101
|
Bloise E, Cassali G, Ferreira M, Ciarmela P, Petraglia F, Reis F. Activin-related proteins in bovine mammary gland: Localization and differential expression during gestational development and differentiation. J Dairy Sci 2010; 93:4592-601. [DOI: 10.3168/jds.jds.2009-2981] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 07/02/2010] [Indexed: 11/19/2022]
|
102
|
Patel OV, Casey T, Dover H, Plaut K. Homeorhetic adaptation to lactation: comparative transcriptome analysis of mammary, liver, and adipose tissue during the transition from pregnancy to lactation in rats. Funct Integr Genomics 2010; 11:193-202. [PMID: 20852911 DOI: 10.1007/s10142-010-0193-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 07/27/2010] [Accepted: 09/06/2010] [Indexed: 12/11/2022]
Abstract
Tissue-specific shifts in a dam's metabolism to support fetal and neonatal growth during pregnancy and lactation are controlled by differential expression of regulatory genes. The goal of this study was to identify a more detailed cohort of genes in mammary, liver, and adipose tissue that are transcriptionally controlled during the pregnancy to lactation evolution and explore the relationship of these genes to core clock genes. Total RNA was isolated from mammary, liver and adipose tissues collected from rat dams on day 20 of pregnancy (P20) and day 1 of lactation (L1) and gene expression was measured using Rat 230 2.0 Affymetrix GeneChips. Gene functional analysis revealed that pathway associated metabolism (carbohydrate, amino acid, lipid, cholesterol, protein) were enriched (P < 0.001) in the mammary gland during P20 to L1 transition. Approximately 50% of the genes associated with solute transport, as well as lipogenesis were up-regulated in the mammary gland during P20 to L1 transition compared to 10% in liver and 15% in adipose tissue. Genes engaged in conveying glucose (INSR, GLUT1, GLUT4, SGLT1, and SGLT2), bicarbonate (SLC4), sodium (SLC9), zinc (SLC30), copper (SLC31), iron (SLC40) in tandem with rate-limiting lipogenic genes (ACACA, FASN, PRLR, SREBP2, THRSP) were specifically enriched in the mammary gland during the P20 to L1 evolution. Our results provide insight into a cross-tissue transcriptional repertoire that is associated with homeorhetic adaptation needed to support lactation, and at the onset of lactation the mammary gland becomes a factory for macromolecular biosynthesis through inducing genes participating in nutrient transfer and lipid biosynthesis.
Collapse
Affiliation(s)
- Osman V Patel
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI 49401, USA
| | | | | | | |
Collapse
|
103
|
Single nucleotide polymorphisms at the imprinted bovine insulin-like growth factor 2 (IGF2) locus are associated with dairy performance in Irish Holstein-Friesian cattle. J DAIRY RES 2010; 78:1-8. [PMID: 20822563 DOI: 10.1017/s0022029910000567] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The imprinted insulin-like growth factor 2 gene (IGF2) encodes a fetal mitogenic hormone protein (IGF-II) and has previously been shown to be associated with performance in dairy cattle. In this study we assessed genotype-phenotype associations between four single nucleotide polymorphisms (SNPs) located within the bovine IGF2 locus on chromosome 29 and a range of performance traits related to milk production, animal growth and body size, fertility and progeny survival in 848 progeny-tested Irish Holstein-Friesian sires. Two of the four SNPs (rs42196909 and IGF2.g-3815A>G), which were in strong linkage disequilibrium (r2 = 0·995), were associated with milk yield (P ≤ 0·01) and milk protein yield (P ≤ 0·05); the rs42196901 SNP was also associated (P ≤ 0·05) with milk fat yield. Associations (P ≤ 0·05) with milk fat percentage and milk protein percentage were observed at the rs42196901 and IGF2.g-3815A>G SNPs, respectively. The rs42196909 and IGF2.g-3815A>G SNPs were also associated with progeny carcass conformation (P ≤ 0·05), while an association (P ≤ 0·01) with progeny carcass weight was observed at the rs42194733 SNP locus. None of the four SNPs were associated with body size, fertility and progeny survival. These findings support previous work which suggests that the IGF2 locus is an important biological regulator of milk production in dairy cattle and add to an accumulating body of research showing that imprinted genes influence many complex performance traits in cattle.
Collapse
|
104
|
Growth hormone alters lipid composition and increases the abundance of casein and lactalbumin mRNA in the MAC-T cell line. J DAIRY RES 2010; 77:199-204. [PMID: 20380773 DOI: 10.1017/s0022029910000087] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The MAC-T cell line has been used extensively to investigate bovine mammary epithelial cell function. A lactogenic phenotype is generally induced in this cell line by a combination of dexamethasone, insulin and prolactin and has typically been assessed by milk protein production. Few studies have focused on identifying other factors that may affect milk protein synthesis in the MAC-T cell line, and none have considered the lipid class distribution of MAC-T cells as a component of the lactogenic phenotype. Growth hormone (GH) has been shown to increase milk protein synthesis both in vivo and in mammary cell models, and has been shown to alter the lipogenic profile of mammary explant models. We tested the hypothesis that MAC-T cells would respond directly to GH and that the response would include alterations to the lipid class distribution as well as to milk protein gene expression, leading to a more appropriate model for mammary cell function than treatment with dexamethasone, insulin and prolactin alone. Differentiated cells expressed GH receptor mRNA, and addition of GH to the differentiation medium significantly induced production of alpha-s1 casein and alpha-lactalbumin mRNA. GH also significantly affected the proportion of triacylglycerol and sphingomyelin. These results indicate that GH is an important factor in inducing a lactogenic phenotype in the MAC-T cell line, and support the possibility of a direct effect of GH on milk synthesis in vivo.
Collapse
|
105
|
Piantoni P, Bionaz M, Graugnard DE, Daniels KM, Everts RE, Rodriguez-Zas SL, Lewin HA, Hurley HL, Akers M, Loor JJ. Functional and gene network analyses of transcriptional signatures characterizing pre-weaned bovine mammary parenchyma or fat pad uncovered novel inter-tissue signaling networks during development. BMC Genomics 2010; 11:331. [PMID: 20504330 PMCID: PMC2890563 DOI: 10.1186/1471-2164-11-331] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 05/26/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The neonatal bovine mammary fat pad (MFP) surrounding the mammary parenchyma (PAR) is thought to exert proliferative effects on the PAR through secretion of local modulators of growth induced by systemic hormones. We used bioinformatics to characterize transcriptomics differences between PAR and MFP from approximately 65 d old Holstein heifers. Data were mined to uncover potential crosstalk through the analyses of signaling molecules preferentially expressed in one tissue relative to the other. RESULTS Over 9,000 differentially expressed genes (DEG; False discovery rate <or= 0.05) were found of which 1,478 had a >or=1.5-fold difference between PAR and MFP. Within the DEG highly-expressed in PAR vs. MFP (n = 736) we noted significant enrichment of functions related to cell cycle, structural organization, signaling, and DNA/RNA metabolism. Only actin cytoskeletal signaling was significant among canonical pathways. DEG more highly-expressed in MFP vs. PAR (n = 742) belong to lipid metabolism, signaling, cell movement, and immune-related functions. Canonical pathways associated with metabolism and signaling, particularly immune- and metabolism-related were significantly-enriched. Network analysis uncovered a central role of MYC, TP53, and CTNNB1 in controlling expression of DEG highly-expressed in PAR vs. MFP. Similar analysis suggested a central role for PPARG, KLF2, EGR2, and EPAS1 in regulating expression of more highly-expressed DEG in MFP vs. PAR. Gene network analyses revealed putative inter-tissue crosstalk between cytokines and growth factors preferentially expressed in one tissue (e.g., ANGPTL1, SPP1, IL1B in PAR vs. MFP; ADIPOQ, IL13, FGF2, LEP in MFP vs. PAR) with DEG preferentially expressed in the other tissue, particularly transcription factors or pathways (e.g., MYC, TP53, and actin cytoskeletal signaling in PAR vs. MFP; PPARG and LXR/RXR Signaling in MFP vs. PAR). CONCLUSIONS Functional analyses underscored a reciprocal influence in determining the biological features of MFP and PAR during neonatal development. This was exemplified by the potential effect that the signaling molecules (cytokines, growth factors) released preferentially (i.e., more highly-expressed) by PAR or MFP could have on molecular functions or signaling pathways enriched in the MFP or PAR. These bidirectional interactions might be required to coordinate mammary tissue development under normal circumstances or in response to nutrition.
Collapse
Affiliation(s)
- Paola Piantoni
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Burgos SA, Cant JP. IGF-1 stimulates protein synthesis by enhanced signaling through mTORC1 in bovine mammary epithelial cells. Domest Anim Endocrinol 2010; 38:211-21. [PMID: 20163929 DOI: 10.1016/j.domaniend.2009.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 10/12/2009] [Accepted: 10/15/2009] [Indexed: 11/23/2022]
Abstract
Using the MAC-T cell line as a model, the effects of insulin-like growth factor (IGF)-1 on the regulation of protein synthesis through the mammalian target of rapamycin complex 1 (mTORC1) signaling in bovine mammary epithelial cells were evaluated. Global rates of protein synthesis increased by 47% within 30 min of IGF-1 treatment. The effect of IGF-1 on protein synthesis was associated with enhanced association of the eukaryotic initiation factor (eIF) 4E with eIF4G and a concomitant reduction of eIF4E association with eIF4E-binding protein-1 (4E-BP1). There was a progressive increase in the phosphorylation state of ribosomal protein S6 kinase-1, a downstream target of mTORC1 in response to IGF-1. In addition, IGF-1 stimulated mTORC1 kinase activity toward 4E-BP1 in vitro. Phosphorylation on Ser473 of Akt was induced by IGF-1 within 5 min and remained elevated throughout a 30-min time course. The effect of IGF-1 on Akt phosphorylation was also concentration dependent. Activation of Akt by IGF-1 led to increased phosphorylation of tuberous sclerosis complex 2 on Thr1426, without any change in its association with tuberous sclerosis complex 1. Phosphorylation of proline-rich Akt substrate of 40-kDa (PRAS40) at Thr246 was stimulated by IGF-1. The amount of PRAS40 associated with mTORC1 decreased in response to IGF-1, and PRAS40 binding to mTORC1 was inversely related to its phosphorylation level. Overall, these results suggest that activation of the PI3K-Akt pathway by IGF-1 stimulated global protein synthesis in bovine mammary epithelial cells through changes in the phosphorylation and association state of components of the mTORC1 signaling pathway.
Collapse
Affiliation(s)
- S A Burgos
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
107
|
Safayi S, Theil PK, Hou L, Engbaek M, Nørgaard JV, Sejrsen K, Nielsen MO. Continuous lactation effects on mammary remodeling during late gestation and lactation in dairy goats. J Dairy Sci 2010; 93:203-17. [PMID: 20059919 DOI: 10.3168/jds.2009-2507] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 10/05/2009] [Indexed: 11/19/2022]
Abstract
The present study aimed to 1) elucidate whether continuous milking during late gestation in dairy goats negatively affects mammary remodeling and hence milk production in the subsequent lactation, and 2) identify the regulatory factors responsible for changes in cell turnover and angiogenesis in the continuously lactating mammary gland. Nine multiparous dairy goats were used. One udder half was dried off approximately 9 wk prepartum (normal lactation; NL), and the other udder half of the same goat was milked continuously (continuous lactation; CL) until parturition or until the half-udder milk yields had dropped to below 50 g/d. Mammary biopsies were obtained from each udder half just before the NL gland was dried off (before dry period), within the first 2 wk after drying-off (early dry period, samples available only for NL glands), in the mid dry period, within the last 2 wk before parturition (late dry period), and at d 1 (the day of parturition), 3, 10, 60, and 180 of lactation. Mammary morphology was characterized in biopsies by quantitative histology, and cell turnover was determined by immunohistochemistry (terminal deoxynucleotidyl transferase dUTP nick end labeling and Ki-67). Transcription of genes encoding factors involved in mammary epithelial cell (MEC) turnover and vascular function was quantified by quantitative reverse transcription PCR. Results demonstrated that omitting the dry period was possible in goats but was not as easy as claimed before. Renewal of MEC was suppressed in CL glands, which resulted in a smaller MEC population in the subsequent lactation. At the time of parturition (and throughout lactation), the mammary glands subjected to CL had smaller alveoli, more fully differentiated MEC, and a substantially larger capillary fraction compared with NL glands. The continuously lactating gland thus resembled a normally lactating gland in an advanced stage of lactation. None of the studied genomic factors could account for these treatment differences. The described characteristics in CL glands compared with NL glands indicated a gland maintained in lactation for a longer period.
Collapse
Affiliation(s)
- S Safayi
- Department of Basic Animal and Veterinary Sciences, Faculty of LIFE Sciences, University of Copenhagen, Groennegaardsvej 7, DK-1870 Frederiksberg C, Denmark
| | | | | | | | | | | | | |
Collapse
|
108
|
|
109
|
Bohmanova J, Jamrozik J, Miglior F. Effect of pregnancy on production traits of Canadian Holstein cows. J Dairy Sci 2009; 92:2947-59. [DOI: 10.3168/jds.2008-1782] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
110
|
Loker S, Miglior F, Bohmanova J, Schaeffer LR, Jamrozik J, Kistemaker G. Short communication: effect of preadjusting test-day yields for stage of pregnancy on variance component estimation in Canadian Ayrshires. J Dairy Sci 2009; 92:2270-5. [PMID: 19389986 DOI: 10.3168/jds.2008-1806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Preadjustment of phenotypic records is an alternative to accounting for the effect of pregnancy within the genetic evaluation model. Variance components used in the Canadian Test-Day Model may need to be re-estimated after preadjusting for pregnancy. The objective of this study was to assess the effect of preadjusting test-day yields on variance components and estimated breeding values using a random regression test-day model in a random sample of Ayrshire cows. A random sample of 981 Canadian Ayrshire cows from 18 complete herds (average of 54.5 cows/herd) was analyzed. Two data sets were created using the same animals, one with unadjusted milk, fat, and protein yields, and one data set with test-day records adjusted for pregnancy effects. Pregnancy effect estimates from a previous study were used for additive preadjustment of records. Variance components were estimated using both data sets. Results were very similar between the 2 data sets for all estimated genetic parameters (heritabilities, genetic, and permanent environmental correlations). The relative squared differences were very small: 0.05% for heritabilities, 0.20% for genetic correlations, and 0.18% for permanent environmental correlations. Furthermore, paired Student's t-tests showed that the differences between the genetic parameters of data sets adjusted and unadjusted for pregnancy effect were not significantly different from 0. Results from this study show that preadjusting data for pregnancy did not yield changes in covariance component estimates, thus suggesting that preadjusting test-day records could be a feasible solution to account for pregnancy in the Canadian Test-Day Model without changing the current model. Estimated breeding values (EBV) were calculated for both data sets to observe the impact of preadjusting for pregnancy. Overall, the largest changes in EBV seen when preadjusting for pregnancy (compared with unadjusted records) occurred for nonpregnant elite cows, whose EBV declined. Preadjusting for pregnancy before genetic evaluations improves the estimation of breeding values by adding the negative impact of pregnancy back onto pregnant cow test-day records, causing an increase in their production EBV.
Collapse
Affiliation(s)
- S Loker
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | | | | | | | | | | |
Collapse
|
111
|
Loker S, Miglior F, Bohmanova J, Jamrozik J, Schaeffer LR. Phenotypic analysis of pregnancy effect on milk, fat, and protein yields of Canadian Ayrshire, Jersey, Brown Swiss, and Guernsey breeds. J Dairy Sci 2009; 92:1300-12. [PMID: 19233823 DOI: 10.3168/jds.2008-1425] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pregnancy has a negative impact on milk production in dairy cattle. Estimates of the effects of pregnancy are required in genetic evaluation models. Test-day records of Ayrshire, Jersey, Brown Swiss, and Guernsey breeds were analyzed phenotypically for the effect of pregnancy using 4 different models. Milk, fat, and protein yields were analyzed separately. The first model used a fourth-order Legendre polynomial regression on days in milk within classes of 10 d open. The second model fitted stage of pregnancy within days open classes to investigate the possible interaction between lactation stage and gestation stage. The third model included a fourth-order Legendre polynomial regression on days pregnant. In the fourth model, test-day records were divided into stage of pregnancy classes. Given that the effect of pregnancy was significant for all models, and that the adjusted R-squared values were consistent across the models, implying that the models for each trait fitted equally well within breeds, models were therefore compared based on the practicality of the results. Analysis of the first model indicated that milk production for cows with < or =180 d open tended to have low yields in the last part of lactation. Cows with longer days open, however, had proportionally higher milk yield throughout lactation, suggesting a possible confounding effect of production level with days open effects. Results from the analysis involving the second model illustrated that there was no apparent interaction between lactation stage and gestation stage. Results from the third and fourth models showed that milk and fat yields began to decline after about 4 mo of pregnancy for all breeds, and protein yield began to decline after about 2 mo of pregnancy for all breeds. A lack of records during the final 60 d of pregnancy (the typical dry period) severely limited the third model, as pregnancy effects could not be estimated accurately. This problem was lessened, however, with the fourth (stage of pregnancy) model, because test-day records for cows > or =210 d pregnant were grouped together, allowing for a moderate number of test-day records in the final class of days pregnant. Because the stage of pregnancy model showed a decline in production that increased as gestation progressed, and because there was not a lack of test-day records at the end of pregnancy, the fourth model provided the most realistic estimate of the effect of pregnancy on milk production. Further investigation is needed into the incorporation of stage of pregnancy effects into genetic evaluations.
Collapse
Affiliation(s)
- S Loker
- Centre for Genetic Improvement of Livestock, Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
112
|
Sobolewska A, Gajewska M, Zarzyńska J, Gajkowska B, Motyl T. IGF-I, EGF, and sex steroids regulate autophagy in bovine mammary epithelial cells via the mTOR pathway. Eur J Cell Biol 2009; 88:117-30. [DOI: 10.1016/j.ejcb.2008.09.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 08/26/2008] [Accepted: 09/16/2008] [Indexed: 11/24/2022] Open
|
113
|
Loor JJ, Cohick WS. ASAS centennial paper: Lactation biology for the twenty-first century. J Anim Sci 2008; 87:813-24. [PMID: 18820152 DOI: 10.2527/jas.2008-1375] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Knowledge of general aspects of mammary gland function, including metabolic pathways and hormonal regulation of mammary gland development and lactation, in livestock species was obtained several decades ago. As basic biological information of growth factor action, apoptotic mechanisms, and signal transduction events has exploded, the mouse became the model of choice for studying fundamental mechanisms regulating mammary function. A complete sequenced genome also has made the mouse amenable for studies of mammary gene network expression. Advances in molecular biology techniques currently allow researchers to genetically modify mice to either overexpress or completely lack specific genes, thereby studying their function in an in vivo setting. Furthermore, the use of mammary-specific promoters has allowed genes related to mammary gland function to be eliminated from the mammary gland in a developmental and tissue-specific manner. These studies have demonstrated the complexity that underlies mammary gland development and function in rodents and may provide insight into the mechanisms that ultimately allow the ruminant or swine mammary gland to function in a coordinated fashion throughout puberty, pregnancy, lactation, and involution. The challenge facing animal scientists is how to obtain similar information in much larger and expensive livestock. One possible approach is to manipulate gene expression in vitro using mammary cell culture models derived from domestic animals (e.g., genes can be "knocked down" using small interfering RNA approaches). Ultimately, major advances in understanding lactation biology may come from coupling basic mechanistic information with functional genomics, proteomics, and metabolomics approaches. A strong foundation in bioinformatics will also be required to optimize use of these new technologies. Stem cell biology also represents an exciting area in the next decade that holds promise for improving lactation efficiency. Strong training of our future scientists in these areas should facilitate livestock-focused mammary gland research that will allow basic information to be gained at unprecedented amounts, ultimately leading to optimization of livestock production.
Collapse
Affiliation(s)
- J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801, USA.
| | | |
Collapse
|
114
|
Hua GH, Chen SL, Yu JN, Cai KL, Wu CJ, Li QL, Zhang CY, Liang AX, Han L, Geng LY, Shen Z, Xu DQ, Yang LG. Polymorphism of the growth hormone gene and its association with growth traits in Boer goat bucks. Meat Sci 2008; 81:391-5. [PMID: 22064179 DOI: 10.1016/j.meatsci.2008.08.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 08/26/2008] [Accepted: 08/29/2008] [Indexed: 11/30/2022]
Abstract
In the present study, the polymorphism of growth hormone (GH) gene was analyzed as a genetic marker candidate for growth traits in Boer goat bucks. Two single nucleotide polymorphisms (SNPs) - A781G (Ser/Gly35) and A1575G (Leu147), were identified by GH gene sequencing and PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) analysis. AA genotype resulted in a significant decrease in birth chest girth (P=0.03) and weaning weight (P=0.014) comparing to AB genotype, while CC genotype contributed to weaning height (P=0.04) greater than CD genotype. When in combination, AACD genotype was undesired for lower scores in a series of growth traits including body weight, length, height, and chest girth at birth and weaning, as well as the pre-weaning daily gain and body weight at age of 11 months. These results indicate that new molecular markers associated with caprine growth traits can be used in MAS (marker-assisted selection) in Boer goat bucks.
Collapse
Affiliation(s)
- G H Hua
- College of Animal Science and Technology, Key Laboratory under Education Ministry of China for Agricultural Animal Genetics, Breeding, and Reproduction, Huazhong Agricultural University, Shizi Street, Wuhan, Hubei 430070, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Duffy DM, Garrett SM, Ellis SE, Scott TR. Influence of supramammary lymph node extract on in vitro cell proliferation. Cell Prolif 2008; 41:299-309. [PMID: 18336474 DOI: 10.1111/j.1365-2184.2008.00521.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Experiments were conducted to evaluate whether or not bovine supramammary lymph node extract (LNE) could support cell proliferation when it was substituted for bovine growth serum (BGS) in cell culture media. MATERIALS AND METHODS Two different preparations of LNE were tested. The first yielded protein concentration of 3 mg/mL and the second contained 27 mg/mL protein. Three cell lines (MDA-MB-435, MAC-T and 1C6) were used in serum starvation assays to evaluate LNE. Cell proliferation assays were used to determine growth stimulation in the presence of LNE, and short-term or rapid adaptation cultures were evaluated for LNE effects on cell survival. RESULTS Heat-inactivated preparation 1 supported cell proliferation as well as or better (12-39%) than BGS following 2 days of serum starvation in culture. The second lymph node preparation provided a stimulatory effect (263-702% greater than BGS across all cell lines) following serum starvation at 2.7 and 5.4 mg/mL protein supplementation. A gradual adaptation process with lymph node supplementation into media maintained cell population growth on a short-term basis. However, once cells were trypsinized or scraped and re-seeded into 2.7 mg/mL LNE protein containing media, cells were unable to re-adhere, leaving them detached, and eventually appearing to be dead. CONCLUSIONS Substitution of BGS with LNE protein dramatically stimulated cells to proliferate, but did not allow for rapid cell population growth adaptation in vitro.
Collapse
Affiliation(s)
- D M Duffy
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634-0311, USA
| | | | | | | |
Collapse
|
116
|
Huang W, Maltecca C, Khatib H. A proline-to-histidine mutation in POU1F1 is associated with production traits in dairy cattle. Anim Genet 2008; 39:554-7. [PMID: 18557974 DOI: 10.1111/j.1365-2052.2008.01749.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
POU class 1 homeobox 1 (POU1F1) is a member of the tissue-specific POU-containing transcription factor family. The expression of POU1F1 in mammalian pituitary gland controls the transcription of the genes encoding growth hormone, prolactin (PRL) and the subunits of thyroid-stimulating hormone. In addition, some genes in the JAK/STAT signalling pathway downstream of POU1F1 have been shown to be associated with different production traits in dairy cattle. To investigate whether the POU1F1 gene is associated with economically important traits in dairy cattle, a pooled DNA sequencing approach was used to identify single nucleotide polymorphisms (SNPs) in the gene. An SNP in exon 3 of POU1F1 that changes a proline to a histidine was identified. A total of 2141 individuals from two North American Holstein cattle resource populations were genotyped for this SNP using a modified PCR-RFLP method. Statistical analyses revealed significant association of POU1F1 variants with milk yield and productive life, which makes POU1F1 a possible candidate for marker-assisted selection in dairy cattle breeding programmes.
Collapse
Affiliation(s)
- W Huang
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
117
|
Piantoni P, Bionaz M, Graugnard DE, Daniels KM, Akers RM, Loor JJ. Gene expression ratio stability evaluation in prepubertal bovine mammary tissue from calves fed different milk replacers reveals novel internal controls for quantitative polymerase chain reaction. J Nutr 2008; 138:1158-64. [PMID: 18492850 DOI: 10.1093/jn/138.6.1158] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Prepubertal mammary development can be affected by nutrition partly through alterations in gene network expression. Quantitative PCR (qPCR) remains the most accurate method to measure mRNA expression but is subject to analytical errors that introduce variation. Thus, qPCR data normalization through the use of internal control genes (ICG) is required. The objective of this study was to mine microarray data (> 10,000 genes) from prepubertal mammary parenchyma and stroma to identify the most suitable ICG for normalization of qPCR. Tissue for RNA extraction was obtained from calves ( approximately 63 d old; n = 5/diet) fed a control (200 g/kg crude protein, 210 g/kg crude fat, fed at 441 g/d dry matter) or a high-protein milk replacer (280 g/kg crude protein, 200 g/kg crude fat, fed at 951 g/d dry matter). ICG were selected based on both absence of expression variation across treatment and of coregulation (gene network analysis). Genes evaluated were ubiquitously expressed transcript, protein phosphatase 1 regulatory (inhibitor) subunit 11 (PPP1R11), matrix metallopeptidase 14 (MMP14), ClpB caseinolytic peptidase B, SAPS domain family member 1 (SAPS1), mitochondrial GTPase 1 (MTG1), mitochondrial ribosomal protein L39, ribosomal protein S15a (RPS15A), and actin beta (ACTB). Network analysis demonstrated that MMP14 and ACTB are coregulated by v-myc myelocytomatosis viral oncogene, tumor protein p53, and potentially insulin-like growth factor 1. Pairwise comparison of expression ratios showed that ACTB, MMP14, and SAPS1 had the lowest stability and were unsuitable as ICG. PPP1R11, RPS15A, and MTG1 were the most stable among ICG tested. We conclude that the geometric mean of PPP1R11, RPS15A, and MTG1 is ideal for normalization of qPCR data in prepubertal bovine mammary tissue. This study provides a list of candidate ICG that could be used by researchers working in bovine mammary development and allied fields.
Collapse
Affiliation(s)
- Paola Piantoni
- Mammalian NutriPhysioGenomics, Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
118
|
Trott JF, Vonderhaar BK, Hovey RC. Historical perspectives of prolactin and growth hormone as mammogens, lactogens and galactagogues--agog for the future! J Mammary Gland Biol Neoplasia 2008; 13:3-11. [PMID: 18204889 DOI: 10.1007/s10911-008-9064-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022] Open
Abstract
Around 80 years ago researchers first established that the pituitary gland regulates mammary gland function as demonstrated by the ability of its extracts to promote both mammogenesis and lactogenesis in animal models. Little did they realize that in fact two hormones, prolactin (PRL) and growth hormone (GH), were contributing to these effects. By the mid 1930s PRL had been purified as a distinct lactogen, while the galactopoietic effect of GH was confirmed after its purification in the 1940s. Interest in these hormones initially centered about their potential for increasing milk production, while in the latter half of the twentieth century it became obvious that these hormones also had the potential to influence mammary cancer development. During the past 50 years large strides have been made into understanding how these hormones signal to, and within, cells of the mammary gland, paralleling rapid developments in the fields of cellular and molecular biology. In compiling this review we have summarized the progress that has been made to date regarding roles for these hormones in the mammary gland, with a goal of ensuring that some of the seminal literature is not diluted or forgotten. In doing so it is clear that there are lessons to be learned from past experiences, where new methods and technologies will continue to present exciting new opportunities to revisit lingering questions regarding these fascinating hormones and this fascinating organ.
Collapse
Affiliation(s)
- Josephine F Trott
- Lactation and Mammary Gland Biology Group, Department of Animal Science, The University of Vermont, Burlington, VT 05401, USA
| | | | | |
Collapse
|
119
|
Zhou Y, Akers RM, Jiang H. Growth hormone can induce expression of four major milk protein genes in transfected MAC-T cells. J Dairy Sci 2008; 91:100-8. [PMID: 18096930 DOI: 10.3168/jds.2007-0509] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Growth hormone (GH) can increase milk production in cattle, and this effect was thought to be mediated by an indirect mechanism because traditional ligand binding assays failed to detect GH binding sites in the mammary gland. However, recent findings that GH receptor (GHR) mRNA and protein are expressed in the epithelial cells of the bovine mammary gland suggest that GH may directly act on these cells to affect milk production. Therefore, the objective of this study was to determine whether GH could affect milk protein gene expression, nutrient uptake, and cell proliferation in bovine mammary epithelial cells using the bovine mammary epithelial cell-derived MAC-T cells as a model. Native MAC-T cells had low expression of GHR. Thus, we transfected them with expression plasmids for GHR and signal transducer and activator of transcription 5 (STAT5), 2 key components of GHR signaling, to maximize their GH response. Growth hormone increased the expression of alphaS1-casein, alphaS2-casein, beta-casein, and alpha-lactalbumin mRNA 16- to 117-fold in the transfected MAC-T cells, whereas it had no effect on the expression of kappa-casein, beta-lactoglobulin, or insulin-like growth factor I mRNA. Cotransfection analyses showed that GH also strongly induced reporter gene expression from alphaS1-casein, alphaS2-casein, beta-casein, and alpha-lactalbumin gene promoters. Growth hormone had no effect on the uptake of 2-deoxyglucose, an unmetabolizable glucose analog, amino acids, or oleic acid; neither did it affect cell proliferation or death. These observations together with the fact that GH receptor mRNA and protein are expressed in the epithelial cells of the bovine mammary gland raise the possibility that GH might act directly on the mammary epithelial cells in cows to stimulate transcription of major milk protein genes, as part of the mechanism by which GH stimulates milk production.
Collapse
Affiliation(s)
- Y Zhou
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, 24061, USA
| | | | | |
Collapse
|
120
|
Stockdale CR. Influence of milking frequency on the productivity of dairy cows. ACTA ACUST UNITED AC 2006. [DOI: 10.1071/ea05308] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Benefits and issues of changing milking frequency from the traditional twice a day are reviewed. Increased efficiency through dairy automation and mechanisation, and the desire to utilise advances in genetic selection, have made milking more frequently than twice a day an attractive option for some farmers. The size of the response to increased milking frequency appeared not to be related to existing milk yield, with the average response to increasing the frequency from 2 to 3 times a day being 3.5–3.8 kg/day. Labour is the single most important cost associated with the decision to increase milking frequency. For this reason, automated milking systems may hold the key to the long-term profitability of challenging cows to produce to their genetic potential. In contrast, reducing milking frequency to once a day has been used to reduce stress on underfed cows or for lifestyle and/or labour considerations. Short-term experiments indicate an average production loss of 21% for once daily relative to twice daily milking. Full lactation experiments suggest greater losses of 35–50%, but there is evidence that cows can adapt to longer milking intervals and this, coupled with increased stocking rate and care to maximise milk removal, may restrict yield losses to less than 10% on a whole-farm basis.
Collapse
|