101
|
Kehlet SN, Sanz-Pamplona R, Brix S, Leeming DJ, Karsdal MA, Moreno V. Excessive collagen turnover products are released during colorectal cancer progression and elevated in serum from metastatic colorectal cancer patients. Sci Rep 2016; 6:30599. [PMID: 27465284 PMCID: PMC4964349 DOI: 10.1038/srep30599] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/04/2016] [Indexed: 02/08/2023] Open
Abstract
During cancer progression, the homeostasis of the extracellular matrix becomes imbalanced with an excessive collagen remodeling by matrix metalloproteinases. As a consequence, small protein fragments of degraded collagens are released into the circulation. We have investigated the potential of protein fragments of collagen type I, III and IV as novel biomarkers for colorectal cancer. Specific fragments of degraded type I, III and IV collagen (C1M, C3M, C4M) and type III collagen formation (Pro-C3) were assessed in serum from colorectal cancer patients, subjects with adenomas and matched healthy controls using well-characterized and validated ELISAs. Serum levels of the biomarkers were significantly elevated in colorectal cancer patients compared to subjects with adenomas (C1M, Pro-C3, C3M) and controls (C1M, Pro-C3). When patients were stratified according to their tumour stage, all four biomarkers were able to differentiate stage IV metastatic patients from all other stages. Combination of all markers with age and gender in a logistic regression model discriminated between metastatic and non-metastatic patients with an AUROC of 0.80. The data suggest that the levels of these collagen remodeling biomarkers may be a measure of tumour activity and invasiveness and may provide new clinical tools for monitoring of patients with advanced stage colorectal cancer.
Collapse
Affiliation(s)
- S N Kehlet
- Nordic Bioscience A/S, Herlev, Denmark.,Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Denmark
| | - R Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), IDIBELL and CIBERESP, Hospitalet de Llobregat, Barcelona, Spain
| | - S Brix
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Denmark
| | | | | | - V Moreno
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), IDIBELL and CIBERESP, Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
102
|
Bager CL, Gudmann N, Willumsen N, Leeming DJ, Karsdal MA, Bay-Jensen AC, Høgdall E, Balslev I, He Y. Quantification of fibronectin as a method to assess ex vivo extracellular matrix remodeling. Biochem Biophys Res Commun 2016; 478:586-91. [PMID: 27475500 DOI: 10.1016/j.bbrc.2016.07.108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 11/28/2022]
Abstract
Altered architecture, composition and quality of the extracellular matrix (ECM) are pathological hallmarks of several inflammatory and fibro-proliferative pathological processes such as osteoarthritis (OA), rheumatoid arthritis (RA), fibrosis and cancer. One of the most important components of the ECM is fibronectin. Fibronectin serves as an adhesion molecule anchoring cells to the underlying basement membrane through direct interaction with integrin receptors. Fibronectin hereby modulates the properties of the ECM and affects cellular processes. Quantification of fibronectin remodeling could therefore be used to assess the changes in the ECM that occur during progression of fibro-proliferative pathologies. Ex vivo models are becoming state-of-the-art tools to study ECM remodeling as the cellular composition and the organization of the ECM are preserved. Ex vivo models may therefore be a valuable tool to study the ECM remodeling that occurs during progression of fibro-proliferative pathologies. The aim of this study was to quantify fibronectin remodeling in ex vivo models of cartilage and cancer. A competitive The enzyme-linked immunosorbent assay (ELISA) against the C-terminus of fibronectin was developed (FBN-C). The assay was evaluated in relation to specificity, technical performance and as a marker for quantification of fibronectin in cartilage and cancer ex vivo models. The ELISA was specific and technically stable. Cleavage of tumor tissue with MMP-2 released significantly higher levels of FBN-C compared to tissue with buffer only and western blot analysis revealed that FBN-C recognizes both full length and degraded fibronectin. When ex vivo cartilage cultures were stimulated with the anabolic factor TGFβ and catabolic factors TNF-α and OSM, significantly higher levels of FBN-C were found in the conditioned media. Lastly, FBN-C was released from a cancer ex vivo model. In conclusion, we were able to quantify fibronectin remodeling in ex vivo models of cartilage and cancer. Quantification of fibronectin remodeling could be a valuable tool to understand ECM remodeling in ex vivo models of fibro-proliferative pathologies.
Collapse
Affiliation(s)
- C L Bager
- Nordic Bioscience A/S, Herlev, Denmark; Technical University of Denmark, Denmark.
| | - N Gudmann
- Nordic Bioscience A/S, Herlev, Denmark
| | | | | | | | | | | | | | - Y He
- Nordic Bioscience A/S, Herlev, Denmark
| |
Collapse
|
103
|
Bager CL, Willumsen N, Kehlet SN, Hansen HB, Bay-Jensen AC, Leeming DJ, Dragsbæk K, Neergaard JS, Christiansen C, Høgdall E, Karsdal M. Remodeling of the Tumor Microenvironment Predicts Increased Risk of Cancer in Postmenopausal Women: The Prospective Epidemiologic Risk Factor (PERF I) Study. Cancer Epidemiol Biomarkers Prev 2016; 25:1348-55. [DOI: 10.1158/1055-9965.epi-16-0127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/01/2016] [Indexed: 11/16/2022] Open
|
104
|
Hansen NUB, Karsdal MA, Brockbank S, Cruwys S, Rønnow S, Leeming DJ. Tissue turnover of collagen type I, III and elastin is elevated in the PCLS model of IPF and can be restored back to vehicle levels using a phosphodiesterase inhibitor. Respir Res 2016; 17:76. [PMID: 27411390 PMCID: PMC4942917 DOI: 10.1186/s12931-016-0394-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/30/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The aim of this study was to develop and validate a model for pulmonary fibrosis, using ex vivo tissue cultures of lungs from bleomycin treated animals, enabling the investigation of fibrosis remodeling using novel biomarkers for the detection of ECM protein fragments. The combination of in vivo and ex vivo models together with ECM remodeling markers may provide a translational tool for screening of potential treatments for IPF. METHODS Twenty female Sprague-Dawley rats, twelve weeks of age, were administrated either two doses of bleomycin (BLM) (n = 14) or saline (n = 6) I.T., two days apart. Ten rats were euthanized at day seven and the remaining ten rats at day fourteen, after the last dose. Precision-cut lung slices (PCLS) were made and cultured for 48 h. Ten female Sprague-Dawley rats, twelve weeks of age, were administrated either two doses of BLM (n = 7) or saline (n = 3) I.T., two days apart. The rats were euthanized fourteen days after the last dose. PCLS were made and cultured for 48 h in: medium, medium + 100 μM IBMX (PDE inhibitor), or medium + 10 μM GM6001 (MMP inhibitor). Turnover of type I collagen (P1NP, C1M), type III collagen (iP3NP, C3M) and elastin degradation (ELM7) was measured in the supernatant of the cultured PCLS. RESULTS P1NP, C1M, iP3NP, C3M and ELM7 were significantly increased in supernatants from BLM animals (P ≤ 0.05 - P ≤ 0.0001) when compared to controls. P1NP, C1M, iP3NP, C3M and ELM7 were significantly increased in supernatants from day seven BLM animals compared to day fourteen BLM animals (P ≤ 0.05 - P ≤ 0.0001). P1NP, C1M, iP3NP, C3M and ELM7 were significantly decreased when adding IBMX to the culture medium of fibrotic lung tissue (P ≤ 0.05 - P ≤ 0.0001). C1M, C3M and ELM7 were significantly decreased when adding GM6001 to the culture medium (P ≤ 0.05 - P ≤ 0.0001). Sirius Red and Orcein staining confirmed the presence of collagen and elastin deposition in the lungs of the animals receiving BLM. CONCLUSIONS The protein fingerprint technology allows the assessment of ECM remodeling markers in the BLM PCLS model. By combining in vivo, ex vivo models and the protein fingerprint technology in the fibrotic phase of the model, we believe the chance of translation from animal model to human is markedly increased.
Collapse
Affiliation(s)
- Niels Ulrik Brandt Hansen
- />Nordic Bioscience A/S, Herlev Hovedgade 205-207, 2730 Herlev, Denmark
- />University of Southern Denmark, SDU, Odense, Denmark
| | - Morten Asser Karsdal
- />Nordic Bioscience A/S, Herlev Hovedgade 205-207, 2730 Herlev, Denmark
- />University of Southern Denmark, SDU, Odense, Denmark
| | | | | | - Sarah Rønnow
- />Nordic Bioscience A/S, Herlev Hovedgade 205-207, 2730 Herlev, Denmark
| | | |
Collapse
|
105
|
Genovese F, Kàrpàti ZS, Nielsen SH, Karsdal MA. Precision-Cut Kidney Slices as a Tool to Understand the Dynamics of Extracellular Matrix Remodeling in Renal Fibrosis. Biomark Insights 2016; 11:77-84. [PMID: 27257368 PMCID: PMC4877083 DOI: 10.4137/bmi.s38439] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/01/2016] [Accepted: 03/05/2016] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to set up an ex vivo model for renal interstitial fibrosis in order to investigate the extracellular matrix (ECM) turnover profile in the fibrotic kidney. We induced kidney fibrosis in fourteen 12-week-old male Sprague Dawley rats by unilateral ureteral obstruction (UUO) surgery of the right ureter. The left kidney (contralateral) was used as internal control. Six rats were sham operated and used as the control group. Rats were terminated two weeks after the surgery; the kidneys were excised and precision-cut kidney slices (PCKSs) were cultured for five days in serum-free medium. Markers of collagen type I formation (P1NP), collagen type I and III degradation (C1M and C3M), and α-smooth muscle actin (αSMA) were measured in the PCKS supernatants by enzyme-linked immunosorbent assay. P1NP, C1M, C3M, and α-SMA were increased up to 2- to 13-fold in supernatants of tissue slices from the UUO-ligated kidneys compared with the contralateral kidneys (P < 0.001) and with the kidneys of sham-operated animals (P < 0.0001). The markers could also reflect the level of fibrosis in different animals. The UUO PCKS ex vivo model provides a valuable translational tool for investigating the extracellular matrix remodeling associated with renal interstitial fibrosis.
Collapse
|
106
|
Saberi Hosnijeh F, Siebuhr AS, Uitterlinden AG, Oei EHG, Hofman A, Karsdal MA, Bierma-Zeinstra SM, Bay-Jensen AC, van Meurs JBJ. Association between biomarkers of tissue inflammation and progression of osteoarthritis: evidence from the Rotterdam study cohort. Arthritis Res Ther 2016; 18:81. [PMID: 27039382 PMCID: PMC4818486 DOI: 10.1186/s13075-016-0976-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/18/2016] [Indexed: 01/25/2023] Open
Abstract
Background We aimed to investigate the prognostic value of two biomarkers of tissue inflammation, matrix metalloproteinase-dependent degradation of C-reactive protein (CRPM) and connective tissue type I collagen turnover (C1M), on the incidence and progression of radiographic osteoarthritis (OA) in the Rotterdam Study, a prospective cohort. Moreover, the independent effect of these biomarkers with respect to the established biomarkers of OA progression, like urinary type II collagen degradation (uCTX-II) and serum cartilage oligomeric protein (COMP), was evaluated. Methods Serum levels of C1M, CRPM, COMP and CRP of 1335 participants aged >55 years were measured in fasting serum using ELISA. The commercial ELISA detecting CTX-II was used in urine. Radiographs at baseline and 5-year follow-up were scored for OA stage by Kellgren-Lawrence grade. The associations between progression and incidence of OA and the baseline biomarkers were examined using logistic regression and generalized estimating equations adjusted for age, sex, BMI, and possible other confounders. Results The uCTX-II, COMP, and CRP concentrations were associated with the incidence and progression of OA. Moreover, OA progression was positively associated with CRPM (OR = 1.3, p = 0.01) and CRP (OR = 1.3, p = 0.01) levels with similar effect size as uCTX-II (OR = 1.3, p = 0.01) and COMP (OR = 1.2, p = 0.02). CRPM had prognostic value for progression of OA independent from the uCTX-II and COMP. Conclusions Our study confirmed the associations between uCTX-II and COMP concentrations and OA progression. Importantly, we showed for the first time that CRPM predicts the risk of OA progression independent of the established biomarkers uCTX-II and COMP. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-0976-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fatemeh Saberi Hosnijeh
- Department of Internal Medicine, Erasmus University Medical Center, P.O. Box 2040, Rotterdam, 3000, CA, Netherlands
| | | | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, P.O. Box 2040, Rotterdam, 3000, CA, Netherlands.,Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Edwin H G Oei
- Department of Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Sita M Bierma-Zeinstra
- Department of General Practice, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Orthopedics, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus University Medical Center, P.O. Box 2040, Rotterdam, 3000, CA, Netherlands.
| |
Collapse
|
107
|
Kjelgaard-Petersen C, Siebuhr AS, Christiansen T, Ladel C, Karsdal M, Bay-Jensen AC. Synovitis biomarkers: ex vivo characterization of three biomarkers for identification of inflammatory osteoarthritis. Biomarkers 2016; 20:547-56. [PMID: 26863055 PMCID: PMC4819844 DOI: 10.3109/1354750x.2015.1105497] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objective: Characterize biomarkers measuring extracellular matrix turnover of inflamed osteoarthritis synovium. Methods: Human primary fibroblast-like synoviocytes and synovial membrane explants (SMEs) treated with various cytokines and growth factors were assessed by C1M, C3M, and acMMP3 in the conditioned medium. Results: TNFα significantly increased C1M up to seven-fold (p = 0.0002), C3M up to 24-fold (p = 0.0011), and acMMP3 up to 14-fold (p < 0.0001) in SMEs. IL-1β also significantly increased C1M up to five-fold (p = 0.00094), C3M four-fold (p = 0.007), and acMMP3 18-fold (p < 0.0001) in SMEs. Conclusion: The biomarkers C1M, C3M, and acMMP-3 were synovitis biomarkers ex vivo and provide a translational tool together with the SME model.
Collapse
Affiliation(s)
| | - Anne Sofie Siebuhr
- a Department of Rheumatology , Biomarkers and Research , Nordic Bioscience , Herlev , Denmark and
| | | | - Christoph Ladel
- a Department of Rheumatology , Biomarkers and Research , Nordic Bioscience , Herlev , Denmark and
| | - Morten Karsdal
- a Department of Rheumatology , Biomarkers and Research , Nordic Bioscience , Herlev , Denmark and
| | | |
Collapse
|
108
|
Siebuhr AS, Bay-Jensen AC, Karsdal MA, Lories RJ, de Vlam K. CRP and a biomarker of type I collagen degradation, C1M, can differentiate anti-inflammatory treatment response in ankylosing spondylitis. Biomark Med 2016; 10:197-208. [DOI: 10.2217/bmm.15.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: To investigate if tissue turnover biomarkers were efficacy biomarkers in ankylosing spondylitis and if the biomarkers at baseline predicted a good outcome (BASDAI50). Patients & methods: Twenty-two etanercept treated ankylosing spondylitis patients were investigated for inflammation (CRP, ESR, CRPM) and tissue turnover (C1M, C2M, C3M) during the first year of treatment. Biomarkers profiles and treatment response were investigated. Results: ESR, CRP, BASDAI and C1M were decreased with treatment (p ≤ 0.04). C1M and CRP segregated patients into two populations predicting treatment efficacy. Conclusion: C1M and CRP were efficacy biomarkers and baseline biomarkers could select who benefited (by biomarkers) from treatment. C1M was not superior to CRP, but the biomarkers evaluate different pathologic events, indicating that C1M and CRP identify different events.
Collapse
Affiliation(s)
- Anne Sofie Siebuhr
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 207, Herlev DK-2730, Denmark
| | - Anne C Bay-Jensen
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 207, Herlev DK-2730, Denmark
| | - Morten Asser Karsdal
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 207, Herlev DK-2730, Denmark
| | - Rik J Lories
- Skeletal Biology & Engineering Research Center, KU Leuven & Division of Rheumatology, UZ Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Kurt de Vlam
- Skeletal Biology & Engineering Research Center, KU Leuven & Division of Rheumatology, UZ Leuven, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
109
|
Early changes in blood-based joint tissue destruction biomarkers are predictive of response to tocilizumab in the LITHE study. Arthritis Res Ther 2016; 18:13. [PMID: 26787505 PMCID: PMC4719735 DOI: 10.1186/s13075-015-0913-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/29/2015] [Indexed: 12/31/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is characterized by gradual joint destruction. Tocilizumab (TCZ) significantly suppresses symptoms, however not all patients are protected from joint damage. We investigated whether early measurement of specific biomarkers could predict early joint protection response to tocilizumab. Method Serum biomarkers (CRPM, VICM, C1M, C2M, C3M (MMP-degraded CRP, vimentin type I, II and III collagen), CTX-I/OC (bone turnover), and CRP) were measured in 740 RA patients (the LITHE study) treated with Placebo, or 4 or 8 mg/kg TCZ. Early responders were those with ≥20 % improvement in SJC or TJC by week 16. The biomarkers' predictability of response was investigated by AUROC and classification regression tree analysis. Results The best biomarker predictability for identification of TCZ responders were; baseline CTX-I/OC (AUC 0.66, p = 0.0005) and changes in C1M (AUC 0.67, p = 0.0072), C2M (AUC 0.72, p = 0.0002), C3M (AUC 0.63, p = 0.018) and the combination of biomarkers (AUC 0.81, p = 0.0025). Patients with high bone turnover (CTX-I/OC) and low C2M were 6.8-fold (p = 0.003) more likely to have an early response to TCZ. Conclusion This enhanced pharmacodynamic (PD) response enabled identification of early responders with a superior TCZ clinical benefit. This biomarker model may assist in the identification of TCZ responsive RA patients and thus potentially benefit individual patients. Trial registration Clinicaltrials.gov: NCT00106535. JAN 2005 Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0913-x) contains supplementary material, which is available to authorized users.
Collapse
|
110
|
Karsdal MA, Genovese F, Madsen EA, Manon-Jensen T, Schuppan D. Collagen and tissue turnover as a function of age: Implications for fibrosis. J Hepatol 2016; 64:103-9. [PMID: 26307398 DOI: 10.1016/j.jhep.2015.08.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/06/2015] [Accepted: 08/07/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS The extracellular matrix (ECM) is the backbone of all tissues. It is a complex grid consisting of multiple structural proteins which each play a vital role for the function and maintenance of normal tissue function. In development and growth, tissue is being formed and elaborated (tissue modeling), while in adult life, tissues are being maintained and remodeled. These processes involve likely different mechanisms. During tissue modeling and remodeling, small fragments of proteins are released into the circulation, where they may be used as biomarkers for tissue turnover. The aim of the study was to investigate ECM turnover in rodents as a function of age. METHODS Serum of rats of 1, 2, 3, 4, 5, 6, 10 and 12months of age was profiled for 15 markers of ECM turnover, including: fragments of type I, II, III, IV, V and VI collagen formation (P1NP, P4NP-7S, Pro-C5, Pro-C6) and degradation (C1M, C2M, C2M-beta, C3M, C4M, C5M, C6M); biglycan (BGM) and elastin (ELM7) degradation; and the type I and II collagen telopeptides CTX-I and CTX-II. RESULTS Type I and II collagen turnover was up to 93% and 97% downregulated in old (one year) compared to young (one month) old animals (p<0.0001), while type IV and V collagen and biglycan turnover was upregulated 2.5-, 2- and 2-fold, respectively (p<0.0001). Type III and VI collagen and elastin turnover was not influenced significantly by age. CONCLUSIONS ECM turnover rates were consistently different in young vs. old animals, up to 30 fold. This appears to be due to body growth, a different ECM composition and a higher regenerative capability of connective tissues in young vs. old animals. These changes have to be accounted for in translational science. Both in measuring serum levels of ECM biomarkers and in the development of therapies to speed up wound healing or inhibit fibrogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
111
|
Wasinger VC, Yau Y, Duo X, Zeng M, Campbell B, Shin S, Luber R, Redmond D, Leong RWL. Low Mass Blood Peptides Discriminative of Inflammatory Bowel Disease (IBD) Severity: A Quantitative Proteomic Perspective. Mol Cell Proteomics 2015; 15:256-65. [PMID: 26530476 DOI: 10.1074/mcp.m115.055095] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 12/12/2022] Open
Abstract
Breakdown of the protective gut barrier releases effector molecules and degradation products into the blood stream making serum and plasma ideal as a diagnostic medium. The enriched low mass proteome is unexplored as a source of differentiators for diagnosing and monitoring inflammatory bowel disease (IBD) activity, that is less invasive than colonoscopy. Differences in the enriched low mass plasma proteome (<25 kDa) were assessed by label-free quantitative mass-spectrometry. A panel of marker candidates were progressed to validation phase and "Tier-2" FDA-level validated quantitative assay. Proteins important in maintaining gut barrier function and homeostasis at the epithelial interface have been quantitated by multiple reaction monitoring in plasma and serum including both inflammatory; rheumatoid arthritis controls, and non-inflammatory healthy controls; ulcerative colitis (UC), and Crohn's disease (CD) patients. Detection by immunoblot confirmed presence at the protein level in plasma. Correlation analysis and receiver operator characteristics were used to report the sensitivity and specificity. Peptides differentiating controls from IBD originate from secreted phosphoprotein 24 (SPP24, p = 0.000086, 0.009); whereas those in remission and healthy can be differentiated in UC by SPP24 (p = 0.00023, 0.001), α-1-microglobulin (AMBP, p = 0.006) and CD by SPP24 (p = 0.019, 0.05). UC and CD can be differentiated by Guanylin (GUC2A, p = 0.001), and Secretogranin-1 (CHGB p = 0.035). Active and quiescent disease can also be differentiated in UC and CD by CHGB (p ≤ 0.023) SPP24 (p ≤ 0.023) and AMBP (UC p = 0.046). Five peptides discriminating IBD activity and severity had very little-to-no correlation to erythrocyte sedimentation rate, C-reactive protein, white cell or platelet counts. Three of these peptides were found to be binding partners to SPP24 protein alongside other known matrix proteins. These proteins have the potential to improve diagnosis and evaluate IBD activity, reducing the need for more invasive techniques. Data are available via ProteomeXchange with identifier PXD002821.
Collapse
Affiliation(s)
- Valerie C Wasinger
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia;
| | - Yunki Yau
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; ¶Gastroenterology Department, Concord Repatriation General Hospital, Hospital Rd, Concord, NSW, Australia
| | - Xizi Duo
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ming Zeng
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Beth Campbell
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Sean Shin
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Raphael Luber
- From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical centre, The University of New South Wales, Australia; §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Diane Redmond
- ‖Department of Gastroenterology, Bankstown-Lidcombe Hospital, Eldridge Rd, Bankstown, NSW, Australia
| | - Rupert W L Leong
- §School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia; ¶Gastroenterology Department, Concord Repatriation General Hospital, Hospital Rd, Concord, NSW, Australia; ‖Department of Gastroenterology, Bankstown-Lidcombe Hospital, Eldridge Rd, Bankstown, NSW, Australia
| |
Collapse
|
112
|
Siebuhr AS, Bay-Jensen AC, Jordan JM, Kjelgaard-Petersen CF, Christiansen C, Abramson SB, Attur M, Berenbaum F, Kraus V, Karsdal MA. Inflammation (or synovitis)-driven osteoarthritis: an opportunity for personalizing prognosis and treatment? Scand J Rheumatol 2015; 45:87-98. [PMID: 26484849 DOI: 10.3109/03009742.2015.1060259] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The disabling and painful disease osteoarthritis (OA) is the most common form of arthritis. Strong evidence suggests that a subpopulation of OA patients has a form of OA driven by inflammation. Consequently, understanding when inflammation is the driver of disease progression and which OA patients might benefit from anti-inflammatory treatment is a topic of intense research in the OA field. We have reviewed the current literature on OA, with an emphasis on inflammation in OA, biochemical markers of structural damage, and anti-inflammatory treatments for OA. The literature suggests that the OA patient population is diverse, consisting of several subpopulations, including one associated with inflammation. This inflammatory subpopulation may be identified by a combination of novel serological inflammatory biomarkers. Preliminary evidence from small clinical studies suggests that this subpopulation may benefit from anti-inflammatory treatment currently reserved for other inflammatory arthritides.
Collapse
Affiliation(s)
- A S Siebuhr
- a Rheumatology, Biomarkers and Research , Nordic Bioscience , Herlev , Denmark
| | - A C Bay-Jensen
- a Rheumatology, Biomarkers and Research , Nordic Bioscience , Herlev , Denmark
| | - J M Jordan
- b Thurston Arthritis Research Center , University of North Carolina , NC , USA
| | | | - C Christiansen
- c Centre for Clinical and Basic Research , Ballerup , Denmark
| | - S B Abramson
- d New York University School of Medicine and Hospital for Joint Diseases, NYU Langone Medical Center , New York , NY , USA
| | - M Attur
- d New York University School of Medicine and Hospital for Joint Diseases, NYU Langone Medical Center , New York , NY , USA
| | - F Berenbaum
- e Department of Rheumatology, AP-HP Saint-Antoine Hospital , Sorbonne University , Paris , France
| | - V Kraus
- f Department of Medicine and Duke Molecular Physiology Institute , Duke University School of Medicine , Durham , NC , USA
| | - M A Karsdal
- a Rheumatology, Biomarkers and Research , Nordic Bioscience , Herlev , Denmark
| |
Collapse
|
113
|
Guo X, Higgs BW, Bay-Jensen AC, Karsdal MA, Yao Y, Roskos LK, White WI. Suppression of T Cell Activation and Collagen Accumulation by an Anti-IFNAR1 mAb, Anifrolumab, in Adult Patients with Systemic Sclerosis. J Invest Dermatol 2015; 135:2402-2409. [DOI: 10.1038/jid.2015.188] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/30/2015] [Accepted: 04/27/2015] [Indexed: 12/23/2022]
|
114
|
Mortensen JH, Godskesen LE, Jensen MD, Van Haaften WT, Klinge LG, Olinga P, Dijkstra G, Kjeldsen J, Karsdal MA, Bay-Jensen AC, Krag A. Fragments of Citrullinated and MMP-degraded Vimentin and MMP-degraded Type III Collagen Are Novel Serological Biomarkers to Differentiate Crohn's Disease from Ulcerative Colitis. J Crohns Colitis 2015; 9:863-72. [PMID: 26188349 DOI: 10.1093/ecco-jcc/jjv123] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 07/03/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS A hallmark of inflammatory bowel disease [IBD] is chronic inflammation, which leads to excessive extracellular matrix [ECM] remodelling and release of specific protein fragments, called neoepitopes. We speculated that the biomarker profile panel for ulcerative colitis [UC] and Crohn's disease [CD] represent a heterogeneous expression pattern, and may be applied as a tool to aid in the differentiation between UC and CD. METHODS Serum biomarkers of degraded collagens I, III-IV [C1M, C3M, and C4M], collagen type 1 and IV formation [P1NP, P4NP], and citrullinated and MMP-degraded vimentin [VICM] were studied with a competitive ELISA assay system in a cohort including 164 subjects [CD n = 72, UC n = 60, and non-IBD controls n = 32] and a validation cohort of 61 subjects [CD n = 46, and UC n = 15]. Receiver operating characteristic curve analysis and logistic regression modelling were carried out to evaluate the discriminative power of the biomarkers. RESULTS All biomarkers were corrected for confounding factors. VICM and C3M demonstrated the highest diagnostic power, alone, to differentiate CD from UC with an area under the curve [AUC] of 0.77 and 0.69, respectively. Furthermore, the biomarkers C1M [AUC = 0.81], C3M [AUC = 0.83], VICM [AUC = 0.83], and P1NP [AUC = 0.77] were best to differentiate UC from non-IBD. The best combinations of biomarkers to differentiate CD from UC and UC from non-IBD were VICM, C3M, C4M [AUC = 0.90] and VICM, C3M [AUC = 0.98] respectively. CONCLUSIONS Specific extracellular matrix degradation markers are elevated in IBD and can discriminate CD from UC and UC from non-IBD controls with a high diagnostic accuracy.
Collapse
Affiliation(s)
| | | | - Michael Dam Jensen
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
| | - Wouter Tobias Van Haaften
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Lone Gabriels Klinge
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
| | - Peter Olinga
- Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - Jens Kjeldsen
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
| | | | | | - Aleksander Krag
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
115
|
Nielsen MJ, Kazankov K, Leeming DJ, Karsdal MA, Krag A, Barrera F, McLeod D, George J, Grønbæk H. Markers of Collagen Remodeling Detect Clinically Significant Fibrosis in Chronic Hepatitis C Patients. PLoS One 2015; 10:e0137302. [PMID: 26406331 PMCID: PMC4583995 DOI: 10.1371/journal.pone.0137302] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/15/2015] [Indexed: 12/11/2022] Open
Abstract
Background and Aim Detection of advanced fibrosis (Metavir F≥3) is important to identify patients with a high urgency of antiviral treatments vs. those whose treatment could be deferred (F≤2). The aim was to assess the diagnostic value of novel serological extracellular matrix protein fragments as potential biomarkers for clinically significant and advanced fibrosis. Methods Specific protein fragments of matrix metalloprotease degraded type I, III, IV and VI collagen (C1M, C3M, C4M, C6M) and type III and IV collagen formation (Pro-C3 and P4NP7S) were assessed in plasma from 403 chronic hepatitis C patients by specific ELISAs. Patients were stratified according to Metavir Fibrosis stage; F0 (n = 46), F1 (n = 161), F2 (n = 95), F3 (n = 44) and F4 (n = 33) based on liver biopsy. Results Pro-C3 was significantly elevated in patients with significant fibrosis (≥F2) compared to F0-F1 (p<0.05), while the markers C3M, C4M, C6M and P4NP7S were significantly elevated in patients with advanced fibrosis (≥F3) compared to F0-F2 (p<0.05). C1M showed no difference between fibrosis stages. Using Receiver Operating Characteristics analysis, the best marker for detecting ≥F2 and ≥F3 was Pro-C3 with AUC = 0.75 and AUC = 0.86. Combination of Pro-C3 and C4M with age, BMI and gender in a multiple ordered logistic regression model improved the diagnostic value for detecting ≥F2 and ≥F3 with AUC = 0.80 and AUC = 0.88. Conclusion The Pro-C3 protein fragment provided clinically relevant diagnostic accuracy as a single marker of liver fibrosis. A model combining Pro-C3 and C4M along with patient’s age, body mass index and gender increased the diagnostic power for identifying clinically significant fibrosis.
Collapse
Affiliation(s)
- Mette J. Nielsen
- Nordic Bioscience A/S, Fibrosis Biology and Biomarkers, Herlev, Denmark
- Department of Gastroenterology and Hepatology, Odense University Hospital, University of Southern Denmark, Faculty of Health Science, Odense, Denmark
- * E-mail:
| | - Konstantin Kazankov
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Diana J. Leeming
- Nordic Bioscience A/S, Fibrosis Biology and Biomarkers, Herlev, Denmark
| | - Morten A. Karsdal
- Nordic Bioscience A/S, Fibrosis Biology and Biomarkers, Herlev, Denmark
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, University of Southern Denmark, Faculty of Health Science, Odense, Denmark
| | - Francisco Barrera
- Storr Liver Unit, Westmead Millennium Institute, Westmead Hospital and University of Sydney, Sydney, Australia
| | - Duncan McLeod
- Department of Anatomical Pathology, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Sydney, Australia
| | - Jacob George
- Storr Liver Unit, Westmead Millennium Institute, Westmead Hospital and University of Sydney, Sydney, Australia
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
116
|
Bihlet AR, Karsdal MA, Bay-Jensen AC, Read S, Kristensen JH, Sand JMB, Leeming DJ, Andersen JR, Lange P, Vestbo J. Clinical Drug Development Using Dynamic Biomarkers to Enable Personalized Health Care in COPD. Chest 2015; 148:16-23. [DOI: 10.1378/chest.15-0296] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
117
|
Dragsbæk K, Neergaard JS, Hansen HB, Byrjalsen I, Alexandersen P, Kehlet SN, Bay-Jensen AC, Christiansen C, Karsdal MA. Matrix Metalloproteinase Mediated Type I Collagen Degradation - An Independent Risk Factor for Mortality in Women. EBioMedicine 2015; 2:723-9. [PMID: 26288845 PMCID: PMC4534684 DOI: 10.1016/j.ebiom.2015.04.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 12/18/2022] Open
Abstract
Chronic fibro-proliferative diseases are associated with nearly 45% of all deaths in the developed world. Matrix metalloproteinase (MMP) mediated remodeling of the extracellular matrix (ECM) plays an important role in disease development. Degradation of type I collagen is considered having a major role in this matter. C1M is a biomarker measuring type I collagen degradation fragments in blood. The aim of the current study was to investigate whether MMP mediated type I collagen degradation (C1M) was predictive of mortality in a large prospective cohort of Danish women aged 48–89 (n = 5855). Subjects with high serum C1M showed significant increased mortality. The adjusted three year HR was 2.02 [95% CI: 1.48–2.76] for all-cause mortality, 2.32 [95% CI: 1.51–3.56] for cancer and 1.77 [95% CI: 0.98–3.17] for cardiovascular diseases. The adjusted nine year HR was 1.50 [95% CI: 1.28–1.75] for all-cause mortality, 1.49 [95% CI: 1.16–1.90] for cancer and 1.69 [95% CI: 1.27–2.24] for cardiovascular diseases. High MMP-mediated type I collagen degradation was associated with increased mortality. Subjects with high C1M had a 2-fold increase in mortality compared to subjects with low levels of this collagen degradation product. High MMP-mediated type I collagen degradation is an independent risk factor associated with a 2-fold increase in mortality. A 2.3-fold increase in cancer mortality was found for subjects with high MMP-mediated type I collagen degradation. Specific enzymatic processing of type I collagen is essential since only C1M and not CTX-I was associated with mortality.
Collapse
|
118
|
The importance of extracellular matrix for cell function and in vivo likeness. Exp Mol Pathol 2015; 98:286-94. [DOI: 10.1016/j.yexmp.2015.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/06/2015] [Indexed: 01/07/2023]
|
119
|
Papasotiriou M, Genovese F, Klinkhammer BM, Kunter U, Nielsen SH, Karsdal MA, Floege J, Boor P. Serum and urine markers of collagen degradation reflect renal fibrosis in experimental kidney diseases. Nephrol Dial Transplant 2015; 30:1112-21. [PMID: 25784725 DOI: 10.1093/ndt/gfv063] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/19/2015] [Indexed: 01/24/2023] Open
Affiliation(s)
- Marios Papasotiriou
- Institute of Pathology, RWTH University of Aachen, Aachen, NRW, Germany Department of Nephrology, RWTH University of Aachen, Aachen, NRW, Germany Department of Nephrology, University Hospital of Patras, Patras, Greece
| | | | | | - Uta Kunter
- Department of Nephrology, RWTH University of Aachen, Aachen, NRW, Germany
| | | | | | - Jürgen Floege
- Department of Nephrology, RWTH University of Aachen, Aachen, NRW, Germany
| | - Peter Boor
- Institute of Pathology, RWTH University of Aachen, Aachen, NRW, Germany Department of Nephrology, RWTH University of Aachen, Aachen, NRW, Germany
| |
Collapse
|
120
|
The collagen turnover profile is altered in patients with inguinal and incisional hernia. Surgery 2015; 157:312-21. [DOI: 10.1016/j.surg.2014.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 09/04/2014] [Indexed: 11/19/2022]
|
121
|
Lord MS, Farrugia BL, Rnjak-Kovacina J, Whitelock JM. Current serological possibilities for the diagnosis of arthritis with special focus on proteins and proteoglycans from the extracellular matrix. Expert Rev Mol Diagn 2015; 15:77-95. [PMID: 25382274 DOI: 10.1586/14737159.2015.979158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
This review discusses our current understanding of how the expression and turnover of components of the cartilage extracellular matrix (ECM) have been investigated, both as molecular markers of arthritis and as indicators of disease progression. The cartilage ECM proteome is well studied; it contains proteoglycans (aggrecan, perlecan and inter-α-trypsin inhibitor), collagens and glycoproteins (cartilage oligomeric matrix protein, fibronectin and lubricin) that provide the structural and functional changes in arthritis. However, the changes that occur in the carbohydrate structures, including glycosaminoglycans, with disease are less well studied. Investigations of the cartilage ECM proteome have revealed many potential biomarkers of arthritis. However, a clinical diagnostic or multiplex assay is yet to be realized due to issues with specificity to the pathology of arthritis. The future search for clinical biomarkers of arthritis is likely to involve both protein and carbohydrate markers of the ECM through the application of glycoproteomics.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | |
Collapse
|
122
|
Giannandrea M, Parks WC. Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech 2014; 7:193-203. [PMID: 24713275 PMCID: PMC3917240 DOI: 10.1242/dmm.012062] [Citation(s) in RCA: 397] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibrosis--a debilitating condition that can occur in most organs - is characterized by excess deposition of a collagen-rich extracellular matrix (ECM). At first sight, the activities of proteinases that can degrade matrix, such as matrix metalloproteinases (MMPs), might be expected to be under-expressed in fibrosis or, if present, could function to resolve the excess matrix. However, as we review here, some MMPs are indeed anti-fibrotic, whereas others can have pro-fibrotic functions. MMPs modulate a range of biological processes, especially processes related to immunity and tissue repair and/or remodeling. Although we do not yet know precisely how MMPs function during fibrosis--that is, the protein substrate or substrates that an individual MMP acts on to effect a specific process--experiments in mouse models demonstrate that MMP-dependent functions during fibrosis are not limited to effects on ECM turnover. Rather, data from diverse models indicate that these proteinases influence cellular activities as varied as proliferation and survival, gene expression, and multiple aspects of inflammation that, in turn, impact outcomes related to fibrosis.
Collapse
|
123
|
Arendt-Nielsen L, Eskehave TN, Egsgaard LL, Petersen KK, Graven-Nielsen T, Hoeck HC, Simonsen O, Siebuhr AS, Karsdal M, Bay-Jensen AC. Association Between Experimental Pain Biomarkers and Serologic Markers in Patients With Different Degrees of Painful Knee Osteoarthritis. Arthritis Rheumatol 2014; 66:3317-26. [DOI: 10.1002/art.38856] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 08/19/2014] [Indexed: 12/17/2022]
Affiliation(s)
| | - Thomas N. Eskehave
- Aalborg University and Center for Clinical and Basic Research; Aalborg Denmark
| | - Line L. Egsgaard
- Aalborg University and Center for Clinical and Basic Research; Aalborg Denmark
| | | | | | - Hans C. Hoeck
- C4Pain and Center for Clinical and Basic Research; Aalborg Denmark
| | | | | | | | | |
Collapse
|
124
|
Kristensen JH, Karsdal MA, Genovese F, Johnson S, Svensson B, Jacobsen S, Hägglund P, Leeming DJ. The Role of Extracellular Matrix Quality in Pulmonary Fibrosis. Respiration 2014; 88:487-99. [DOI: 10.1159/000368163] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022] Open
|
125
|
Karsdal MA, Bay-Jensen AC, Henriksen K, Christiansen C, Genant HK, Chamberlain C, Platt A. Rheumatoid arthritis: a case for personalized health care? Arthritis Care Res (Hoboken) 2014; 66:1273-80. [PMID: 24470057 DOI: 10.1002/acr.22289] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 01/14/2014] [Indexed: 12/29/2022]
|
126
|
Jansen C, Leeming DJ, Mandorfer M, Byrjalsen I, Schierwagen R, Schwabl P, Karsdal MA, Anadol E, Strassburg CP, Rockstroh J, Peck-Radosavljevic M, Møller S, Bendtsen F, Krag A, Reiberger T, Trebicka J. PRO-C3-levels in patients with HIV/HCV-Co-infection reflect fibrosis stage and degree of portal hypertension. PLoS One 2014; 9:e108544. [PMID: 25265505 PMCID: PMC4180447 DOI: 10.1371/journal.pone.0108544] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/22/2014] [Indexed: 12/20/2022] Open
Abstract
Background Liver-related deaths represent the leading cause of mortality among patients with HIV/HCV-co-infection, and are mainly related to complications of fibrosis and portal hypertension. In this study, we aimed to evaluate the structural changes by the assessment of extracellular matrix (ECM) derived degradation fragments in peripheral blood as biomarkers for fibrosis and portal hypertension in patients with HIV/HCV co-infection. Methods Fifty-eight patients (67% male, mean age: 36.5 years) with HIV/HCV-co-infection were included in the study. Hepatic venous pressure gradient (HVPG) was measured in forty-three patients. The fibrosis stage was determined using FIB4 -Score. ECM degraded products in peripheral blood were measured using specific ELISAs (C4M, MMP-2/9 degraded type IV collagen; C5M, MMP-2/9 degraded type V collagen; PRO-C3, MMP degraded n-terminal propeptide of type III collagen). Results As expected, HVPG showed strong and significant correlations with FIB4-index (rs = 0.628; p = 7*10−7). Interestingly, PRO-C3 significantly correlated with HVPG (rs = 0.354; p = 0.02), alanine aminotransferase (rs = 0.30; p = 0.038), as well as with FIB4-index (rs = 0.3230; p = 0.035). C4M and C5M levels were higher in patients with portal hypertension (HVPG>5 mmHg). Conclusion PRO-C3 levels reflect liver injury, stage of liver fibrosis and degree of portal hypertension in HIV/HCV-co-infected patients. Furthermore, C4M and C5M were associated with increased portal pressure. Circulating markers of hepatic ECM remodeling might be helpful in the diagnosis and management of liver disease and portal hypertension in patients with HIV/HCV coinfection.
Collapse
Affiliation(s)
- Christian Jansen
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Diana J. Leeming
- Nordic Bioscience, Fibrosis Biology and Biomarkers, Herlev, Denmark
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Inger Byrjalsen
- Nordic Bioscience, Fibrosis Biology and Biomarkers, Herlev, Denmark
| | | | - Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Evrim Anadol
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | - Jürgen Rockstroh
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Markus Peck-Radosavljevic
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Søren Møller
- Center of Functional and Diagnostic Imaging and Research, Department of Clinical Physiology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Bendtsen
- Gastro Unit, Medical Division, Hvidovre Hospital, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aleksander Krag
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Jonel Trebicka
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
127
|
Karsdal MA, Krarup H, Sand JMB, Christensen PB, Gerstoft J, Leeming DJ, Weis N, Schaffalitzky de Muckadell OB, Krag A. Review article: the efficacy of biomarkers in chronic fibroproliferative diseases - early diagnosis and prognosis, with liver fibrosis as an exemplar. Aliment Pharmacol Ther 2014; 40:233-49. [PMID: 24909260 DOI: 10.1111/apt.12820] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/06/2014] [Accepted: 05/14/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Nearly 45% of all deaths are associated with chronic fibroproliferative diseases, of which the primary characteristic is altered remodelling of the extracellular matrix. A major difficulty in developing anti-fibrotic therapies is the lack of accurate and established techniques to estimate dynamics of fibrosis, regression or progression, in response to therapy. AIM One of the most pressing needs in modern clinical chemistry for fibroproliferative disorders is the development of biomarkers for early diagnosis, prognosis, and early efficacy for the benefit of patients and to facilitate improved drug development. The aim of this article was to review the serological biomarkers that may assist in early diagnosis of patients, separate fast from slow- or nonprogressors, and possibly assist in drug development for fibroproliferative diseases, exemplified by liver fibrosis. The lack of success of biochemical markers and the possible reasons for this is discussed in the context of other fields with biomarker success. METHOD This is a personal opinion review article. RESULTS Biochemical markers, originating from the fibrotic structure, may have increased specificity and sensitivity for disease. Assessment of the tissue turnover balance by measurement of tissue formation and tissue degradation separately by novel technologies may provide value. CONCLUSIONS Novel technologies focused on the protein fingerprint in addition to biomarker classification, may increase the quality of biomarker development and provide the much needed biomarkers to further the fibroproliferative field. This is in direct alignment with the Food and Drug Administration and European Medicinal Agencies initiatives of personal health care.
Collapse
|
128
|
Willumsen N, Bager CL, Leeming DJ, Smith V, Christiansen C, Karsdal MA, Dornan D, Bay-Jensen AC. Serum biomarkers reflecting specific tumor tissue remodeling processes are valuable diagnostic tools for lung cancer. Cancer Med 2014; 3:1136-45. [PMID: 25044252 PMCID: PMC4302665 DOI: 10.1002/cam4.303] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/10/2014] [Accepted: 06/24/2014] [Indexed: 01/06/2023] Open
Abstract
Extracellular matrix (ECM) proteins, such as collagen type I and elastin, and intermediate filament (IMF) proteins, such as vimentin are modified and dysregulated as part of the malignant changes leading to disruption of tissue homeostasis. Noninvasive biomarkers that reflect such changes may have a great potential for cancer. Levels of matrix metalloproteinase (MMP) generated fragments of type I collagen (C1M), of elastin (ELM), and of citrullinated vimentin (VICM) were measured in serum from patients with lung cancer (n = 40), gastrointestinal cancer (n = 25), prostate cancer (n = 14), malignant melanoma (n = 7), chronic obstructive pulmonary disease (COPD) (n = 13), and idiopathic pulmonary fibrosis (IPF) (n = 10), as well as in age-matched controls (n = 33). The area under the receiver operating characteristics (AUROC) was calculated and a diagnostic decision tree generated from specific cutoff values. C1M and VICM were significantly elevated in lung cancer patients as compared with healthy controls (AUROC = 0.98, P < 0.0001) and other cancers (AUROC = 0.83 P < 0.0001). A trend was detected when comparing lung cancer with COPD+IPF. No difference could be seen for ELM. Interestingly, C1M and VICM were able to identify patients with lung cancer with a positive predictive value of 0.9 and an odds ratio of 40 (95% CI = 8.7–186, P < 0.0001). Biomarkers specifically reflecting degradation of collagen type I and citrullinated vimentin are applicable for lung cancer patients. Our data indicate that biomarkers reflecting ECM and IMF protein dysregulation are highly applicable in the lung cancer setting. We speculate that these markers may aid in diagnosing and characterizing patients with lung cancer.
Collapse
|
129
|
Siebuhr AS, He Y, Gudmann NS, Gram A, Kjelgaard-Petersen CF, Qvist P, Karsdal MA, Bay-Jensen AC. Biomarkers of cartilage and surrounding joint tissue. Biomark Med 2014; 8:713-31. [DOI: 10.2217/bmm.13.144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The identification and clinical demonstration of efficacy and safety of osteo- and chondro-protective drugs are met with certain difficulties. During the last few decades, the pharmaceutical industry has, in the field of rheumatology, experienced disappointments associated with the development of disease modification. Today, the vast amount of patients suffering from serious, chronic joint diseases can only be offered treatments aimed at improving symptoms, such as pain and acute inflammation, and are not aimed at protecting the joint tissue. This huge, unmet medical need has been the driver behind the development of improved analytical techniques allowing better and more efficient clinical trial design, implementation and analysis. With this review, we aim to provide a brief and general overview of biochemical markers of joint tissue, with special focus on neoepitopes. Furthermore, we highlight recent studies applying biochemical markers in joint degenerative diseases. These disorders, including osteoarthritis, rheumatoid arthritis and spondyloarthropathies, are the most predominant disorders in Europe and the USA, and have enormous socioeconomical impact.
Collapse
Affiliation(s)
- Anne S Siebuhr
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 207, Herlev DK-2730, Denmark
| | - Yi He
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 207, Herlev DK-2730, Denmark
| | - Natasja S Gudmann
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 207, Herlev DK-2730, Denmark
| | - Aurelie Gram
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 207, Herlev DK-2730, Denmark
| | | | - Per Qvist
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 207, Herlev DK-2730, Denmark
| | - Morten A Karsdal
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 207, Herlev DK-2730, Denmark
| | - Anne C Bay-Jensen
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 207, Herlev DK-2730, Denmark
| |
Collapse
|
130
|
Siebuhr AS, Petersen KK, Arendt-Nielsen L, Egsgaard LL, Eskehave T, Christiansen C, Simonsen O, Hoeck HC, Karsdal MA, Bay-Jensen AC. Identification and characterisation of osteoarthritis patients with inflammation derived tissue turnover. Osteoarthritis Cartilage 2014; 22:44-50. [PMID: 24216059 DOI: 10.1016/j.joca.2013.10.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 10/14/2013] [Accepted: 10/31/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Osteoarthritis (OA) is a degenerative disease with a subset of patients experiencing joint inflammation, but C-reactive protein (CRP) has shown limited use in OA as a diagnostic marker. The aim was to identify subpopulations of patients with high or low levels of acute (high sensitive CRP (hsCRP)) and/or matrix metalloproteinase (MMP) derived inflammation (CRPM) and investigate the subpopulations' association with biomarkers of collagen degradation and Kellgren-Lawrence (KL) score. METHODS hsCRP, CRPM and MMP-degraded type I, II and III collagen (type I collagen degraded by MMP (C1M), type II collagen degraded by MMP (C2M) and type III collagen degraded by MMP (C3M)) were quantified by enzyme linked immunosorbent assays (ELISA) in serum of 342 patients with symptomatic knee OA of which 60 underwent total knee replacement (TKR). KL was obtained. Patients were divided into quartiles by hsCRP and CRPM levels, where Q1 and Q4 were low or high in both. The biomarker levels of healthy adults provided in the ELISA kits were used as reference level. RESULTS hsCRP was elevated in TKR (5.9(3.6-8.2 95% confidence interval (CI)) μg/mL) compared to reference level (3 μg/mL), while CRPM was highly elevated with OA independent of KL (10-14 ng/mL) compared to reference level (5 ng/mL). Q4 had higher KL than Q1 (P < 0.001), Q2 (P = 0.017) and Q3 (P < 0.001). C1M, C2M and C3M were lowest in Q1. C1M was elevated in Q3 compared to Q2 (P < 0.001), whereas C3M was lower (P = 0.019). CONCLUSION A bigger proportion of patients were elevated in CRPM compared to hsCRP, indicating MMP-derived inflammation as a component of OA. Moreover, the levels of MMP-degraded collagens differed between the subgroups segregated by inflammation, indicating distinctively different subpopulation selected by inflammation.
Collapse
Affiliation(s)
- A S Siebuhr
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| | - K K Petersen
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Denmark; Aalborg University Hospital, Department of Orthopaedic Surgery, Aalborg, Denmark
| | - L Arendt-Nielsen
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Denmark
| | - L L Egsgaard
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Denmark
| | - T Eskehave
- Center for Clinical and Basic Research and C4Pain, Aalborg, Denmark
| | - C Christiansen
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark; Center for Clinical and Basic Research and C4Pain, Aalborg, Denmark
| | - O Simonsen
- Aalborg University Hospital, Department of Orthopaedic Surgery, Aalborg, Denmark
| | - H C Hoeck
- Center for Clinical and Basic Research and C4Pain, Aalborg, Denmark
| | - M A Karsdal
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| | - A C Bay-Jensen
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| |
Collapse
|
131
|
Sand JM, Larsen L, Hogaboam C, Martinez F, Han M, Røssel Larsen M, Nawrocki A, Zheng Q, Asser Karsdal M, Leeming DJ. MMP mediated degradation of type IV collagen alpha 1 and alpha 3 chains reflects basement membrane remodeling in experimental and clinical fibrosis--validation of two novel biomarker assays. PLoS One 2013; 8:e84934. [PMID: 24376856 PMCID: PMC3871599 DOI: 10.1371/journal.pone.0084934] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 11/20/2013] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Fibrosis is characterized by excessive tissue remodeling resulting from altered expression of various growth factors, cytokines and proteases. We hypothesized that matrix metalloproteinase (MMP) mediated degradation of type IV collagen, a main component of the basement membrane, will release peptide fragments (neo-epitopes) into the circulation. Here we present the development of two competitive enzyme-linked immunosorbent assays (ELISAs) for assessing the levels of specific fragments of type IV collagen α1 (C4M12a1) and α3 (C4M12a3) chains in serum as indicators of fibrosis. METHODS Fragments of type IV collagen cleaved in vitro by MMP-12 were identified by mass spectrometry, and two were chosen for ELISA development due to their unique sequences. The assays were evaluated using samples from a carbon tetrachloride (CCl₄) rat model of liver fibrosis and from patients with idiopathic pulmonary fibrosis (IPF) or chronic obstructive pulmonary disease (COPD). RESULTS Two technically robust ELISAs were produced using neo-epitope specific monoclonal antibodies. Mean serum C4M12a1 levels were significantly elevated in CCl₄-treated rats compared with controls in weeks 12, 16, and 20, with a maximum increase of 102% at week 16 (p < 0.0001). Further, C4M12a1 levels correlated with the total collagen content of the liver in CCl₄-treated rats (r = 0.43, p = 0.003). Mean serum C4M12a3 levels were significantly elevated in patients with mild, moderate, and severe IPF, and COPD relative to healthy controls, with a maximum increase of 321% in COPD (p < 0.0001). CONCLUSIONS Two assays measuring C4M12a1 and C4M12a3 enabled quantification of MMP mediated degradation of type IV collagen in serum. C4M12a1 was elevated in a pre-clinical model of liver fibrosis, and C4M12a3 was elevated in IPF and COPD patients. This suggests the use of these assays to investigate pathological remodeling of the basement membrane in different organs. However, validations in larger clinical settings are needed.
Collapse
Affiliation(s)
- Jannie Marie Sand
- Fibrosis Biology and Biomarkers, Nordic, Bioscience, Herlev, Denmark
- * E-mail:
| | - Lise Larsen
- Fibrosis Biology and Biomarkers, Nordic, Bioscience, Herlev, Denmark
| | - Cory Hogaboam
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Fernando Martinez
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - MeiLan Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | - Arkadiusz Nawrocki
- Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | | | | | | |
Collapse
|
132
|
Willumsen N, Bager CL, Leeming DJ, Smith V, Karsdal MA, Dornan D, Bay-Jensen AC. Extracellular matrix specific protein fingerprints measured in serum can separate pancreatic cancer patients from healthy controls. BMC Cancer 2013; 13:554. [PMID: 24261855 PMCID: PMC4222497 DOI: 10.1186/1471-2407-13-554] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/19/2013] [Indexed: 02/08/2023] Open
Abstract
Background Pancreatic cancer (PC) is an aggressive disease with an urgent need for biomarkers. Hallmarks of PC include increased collagen deposition (desmoplasia) and increased matrix metalloproteinase (MMP) activity. The aim of this study was to investigate whether protein fingerprints of specific MMP-generated collagen fragments differentiate PC patients from healthy controls when measured in serum. Methods The levels of biomarkers reflecting MMP-mediated degradation of type I (C1M), type III (C3M) and type IV (C4M, C4M12a1) collagen were assessed in serum samples from PC patients (n = 15) and healthy controls (n = 33) using well-characterized and validated competitive ELISAs. Results The MMP-generated collagen fragments were significantly elevated in serum from PC patients as compared to controls. The diagnostic power of C1M, C3M, C4M and C4M12 were ≥83% (p < 0.001) and when combining all biomarkers 99% (p < 0.0001). Conclusions A panel of serum biomarkers reflecting altered MMP-mediated collagen turnover is able to differentiate PC patients from healthy controls. These markers may increase the understanding of mode of action of the disease and, if validated in larger clinical studies, provide an improved and additional tool in the PC setting.
Collapse
Affiliation(s)
- Nicholas Willumsen
- Nordic Bioscience A/S, Biomarkers & Research, Herlev Hovedgade 207, DK-2730 Herlev, Denmark.
| | | | | | | | | | | | | |
Collapse
|
133
|
Leeming DJ, Karsdal MA, Byrjalsen I, Bendtsen F, Trebicka J, Nielsen MJ, Christiansen C, Møller S, Krag A. Novel serological neo-epitope markers of extracellular matrix proteins for the detection of portal hypertension. Aliment Pharmacol Ther 2013; 38:1086-96. [PMID: 24099470 PMCID: PMC3935409 DOI: 10.1111/apt.12484] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/08/2013] [Accepted: 08/21/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND The hepatic venous pressure gradient (HVPG) is an invasive, but important diagnostic and prognostic marker in cirrhosis with portal hypertension (PHT). During cirrhosis, remodelling of fibrotic tissue by matrix metalloproteinases (MMPs) is a permanent process generating small fragments of degraded extracellular matrix (ECM) proteins known as neoepitopes, which are then released into the circulation. AIM To investigate their potential as plasma markers for detection of PHT. METHODS Ninety-four patients with alcoholic cirrhosis and 20 liver-healthy controls were included. Clinical and laboratory data of the patients were collected. All patients received HVPG measurement with blood sampling. In these samples, the following degradation or formation markers were measured: C1M (type I-collagen), C3M and PRO-C3 (type III collagen), C4M and P4NP 7S (type IV collagen), C5M (type V collagen), C6M (type VI collagen), BGM (biglycan), ELM (elastin), CRPM (CRP). RESULTS All ECM markers except for CRPM correlated significantly with HVPG. Interestingly, C4M, C5M and ELM levels were significantly higher in patients with HVPG >10 mmHg. Multiple regression analysis identified PRO-C3, C6M and ELM as significant determinants, while the models A and B including PRO-C3, ELM, C6M and model for end-stage liver disease (MELD) provided better description of PHT (r = 0.75, P < 0.0001). The models provided odds ratios of >100 for having clinical significant PHT. CONCLUSIONS These novel non-invasive extracellular matrix markers reflect the degree of liver dysfunction. The different degrees of portal hypertension correlated with these circulating neoepitopes. Using a single blood sample, these neoepitopes in combination with MELD detect the level of portal hypertension.
Collapse
Affiliation(s)
- D J Leeming
- Nordic Bioscience, Fibrosis Biology and BiomarkersHerlev, Denmark
| | - M A Karsdal
- Nordic Bioscience, Fibrosis Biology and BiomarkersHerlev, Denmark
| | - I Byrjalsen
- Nordic Bioscience, Fibrosis Biology and BiomarkersHerlev, Denmark
| | - F Bendtsen
- Department of Gastroenterology Faculty of Health Sciences, Hvidovre Hospital, University of CopenhagenCopenhagen, Denmark
| | - J Trebicka
- Department of Internal Medicine I, University of BonnBonn, Germany
| | - M J Nielsen
- Nordic Bioscience, Fibrosis Biology and BiomarkersHerlev, Denmark
| | - C Christiansen
- Nordic Bioscience, Fibrosis Biology and BiomarkersHerlev, Denmark
| | - S Møller
- Department of Clinical Physiology Faculty of Health Sciences, Hvidovre Hospital, University of CopenhagenCopenhagen, Denmark
| | - A Krag
- Department of Gastroenterology Faculty of Health Sciences, Hvidovre Hospital, University of CopenhagenCopenhagen, Denmark,Department of Gastroenterology Odense University Hospital, University of Southern DenmarkOdense, Denmark
| |
Collapse
|
134
|
Siebuhr AS, Bay-Jensen AC, Leeming DJ, Plat A, Byrjalsen I, Christiansen C, van de Heijde D, Karsdal MA. Serological identification of fast progressors of structural damage with rheumatoid arthritis. Arthritis Res Ther 2013; 15:R86. [PMID: 23945134 PMCID: PMC3978450 DOI: 10.1186/ar4266] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 08/14/2013] [Indexed: 01/28/2023] Open
Abstract
Introduction Rheumatoid arthritis (RA) patients with structural progression are in most need of immediate treatment to maintain tissue integrity. The serum protein fingerprint, type I collagen degradation mediated by matrix metalloproteinases (MMP)-cleavage (C1M), is a biomarker of tissue destruction. We investigated whether baseline serum C1M levels could identify structural progressors and if the biomarker levels changed during anti-inflammatory treatment with tocilizumab (TCZ). Methods The LITHE-biomarker study (NCT00106535, n = 585) was a one-year phase III, double-blind, placebo (PBO)-controlled, parallel group study of TCZ 4 or 8 mg/kg every four weeks, in RA patients on stable doses of methotrexate (MTX). Spearman's ranked correlation was used to assess the correlation between baseline C1M levels and structural progression at baseline and at weeks 24 and 52. Multivariate regression was performed for delta structural progression. Change in C1M levels were studied as a function of time and treatment. Results At baseline, C1M was significantly correlated to C-reactive protein (P <0.0001), visual analog scale pain (P <0.0001), disease activity score28-erythrocyte sedimentation rate (DAS28-ESR) (P <0.0001), joint space narrowing (JSN) (P = 0.0056) and modified total Sharp score (mTSS) (P = 0.0006). Baseline C1M was significantly correlated with delta-JSN at Week 24 (R2 = 0.09, P = 0.0001) and at Week 52 (R2 = 0.27, P <0.0001), and with delta-mTSS at 24 weeks (R2 = 0.006, P = 0.0015) and strongly at 52 weeks (R2 = 0.013, P <0.0001) in the PBO group. C1M levels were dose-dependently reduced in the TCZ + MTX group. Conclusions Baseline C1M levels correlated with worsening joint structure over one year. Serum C1M levels may enable identification of those RA patients that are in most need of aggressive treatment Trial registration ClinicalTrials.gov: NCT00106535
Collapse
|
135
|
Schierwagen R, Leeming DJ, Klein S, Granzow M, Nielsen MJ, Sauerbruch T, Krag A, Karsdal MA, Trebicka J. Serum markers of the extracellular matrix remodeling reflect antifibrotic therapy in bile-duct ligated rats. Front Physiol 2013; 4:195. [PMID: 23908632 PMCID: PMC3726835 DOI: 10.3389/fphys.2013.00195] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/08/2013] [Indexed: 12/11/2022] Open
Abstract
Background: Progression of liver fibrosis is characterized by synthesis and degradation of extracellular matrix (ECM). Matrix-metalloproteinases (MMP) cleave collagen fibers at a specific site and thereby generate soluble fragments of ECM (neo-epitopes). The levels of these neo-epitopes might reflect the stage of liver fibrosis and may allow monitoring of anti-fibrotic therapies. Here we analyzed these neo-epitopes as read-out for a liver directed therapy with statins. Methods: Bile duct ligation (BDL) was performed on wild type rats, which received atorvastatin (15 mg/kg*d) for 1 week starting at 1, 2, 3, 4 and 5 weeks after BDL (T1–T5), while controls remained untreated. Hepatic fibrosis was analyzed by immunohistochemistry and hepatic hydroxyproline content. TGFβ levels were measured by RT-PCR. Proteolytic activity of MMP-2 was examined by zymography. Levels of degradation MMP driven type I, III, IV and VI collagen degradation (C1M, C3M, C4M, and C6M) and type III and IV collagen formation (PRO-C3 and P4NP7S) markers were assessed by specific ELISAs in serum probes. Results: Serum markers of ECM neo-epitopes reflected significantly the deposition of ECM in the liver and were able to distinguish between early (T1–T3) and severe fibrosis (T4–T5). Statin treatment resulted in reduction of neo-epitope markers, especially when therapy was started in the stage of severe fibrosis (T4–T5). Furthermore, these markers correlated with hepatic expression of profibrotic cytokines TGFβ1 and TGFβ2. Formation markers of type III and IV collagen (PRO-C3 and P4NP7S) and degradation markers C4M and C6M correlated significantly with hepatic MMP-2 activity in rats with severe fibrosis. Conclusion: Determination of ECM remodeling turnover markers in serum allowed a distinction between mild and severe fibrosis. With respect to statin therapy, the markers may serve as read-out for efficacy of anti-fibrotic treatment.
Collapse
|
136
|
Wang J, Willumsen N, Zheng Q, Xue Y, Karsdal MA, Bay-Jensen AC. Bringing cancer serological diagnosis to a new level: focusing on HER2, protein ectodomain shedding and neoepitope technology. Future Oncol 2013; 9:35-44. [PMID: 23252562 DOI: 10.2217/fon.12.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cancer is a heterogeneous disease and consequently an exact diagnosis is as important as the actual therapy. Therefore, identification of novel diagnostic biomarker targets is urgently needed. Physiological and pathological changes are reflected by post-translational modifications of proteins. Each post-translational modification (e.g., proteolytic cleavage) is the result of a specific local process and may produce disease-specific neoepitopes. Neoepitopes have been successfully used as biomarkers in many diseases, and may also serve as promising tools in the development of future diagnostic assays within oncology. By specifically targeting neoepitopes, more information regarding disease-type and -state may be obtained and future research into neoepitopes will provide important and novel means for the diagnosis, prognosis and treatment efficacy in cancer. In this paper, we focus on protein ectodomain shedding and the generation of neoepitopes as future noninvasive (serological) cancer biomarkers. We use the protein ectodomain shedding of the human epidermal growth factor receptor 2, which is associated with breast cancer, as an example. We assess the current status of measuring human epidermal growth factor receptor 2 and discuss how this potentially could be improved. Furthermore, we expand the discussion to include examples of other cancer associated proteins.
Collapse
|
137
|
Karsdal MA, Bay-Jensen AC, Leeming DJ, Henriksen K, Christiansen C. Quantification of “end products” of tissue destruction in inflammation may reflect convergence of cytokine and signaling pathways – implications for modern clinical chemistry. Biomarkers 2013; 18:375-8. [DOI: 10.3109/1354750x.2013.789084] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
138
|
Leeming DJ, Byrjalsen I, Jiménez W, Christiansen C, Karsdal MA. Protein fingerprinting of the extracellular matrix remodelling in a rat model of liver fibrosis--a serological evaluation. Liver Int 2013; 33:439-47. [PMID: 23279004 DOI: 10.1111/liv.12044] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/13/2012] [Accepted: 10/27/2012] [Indexed: 02/13/2023]
Abstract
BACKGROUND/AIM We investigated nine novel biomarkers of extracellular matrix (ECM) remodelling in a rat model of liver fibrosis. METHODS Liver fibrosis was induced in 52 male Wistar rats by inhalation of carbon tetrachloride and the level of hepatic fibrosis was assessed by Sirius red staining compared with controls. The novel serum biochemical markers assessed in the model were type I-(C1M), type III-(C3M), type IV-(C4M) and type VI-(C6M) collagen, citrullinated vimentin (VICM) and biglycan (BGM) all protein fragments generated by matrix metalloproteinases; and formation markers of type III-(P3NP), type VI (P4NP 7S) and type V (P5CP) collagen; hepatic mRNA type I collagen alpha-1 chain levels, serum potassium, sodium, osmolarity, alanine aminotransferase, lactate dehydrogenase, albumin and creatinine. RESULTS Stratification of the CCl(4) -treated rats according to total hepatic collagen showed that the degradation markers were significantly elevated in mild to severe fibrosis except for C6M which was also elevated in early fibrosis (P < 0.05). The highest Z-scores in early and moderate fibrosis were provided by P4NP 7S and alanine aminotransferase. All nine markers of ECM remodelling were highly related to the extent of liver fibrosis induced by CCl(4) . The novel collagen formation marker, P4NP 7S, was reliable for the detection of early fibrosis, while the combination of the two markers, C6M and P5CP provided the best correlation with hepatic fibrosis in all fibrosis levels. CONCLUSION As the markers can be used for translational science, these markers may provide valuable information for the evaluation of liver fibrosis in clinical settings.
Collapse
Affiliation(s)
- Diana J Leeming
- Nordic Bioscience, Fibrosis Biology and Biomarkers, Herlev, Denmark.
| | | | | | | | | |
Collapse
|
139
|
Vassiliadis E, Veidal SS, Hansen C, Karsdal MA, Leeming DJ. Circulating levels of a collagen type v propeptide fragment in a carbon tetrachloride reversible model of liver fibrosis. Biomark Insights 2012; 7:159-66. [PMID: 23440040 PMCID: PMC3572874 DOI: 10.4137/bmi.s10975] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To measure levels of the collagen V formation marker CO5-1230 during liver fibrosis progression and regression. Methods: Monoclonal antibodies were raised against the sequence TAALGDIMGH located at the start of the C-terminal propeptide between amino acid position 1230′ and 1239′ (CO5-1230). An assay developed using the biotin-streptavidin system was evaluated in a rat reversible model of fibrosis. Animals were treated for duration of 4, 6 and 8 weeks. Animals that were treated for 8 weeks were left to regress for a period of 14, 20 and 26 weeks. Results: Mean CO5-1230 level for control animals was found to be 8.7 ng/mL. CO5-1230 marker levels, at termination points, for CCl4 treated animals was be 8.7 ng/mL at 4 weeks (P < 0.05, ROC: 0.83), 11.4 ng/mL at 6 weeks (P < 0.001, ROC: 0.93) and 10.8 ng/mL at 8 weeks (P < 0.05, ROC: 0.82). During regression phase, marker levels were statistically significantly decreased when compared with the marker levels at 8 weeks of treatment. Marker levels were found to be 5.9 ng/mL (P < 0.001, ROC: 0.8) after 14 weeks of regression, 3.9 ng/mL (P < 0.001, ROC: 0.95) after 20 weeks and 4.5 ng/mL (P < 0.001, ROC: 0.97) after 26 weeks of regression. Conclusions: The data indicates that CO5-1230 levels are statistically significantly increased when CCl4 intoxication stimulus is applied in all treatment time points. CO5-1230 levels return back to control levels when the stimulus is removed. The above finding adds to our previous evaluation of the marker and suggests that CO5-1230 may be a promising potential marker for liver fibrosis staging and monitoring in both disease progression and regression.
Collapse
Affiliation(s)
- E Vassiliadis
- Nordic Bioscience A/S, Herlev, Denmark. ; University of Southern Denmark, Odense, Denmark
| | | | | | | | | |
Collapse
|
140
|
Karsdal MA, Nielsen MJ, Sand JM, Henriksen K, Genovese F, Bay-Jensen AC, Smith V, Adamkewicz JI, Christiansen C, Leeming DJ. Extracellular matrix remodeling: the common denominator in connective tissue diseases. Possibilities for evaluation and current understanding of the matrix as more than a passive architecture, but a key player in tissue failure. Assay Drug Dev Technol 2012; 11:70-92. [PMID: 23046407 DOI: 10.1089/adt.2012.474] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Increased attention is paid to the structural components of tissues. These components are mostly collagens and various proteoglycans. Emerging evidence suggests that altered components and noncoded modifications of the matrix may be both initiators and drivers of disease, exemplified by excessive tissue remodeling leading to tissue stiffness, as well as by changes in the signaling potential of both intact matrix and fragments thereof. Although tissue structure until recently was viewed as a simple architecture anchoring cells and proteins, this complex grid may contain essential information enabling the maintenance of the structure and normal functioning of tissue. The aims of this review are to (1) discuss the structural components of the matrix and the relevance of their mutations to the pathology of diseases such as fibrosis and cancer, (2) introduce the possibility that post-translational modifications (PTMs), such as protease cleavage, citrullination, cross-linking, nitrosylation, glycosylation, and isomerization, generated during pathology, may be unique, disease-specific biochemical markers, (3) list and review the range of simple enzyme-linked immunosorbent assays (ELISAs) that have been developed for assessing the extracellular matrix (ECM) and detecting abnormal ECM remodeling, and (4) discuss whether some PTMs are the cause or consequence of disease. New evidence clearly suggests that the ECM at some point in the pathogenesis becomes a driver of disease. These pathological modified ECM proteins may allow insights into complicated pathologies in which the end stage is excessive tissue remodeling, and provide unique and more pathology-specific biochemical markers.
Collapse
|
141
|
Siebuhr AS, Wang J, Karsdal M, Bay-Jensen AC, Y J, Q Z. Matrix metalloproteinase-dependent turnover of cartilage, synovial membrane, and connective tissue is elevated in rats with collagen induced arthritis. J Transl Med 2012; 10:195. [PMID: 22992383 PMCID: PMC3551788 DOI: 10.1186/1479-5876-10-195] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/17/2012] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis is a disease affecting the extracellular matrix of especially synovial joints. The thickness of the synovial membrane increases and surrounding tissue degrades, leading to altered collagen balance in the tissues. In this study, we investigated the altered tissue balance of cartilage, synovial membrane, and connective tissue in collagen induced arthritis (CIA) in rats. METHODS Six newly developed ELISAs quantifying MMP-derived collagen degradation (C1M, C2M, and C3M) and formation (P1NP, P2NP, and P3NP) was used to detect cartilage turnover in rats with CIA. Moreover, CTX-II was used to detect alternative type II collagen degradation and as control of the model. 10 Lewis rats were injected with porcrine type II collagen twice with a 7 day interval and 10 rats was injected with 0.05 M acetic acid as control. The experiment ran for 26 days. RESULTS A significant increase in the degradation of type I, II, and III collagen (C1M, C2M, and C3M, respectively) was detected on day 22 (P = 0.0068, P = 0.0068, P < 0.0001, respectively), whereas no significant difference in formation (P1NP, P2NP, and P3NP) was detected at any time point (P=0.22, P=0.53, P=0.53, respectively). The CTX-II level increased strongly from disease onset and onwards. CONCLUSION A nearly total separation between diseased and control animals was detected with C3M, making it a good diagnostic marker. The balance of type I, II, and III collagen was significantly altered with CIA in rats, with favour of degradation of the investigated collagens. This indicates unbalanced turnover of the surrounding tissues of the synovial joints, leading to increased pain and degeneration of the synovial joints.
Collapse
|
142
|
Leeming DJ, Sand JM, Nielsen MJ, Genovese F, Martinez FJ, Hogaboam CM, Han MK, Klickstein LB, Karsdal MA. Serological investigation of the collagen degradation profile of patients with chronic obstructive pulmonary disease or idiopathic pulmonary fibrosis. Biomark Insights 2012; 7:119-26. [PMID: 23012495 PMCID: PMC3448496 DOI: 10.4137/bmi.s9415] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In both chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), abnormally high collagen remodeling occurs within the lung tissue. Matrix metalloproteinase (MMP)-degraded type I, III, IV, V and VI collagen and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-degraded type III collagen were assessed in serum of patients diagnosed with mild COPD (n = 10) or IPF (n = 30), and healthy controls (n = 15). The collagen degradation markers C1M, C3M, C5M and C6M were significantly elevated in serum of both mild COPD and IPF patients, versus controls. C3A and C4M were only elevated in patients with mild COPD, compared with controls. The most reliable indicators of mild COPD versus controls were: C1M (area under the receiver-operating characteristics (AUROC = 0.94, P < 0.0001), C3M (AUROC = 0.95, P < 0.0001), and C5M (AUROC = 0.95, P < 0.0001). The most reliable markers for the diagnosis of IPF were achieved by C1M (AUROC = 0.90, P < 0.0001) and C3M (AUROC = 0.93, P < 0.0001). Collagen degradation was highly up-regulated in patients with IPF and mild COPD, indicating that degradation fragments of collagens are potential markers of pulmonary diseases. Interestingly, C4M and C3A were only elevated in patients with mild COPD, indicating that these markers could be used to distinguish between the two pathologies.
Collapse
|
143
|
Abstract
Fibrosis is a hallmark histologic event of chronic liver diseases and is characterized by the excessive accumulation and reorganization of the extracellular matrix (ECM). The gold standard for assessment of fibrosis is liver biopsy. As this procedure has various limitations, including risk of patient injury and sampling error, a non-invasive serum marker for liver fibrosis is desirable. The increasing understanding of the pathogenesis of hepatic fibrosis has suggested several markers which could be useful indicators of hepatic fibrogenesis and fibrosis. These markers include serum markers of liver function, ECM synthesis, fibrolytic processes, ECM degradation and fibrogenesis related cytokines. Recently, neo-epitopes, which are post-translational modifications of proteins, have been successfully used in bone and cartilage diseases which are characterized by extensive ECM remodeling. Increasing numbers of studies are being undertaken to identify neo-epitopes generated during liver fibrosis, and which ultimately might be useful for diagnosing and monitoring fibrogenesis. To date, the metalloproteinases generated fragment of collagen I, III, IV and VI have been proven to be elevated in two rat models of fibrosis. This review summarizes the recent efforts that have been made to identify potentially reliable non-invasive serum markers. We used the recently proposed BIPED (Burden of disease, Investigative, Prognostic, Efficacy and Diagnostic) system to characterize potential serum markers and neo-epitope markers that have been identified to date.
Collapse
Affiliation(s)
- Tianhui Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | | | | | | | |
Collapse
|
144
|
Vassiliadis E, Barascuk N, Didangelos A, Karsdal MA. Novel cardiac-specific biomarkers and the cardiovascular continuum. Biomark Insights 2012; 7:45-57. [PMID: 22577298 PMCID: PMC3347891 DOI: 10.4137/bmi.s9536] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The concept of the cardiovascular continuum, introduced during the early 1990s, created a holistic view of the chain of events connecting cardiovascular-related risk factors with the progressive development of pathological-related tissue remodelling and ultimately, heart failure and death. Understanding of the tissue-specific changes, and new technologies developed over the last 25-30 years, enabled tissue remodelling events to be monitored in vivo and cardiovascular disease to be diagnosed more reliably than before. The tangible product of this evolution was the introduction of a number of biochemical markers such as troponin I and T, which are now commonly used in clinics to measure myocardial damage. However, biomarkers that can detect specific earlier stages of the cardiovascular continuum have yet to be generated and utilised. The majority of the existing markers are useful only in the end stages of the disease where few successful intervention options exist. Since a large number of patients experience a transient underlying developing pathology long before the signs or symptoms of cardiovascular disease become apparent, the requirement for new markers that can describe the early tissue-specific, matrix remodelling process which ultimately leads to disease is evident. This review highlights the importance of relating cardiac biochemical markers with specific time points along the cardiovascular continuum, especially during the early transient phase of pathology progression where none of the existing markers aid diagnosis.
Collapse
Affiliation(s)
- Efstathios Vassiliadis
- Nordic Bioscience A/S, Herlev, Denmark
- School of Endocrinology, University of Southern Denmark, Odense, Denmark
| | - Natasha Barascuk
- Nordic Bioscience A/S, Herlev, Denmark
- School of Endocrinology, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
145
|
Veidal SS, Larsen DV, Chen X, Sun S, Zheng Q, Bay-Jensen AC, Leeming DJ, Nawrocki A, Larsen MR, Schett G, Karsdal MA. MMP mediated type V collagen degradation (C5M) is elevated in ankylosing spondylitis. Clin Biochem 2012; 45:541-6. [PMID: 22382088 DOI: 10.1016/j.clinbiochem.2012.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 02/06/2012] [Accepted: 02/09/2012] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Type V collagen has been demonstrated to control fibril formation. The aim of this study was to develop an ELISA capable of detecting a fragment of type V collagen generated by MMP-2/9 and to evaluate the assay as biomarker for ankylosing spondylitis (AS). DESIGN AND METHODS A fragment unique to type V collagen and generated by both MMP-2/9 cleaved at the amino acid position 1317 (C5M) was selected for ELISA development. 40 AS patients and 40 age-matched controls were evaluated. RESULTS An ELISA detecting C5M with inter- and intra-assay variations of 9.1% and 4.4% was developed. C5M levels were significantly higher in AS patients compared to controls, 229% (p<0.0001). The diagnostic AUC was 83%. CONCLUSIONS This ELISA is the first for detecting type V collagen degradation. AS patients had highly elevated levels of MMP mediated type V collagen degradation. The prognostic and diagnostic values need to be further investigated in additional clinical settings.
Collapse
|
146
|
Bay-Jensen AC, Leeming DJ, Kleyer A, Veidal SS, Schett G, Karsdal MA. Ankylosing spondylitis is characterized by an increased turnover of several different metalloproteinase-derived collagen species: a cross-sectional study. Rheumatol Int 2011; 32:3565-72. [DOI: 10.1007/s00296-011-2237-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/22/2011] [Indexed: 12/17/2022]
|