predictive of index ICH (P<0.001; OR, 3.97; 95% CI, 2.1-7.5) adjusting for other risk factors. In a multivariable model (n=643), evidence of old hemorrhage was an independent predictor of new ICH (hazard ratio, 3.53; 95% CI, 1.35-9.23; P=0.010). Hemosiderin positivity was found in 36.2% (29.6% in unruptured; 47.8% in ruptured; P=0.04) and associated with index ICH in univariate (OR, 2.18; 95% CI, 1.03-4.61; P=0.042; n=127) and multivariable models (OR, 3.64; 95% CI, 1.11-12.00; P=0.034; n=79). CONCLUSIONS The prevalence of silent intralesional microhemorrhage is high and there is evidence for an association with both index and subsequent ICH. Further development of means to detect silent intralesional microhemorrhage during brain arteriovenous malformation evaluation may present an opportunity to improve risk stratification, especially for unruptured brain arteriovenous malformations.
Collapse
Affiliation(s)
- Yi Guo
- University of California, San Francisco, CA 94110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Affiliation(s)
- Chelsea S Kidwell
- Department of Neurology, Georgetown University, 4000 Reservoir Road, Suite 150, Washington, DC 20007, USA.
| | | |
Collapse
|
107
|
Di Napoli M, Shah IM. Neuroinflammation and cerebrovascular disease in old age: a translational medicine perspective. J Aging Res 2011; 2011:857484. [PMID: 22132330 PMCID: PMC3205617 DOI: 10.4061/2011/857484] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/10/2011] [Indexed: 11/20/2022] Open
Abstract
The incidence of cerebrovascular disease is highest in the elderly population. However, the pathophysiological mechanisms of brain response to cerebral ischemia in old age are currently poorly understood. Ischemic changes in the commonly used young animal stroke models do not reflect the molecular changes associated with the aged brain. Neuroinflammation and oxidative stress are important pathogenic processes occurring during the acute phase of cerebral ischemia. Free radical generation is also implicated in the aging process, and the combination of these effects in elderly stroke patients could explain the higher risk of morbidity and mortality. A better understanding of stroke pathophysiology in the elderly patient would assist in the development of new therapeutic strategies for this vulnerable age group. With the increasing use of reperfusion therapies, inflammatory pathways and oxidative stress remain attractive therapeutic targets for the development of adjuvant neuroprotective agents. This paper will discuss these molecular aspects of acute stroke and senescence from a bench-to-bedside research perspective.
Collapse
Affiliation(s)
- Mario Di Napoli
- Neurological Service, San Camillo de'Lellis General Hospital, 02100 Rieti, Italy
| | | |
Collapse
|
108
|
Xie L, Yamasaki T, Ichimaru N, Yui J, Kawamura K, Kumata K, Hatori A, Nonomura N, Zhang MR, Li XK, Takahara S. [11C]DAC-PET for Noninvasively Monitoring Neuroinflammation and Immunosuppressive Therapy Efficacy in Rat Experimental Autoimmune Encephalomyelitis Model. J Neuroimmune Pharmacol 2011; 7:231-42. [DOI: 10.1007/s11481-011-9322-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 10/17/2011] [Indexed: 11/30/2022]
|
109
|
Hughes JL, Jones PS, Beech JS, Wang D, Menon DK, Aigbirhio FI, Fryer TD, Baron JC. A microPET study of the regional distribution of [11C]-PK11195 binding following temporary focal cerebral ischemia in the rat. Correlation with post mortem mapping of microglia activation. Neuroimage 2011; 59:2007-16. [PMID: 22056528 DOI: 10.1016/j.neuroimage.2011.10.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 10/07/2011] [Accepted: 10/18/2011] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Post-stroke microglial activation (MA) may have both neurotoxic and pro-repair effects, particularly in the salvaged penumbra. Mapping MA in vivo is therefore an important goal. 11C-PK11195, a ligand for the 18 kDa translocator protein, is the reference radioligand for MA imaging, but a correlation between the regional distributions of in vivo tracer binding and post mortem MA after stroke, as assessed with PET and immunohistochemistry, respectively, has not been demonstrated so far. Here we performed 11C-PK11195 microPET in a rat model previously shown to induce extensive cortical MA, and determined the correlation between 11C-PK11195 and immunostaining with the CD11 antibody OX42, so as to verify the presence of activated microglia, in a template of PET-resolution size regions-of-interest (ROIs) spanning the whole affected hemisphere. METHODS Adult spontaneously hypertensive rats underwent 45 min distal middle cerebral artery occlusion and 11C-PK11195 PET at Days 2 and 14 after stroke according to a longitudinal design. Following perfusion-fixation at Day 14, brains were removed and coronally cut for OX42 staining. 11C-PK11195 binding potential (BPND) parametric maps were generated, and in each rat both BP(ND) and OX42 (intensity×extent score) were obtained in the same set of 44 ROIs extracted from a cytoarchitectonic atlas to cover the whole hemisphere. Correlations were computed across the 44 ROIs both within and across subjects. RESULTS Significant BPND increases were observed in both the infarct and surrounding areas in all rats at day 14; less strong but still significant increases were present at day 2. There were highly significant (all p<0.001) positive correlations, both within- and across-subjects, between day 14 BPND values and OX42 scores. CONCLUSIONS The correlation between Day 14 11C-PK11195 and OX42 across the affected hemisphere from the same brain regions and animals further supports the validity of 11C-PK11195 as an in vivo imaging marker of MA following stroke. The finding of statistically significant increases in 11C-PK11195 as early as 48 h after stroke is novel. These results have implications for mapping MA after stroke, with potential therapeutic applications.
Collapse
Affiliation(s)
- J L Hughes
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Current paradigm of the 18-kDa translocator protein (TSPO) as a molecular target for PET imaging in neuroinflammation and neurodegenerative diseases. Insights Imaging 2011; 3:111-9. [PMID: 22696004 PMCID: PMC3292648 DOI: 10.1007/s13244-011-0128-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/18/2011] [Accepted: 09/09/2011] [Indexed: 11/08/2022] Open
Abstract
Neuroinflammation is a process characterised by drastic changes in microglial morphology and by marked upregulation of the 18-kDa translocator protein (TSPO) on the mitochondria. The continual increase in incidence of neuroinflammation and neurodegenerative diseases poses a major health issue in many countries, requiring more innovative diagnostic and monitoring tools. TSPO expression may constitute a biomarker for brain inflammation that could be monitored by using TSPO tracers as neuroimaging agents. From medical imaging perspectives, this review focuses on the current concepts related to the TSPO, and discusses briefly on the status of its PET imaging related to neuroinflammation and neurodegenerative diseases in humans.
Collapse
|
111
|
Budde MD, Janes L, Gold E, Turtzo LC, Frank JA. The contribution of gliosis to diffusion tensor anisotropy and tractography following traumatic brain injury: validation in the rat using Fourier analysis of stained tissue sections. ACTA ACUST UNITED AC 2011; 134:2248-60. [PMID: 21764818 DOI: 10.1093/brain/awr161] [Citation(s) in RCA: 325] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diffusion tensor imaging is highly sensitive to the microstructural integrity of the brain and has uncovered significant abnormalities following traumatic brain injury not appreciated through other methods. It is hoped that this increased sensitivity will aid in the detection and prognostication in patients with traumatic injury. However, the pathological substrates of such changes are poorly understood. Specifically, decreases in fractional anisotropy derived from diffusion tensor imaging are consistent with axonal injury, myelin injury or both in white matter fibres. In contrast, in both humans and animal models, increases in fractional anisotropy have been suggested to reflect axonal regeneration and plasticity, but the direct histological evidence for such changes remains tenuous. We developed a method to quantify the anisotropy of stained histological sections using Fourier analysis, and applied the method to a rat controlled cortical impact model to identify the specific pathological features that give rise to the diffusion tensor imaging changes in subacute to chronic traumatic brain injury. A multiple linear regression was performed to relate the histological measurements to the measured diffusion tensor changes. The results show that anisotropy was significantly increased (P < 0.001) in the perilesioned cortex following injury. Cortical anisotropy was independently associated (standardized β = 0.62, P = 0.04) with the coherent organization of reactive astrocytes (i.e. gliosis) and was not attributed to axons. By comparison, a decrease in white matter anisotropy (P < 0.001) was significantly related to demyelination (β = 0.75, P = 0.0015) and to a lesser extent, axonal degeneration (β = -0.48, P = 0.043). Gliosis within the lesioned cortex also influenced diffusion tensor tractography, highlighting the fact that spurious tracts in the injured brain may not necessarily reflect continuous axons and may instead depict glial scarring. The current study demonstrates a novel method to relate pathology to diffusion tensor imaging findings, elucidates the underlying mechanisms of anisotropy changes following traumatic brain injury and significantly impacts the clinical interpretation of diffusion tensor imaging findings in the injured brain.
Collapse
|
112
|
Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM, Gentleman S, Heckemann RA, Gunanayagam K, Gelosa G, Sharp DJ. Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol 2011; 70:374-83. [PMID: 21710619 DOI: 10.1002/ana.22455] [Citation(s) in RCA: 701] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 04/01/2011] [Accepted: 04/08/2011] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Patient outcome after traumatic brain injury (TBI) is highly variable. The underlying pathophysiology of this is poorly understood, but inflammation is potentially an important factor. Microglia orchestrate many aspects of this response. Their activation can be studied in vivo using the positron emission tomography (PET) ligand [11C](R)PK11195 (PK). In this study, we investigate whether an inflammatory response to TBI persists, and whether this response relates to structural brain abnormalities and cognitive function. METHODS Ten patients, studied at least 11 months after moderate to severe TBI, underwent PK PET and structural magnetic resonance imaging (including diffusion tensor imaging). PK binding potentials were calculated in and around the site of focal brain damage, and in selected distant and subcortical brain regions. Standardized neuropsychological tests were administered. RESULTS PK binding was significantly raised in the thalami, putamen, occipital cortices, and posterior limb of the internal capsules after TBI. There was no increase in PK binding at the original site of focal brain injury. High PK binding in the thalamus was associated with more severe cognitive impairment, although binding was not correlated with either the time since the injury or the extent of structural brain damage. INTERPRETATION We demonstrate that increased microglial activation can be present up to 17 years after TBI. This suggests that TBI triggers a chronic inflammatory response particularly in subcortical regions. This highlights the importance of considering the response to TBI as evolving over time and suggests interventions may be beneficial for longer intervals after trauma than previously assumed.
Collapse
Affiliation(s)
- Anil F Ramlackhansingh
- Centre for Neuroscience, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Affiliation(s)
- Alexander Thiel
- From the Department of Neurology (A.T.), McGill University, Montreal, Canada; Jewish General Hospital (A.T.), Montreal, Canada; and Max-Planck-Institute for Neurological Research (W.-D.H.), Cologne, Germany
| | - Wolf-Dieter Heiss
- From the Department of Neurology (A.T.), McGill University, Montreal, Canada; Jewish General Hospital (A.T.), Montreal, Canada; and Max-Planck-Institute for Neurological Research (W.-D.H.), Cologne, Germany
| |
Collapse
|
114
|
Imaging Brain Microglial Activation Using Positron Emission Tomography and Translocator Protein-Specific Radioligands. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 101:19-39. [DOI: 10.1016/b978-0-12-387718-5.00002-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|