101
|
Squair JW, Bélanger LM, Tsang A, Ritchie L, Mac-Thiong JM, Parent S, Christie S, Bailey C, Dhall S, Street J, Ailon T, Paquette S, Dea N, Fisher CG, Dvorak MF, West CR, Kwon BK. Spinal cord perfusion pressure predicts neurologic recovery in acute spinal cord injury. Neurology 2017; 89:1660-1667. [PMID: 28916535 DOI: 10.1212/wnl.0000000000004519] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/10/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine whether spinal cord perfusion pressure (SCPP) as measured with a lumbar intrathecal catheter is a more predictive measure of neurologic outcome than the conventionally measured mean arterial pressure (MAP). METHODS A total of 92 individuals with acute spinal cord injury were enrolled in this multicenter prospective observational clinical trial. MAP and CSF pressure (CSFP) were monitored during the first week postinjury. Neurologic impairment was assessed at baseline and at 6 months postinjury. We used logistic regression, systematic iterations of relative risk, and Cox proportional hazard models to examine hemodynamic patterns commensurate with neurologic outcome. RESULTS We found that SCPP (odds ratio 1.039, p = 0.002) is independently associated with positive neurologic recovery. The relative risk for not recovering neurologic function continually increased as individuals were exposed to SCPP below 50 mm Hg. Individuals who improved in neurologic grade dropped below SCPP of 50 mm Hg fewer times than those who did not improve (p = 0.012). This effect was not observed for MAP or CSFP. Those who were exposed to SCPP below 50 mm Hg were less likely to improve from their baseline neurologic impairment grade (p = 0.0056). CONCLUSIONS We demonstrate that maintaining SCPP above 50 mm Hg is a strong predictor of improved neurologic recovery following spinal cord injury. This suggests that SCPP (the difference between MAP and CSFP) can provide useful information to guide the hemodynamic management of patients with acute spinal cord injury.
Collapse
Affiliation(s)
- Jordan W Squair
- From the International Collaboration on Repair Discoveries (ICORD) (J.W.S., M.F.D., C.R.W., B.K.K.); MD/PhD Training Program (J.W.S.), Department of Orthopaedics (J.S., C.G.F., M.F.D, B.K.K) and Division of Neurosurgery (T.A., S. Paquette, N.D.), Vancouver Spine Surgery Institute, Blusson Spinal Cord Centre, and School of Kinesiology (C.R.W.), University of British Columbia; Vancouver Spine Program (L.M.B., A.T., L.R.), Vancouver General Hospital; Department of Surgery, Hôpital du Sacré-Coeur de Montréal (J.-M.M.-T., S. Parent), and Chu Sainte-Justine, Department of Surgery (S.C.), Université de Montréal; Division of Orthopaedic Surgery (C.B.), London Health Sciences Centre, University of Western Ontario, Canada; and Department of Neurological Surgery (S.D.), University of California, San Francisco
| | - Lise M Bélanger
- From the International Collaboration on Repair Discoveries (ICORD) (J.W.S., M.F.D., C.R.W., B.K.K.); MD/PhD Training Program (J.W.S.), Department of Orthopaedics (J.S., C.G.F., M.F.D, B.K.K) and Division of Neurosurgery (T.A., S. Paquette, N.D.), Vancouver Spine Surgery Institute, Blusson Spinal Cord Centre, and School of Kinesiology (C.R.W.), University of British Columbia; Vancouver Spine Program (L.M.B., A.T., L.R.), Vancouver General Hospital; Department of Surgery, Hôpital du Sacré-Coeur de Montréal (J.-M.M.-T., S. Parent), and Chu Sainte-Justine, Department of Surgery (S.C.), Université de Montréal; Division of Orthopaedic Surgery (C.B.), London Health Sciences Centre, University of Western Ontario, Canada; and Department of Neurological Surgery (S.D.), University of California, San Francisco
| | - Angela Tsang
- From the International Collaboration on Repair Discoveries (ICORD) (J.W.S., M.F.D., C.R.W., B.K.K.); MD/PhD Training Program (J.W.S.), Department of Orthopaedics (J.S., C.G.F., M.F.D, B.K.K) and Division of Neurosurgery (T.A., S. Paquette, N.D.), Vancouver Spine Surgery Institute, Blusson Spinal Cord Centre, and School of Kinesiology (C.R.W.), University of British Columbia; Vancouver Spine Program (L.M.B., A.T., L.R.), Vancouver General Hospital; Department of Surgery, Hôpital du Sacré-Coeur de Montréal (J.-M.M.-T., S. Parent), and Chu Sainte-Justine, Department of Surgery (S.C.), Université de Montréal; Division of Orthopaedic Surgery (C.B.), London Health Sciences Centre, University of Western Ontario, Canada; and Department of Neurological Surgery (S.D.), University of California, San Francisco
| | - Leanna Ritchie
- From the International Collaboration on Repair Discoveries (ICORD) (J.W.S., M.F.D., C.R.W., B.K.K.); MD/PhD Training Program (J.W.S.), Department of Orthopaedics (J.S., C.G.F., M.F.D, B.K.K) and Division of Neurosurgery (T.A., S. Paquette, N.D.), Vancouver Spine Surgery Institute, Blusson Spinal Cord Centre, and School of Kinesiology (C.R.W.), University of British Columbia; Vancouver Spine Program (L.M.B., A.T., L.R.), Vancouver General Hospital; Department of Surgery, Hôpital du Sacré-Coeur de Montréal (J.-M.M.-T., S. Parent), and Chu Sainte-Justine, Department of Surgery (S.C.), Université de Montréal; Division of Orthopaedic Surgery (C.B.), London Health Sciences Centre, University of Western Ontario, Canada; and Department of Neurological Surgery (S.D.), University of California, San Francisco
| | - Jean-Marc Mac-Thiong
- From the International Collaboration on Repair Discoveries (ICORD) (J.W.S., M.F.D., C.R.W., B.K.K.); MD/PhD Training Program (J.W.S.), Department of Orthopaedics (J.S., C.G.F., M.F.D, B.K.K) and Division of Neurosurgery (T.A., S. Paquette, N.D.), Vancouver Spine Surgery Institute, Blusson Spinal Cord Centre, and School of Kinesiology (C.R.W.), University of British Columbia; Vancouver Spine Program (L.M.B., A.T., L.R.), Vancouver General Hospital; Department of Surgery, Hôpital du Sacré-Coeur de Montréal (J.-M.M.-T., S. Parent), and Chu Sainte-Justine, Department of Surgery (S.C.), Université de Montréal; Division of Orthopaedic Surgery (C.B.), London Health Sciences Centre, University of Western Ontario, Canada; and Department of Neurological Surgery (S.D.), University of California, San Francisco
| | - Stefan Parent
- From the International Collaboration on Repair Discoveries (ICORD) (J.W.S., M.F.D., C.R.W., B.K.K.); MD/PhD Training Program (J.W.S.), Department of Orthopaedics (J.S., C.G.F., M.F.D, B.K.K) and Division of Neurosurgery (T.A., S. Paquette, N.D.), Vancouver Spine Surgery Institute, Blusson Spinal Cord Centre, and School of Kinesiology (C.R.W.), University of British Columbia; Vancouver Spine Program (L.M.B., A.T., L.R.), Vancouver General Hospital; Department of Surgery, Hôpital du Sacré-Coeur de Montréal (J.-M.M.-T., S. Parent), and Chu Sainte-Justine, Department of Surgery (S.C.), Université de Montréal; Division of Orthopaedic Surgery (C.B.), London Health Sciences Centre, University of Western Ontario, Canada; and Department of Neurological Surgery (S.D.), University of California, San Francisco
| | - Sean Christie
- From the International Collaboration on Repair Discoveries (ICORD) (J.W.S., M.F.D., C.R.W., B.K.K.); MD/PhD Training Program (J.W.S.), Department of Orthopaedics (J.S., C.G.F., M.F.D, B.K.K) and Division of Neurosurgery (T.A., S. Paquette, N.D.), Vancouver Spine Surgery Institute, Blusson Spinal Cord Centre, and School of Kinesiology (C.R.W.), University of British Columbia; Vancouver Spine Program (L.M.B., A.T., L.R.), Vancouver General Hospital; Department of Surgery, Hôpital du Sacré-Coeur de Montréal (J.-M.M.-T., S. Parent), and Chu Sainte-Justine, Department of Surgery (S.C.), Université de Montréal; Division of Orthopaedic Surgery (C.B.), London Health Sciences Centre, University of Western Ontario, Canada; and Department of Neurological Surgery (S.D.), University of California, San Francisco
| | - Christopher Bailey
- From the International Collaboration on Repair Discoveries (ICORD) (J.W.S., M.F.D., C.R.W., B.K.K.); MD/PhD Training Program (J.W.S.), Department of Orthopaedics (J.S., C.G.F., M.F.D, B.K.K) and Division of Neurosurgery (T.A., S. Paquette, N.D.), Vancouver Spine Surgery Institute, Blusson Spinal Cord Centre, and School of Kinesiology (C.R.W.), University of British Columbia; Vancouver Spine Program (L.M.B., A.T., L.R.), Vancouver General Hospital; Department of Surgery, Hôpital du Sacré-Coeur de Montréal (J.-M.M.-T., S. Parent), and Chu Sainte-Justine, Department of Surgery (S.C.), Université de Montréal; Division of Orthopaedic Surgery (C.B.), London Health Sciences Centre, University of Western Ontario, Canada; and Department of Neurological Surgery (S.D.), University of California, San Francisco
| | - Sanjay Dhall
- From the International Collaboration on Repair Discoveries (ICORD) (J.W.S., M.F.D., C.R.W., B.K.K.); MD/PhD Training Program (J.W.S.), Department of Orthopaedics (J.S., C.G.F., M.F.D, B.K.K) and Division of Neurosurgery (T.A., S. Paquette, N.D.), Vancouver Spine Surgery Institute, Blusson Spinal Cord Centre, and School of Kinesiology (C.R.W.), University of British Columbia; Vancouver Spine Program (L.M.B., A.T., L.R.), Vancouver General Hospital; Department of Surgery, Hôpital du Sacré-Coeur de Montréal (J.-M.M.-T., S. Parent), and Chu Sainte-Justine, Department of Surgery (S.C.), Université de Montréal; Division of Orthopaedic Surgery (C.B.), London Health Sciences Centre, University of Western Ontario, Canada; and Department of Neurological Surgery (S.D.), University of California, San Francisco
| | - John Street
- From the International Collaboration on Repair Discoveries (ICORD) (J.W.S., M.F.D., C.R.W., B.K.K.); MD/PhD Training Program (J.W.S.), Department of Orthopaedics (J.S., C.G.F., M.F.D, B.K.K) and Division of Neurosurgery (T.A., S. Paquette, N.D.), Vancouver Spine Surgery Institute, Blusson Spinal Cord Centre, and School of Kinesiology (C.R.W.), University of British Columbia; Vancouver Spine Program (L.M.B., A.T., L.R.), Vancouver General Hospital; Department of Surgery, Hôpital du Sacré-Coeur de Montréal (J.-M.M.-T., S. Parent), and Chu Sainte-Justine, Department of Surgery (S.C.), Université de Montréal; Division of Orthopaedic Surgery (C.B.), London Health Sciences Centre, University of Western Ontario, Canada; and Department of Neurological Surgery (S.D.), University of California, San Francisco
| | - Tamir Ailon
- From the International Collaboration on Repair Discoveries (ICORD) (J.W.S., M.F.D., C.R.W., B.K.K.); MD/PhD Training Program (J.W.S.), Department of Orthopaedics (J.S., C.G.F., M.F.D, B.K.K) and Division of Neurosurgery (T.A., S. Paquette, N.D.), Vancouver Spine Surgery Institute, Blusson Spinal Cord Centre, and School of Kinesiology (C.R.W.), University of British Columbia; Vancouver Spine Program (L.M.B., A.T., L.R.), Vancouver General Hospital; Department of Surgery, Hôpital du Sacré-Coeur de Montréal (J.-M.M.-T., S. Parent), and Chu Sainte-Justine, Department of Surgery (S.C.), Université de Montréal; Division of Orthopaedic Surgery (C.B.), London Health Sciences Centre, University of Western Ontario, Canada; and Department of Neurological Surgery (S.D.), University of California, San Francisco
| | - Scott Paquette
- From the International Collaboration on Repair Discoveries (ICORD) (J.W.S., M.F.D., C.R.W., B.K.K.); MD/PhD Training Program (J.W.S.), Department of Orthopaedics (J.S., C.G.F., M.F.D, B.K.K) and Division of Neurosurgery (T.A., S. Paquette, N.D.), Vancouver Spine Surgery Institute, Blusson Spinal Cord Centre, and School of Kinesiology (C.R.W.), University of British Columbia; Vancouver Spine Program (L.M.B., A.T., L.R.), Vancouver General Hospital; Department of Surgery, Hôpital du Sacré-Coeur de Montréal (J.-M.M.-T., S. Parent), and Chu Sainte-Justine, Department of Surgery (S.C.), Université de Montréal; Division of Orthopaedic Surgery (C.B.), London Health Sciences Centre, University of Western Ontario, Canada; and Department of Neurological Surgery (S.D.), University of California, San Francisco
| | - Nicolas Dea
- From the International Collaboration on Repair Discoveries (ICORD) (J.W.S., M.F.D., C.R.W., B.K.K.); MD/PhD Training Program (J.W.S.), Department of Orthopaedics (J.S., C.G.F., M.F.D, B.K.K) and Division of Neurosurgery (T.A., S. Paquette, N.D.), Vancouver Spine Surgery Institute, Blusson Spinal Cord Centre, and School of Kinesiology (C.R.W.), University of British Columbia; Vancouver Spine Program (L.M.B., A.T., L.R.), Vancouver General Hospital; Department of Surgery, Hôpital du Sacré-Coeur de Montréal (J.-M.M.-T., S. Parent), and Chu Sainte-Justine, Department of Surgery (S.C.), Université de Montréal; Division of Orthopaedic Surgery (C.B.), London Health Sciences Centre, University of Western Ontario, Canada; and Department of Neurological Surgery (S.D.), University of California, San Francisco
| | - Charles G Fisher
- From the International Collaboration on Repair Discoveries (ICORD) (J.W.S., M.F.D., C.R.W., B.K.K.); MD/PhD Training Program (J.W.S.), Department of Orthopaedics (J.S., C.G.F., M.F.D, B.K.K) and Division of Neurosurgery (T.A., S. Paquette, N.D.), Vancouver Spine Surgery Institute, Blusson Spinal Cord Centre, and School of Kinesiology (C.R.W.), University of British Columbia; Vancouver Spine Program (L.M.B., A.T., L.R.), Vancouver General Hospital; Department of Surgery, Hôpital du Sacré-Coeur de Montréal (J.-M.M.-T., S. Parent), and Chu Sainte-Justine, Department of Surgery (S.C.), Université de Montréal; Division of Orthopaedic Surgery (C.B.), London Health Sciences Centre, University of Western Ontario, Canada; and Department of Neurological Surgery (S.D.), University of California, San Francisco
| | - Marcel F Dvorak
- From the International Collaboration on Repair Discoveries (ICORD) (J.W.S., M.F.D., C.R.W., B.K.K.); MD/PhD Training Program (J.W.S.), Department of Orthopaedics (J.S., C.G.F., M.F.D, B.K.K) and Division of Neurosurgery (T.A., S. Paquette, N.D.), Vancouver Spine Surgery Institute, Blusson Spinal Cord Centre, and School of Kinesiology (C.R.W.), University of British Columbia; Vancouver Spine Program (L.M.B., A.T., L.R.), Vancouver General Hospital; Department of Surgery, Hôpital du Sacré-Coeur de Montréal (J.-M.M.-T., S. Parent), and Chu Sainte-Justine, Department of Surgery (S.C.), Université de Montréal; Division of Orthopaedic Surgery (C.B.), London Health Sciences Centre, University of Western Ontario, Canada; and Department of Neurological Surgery (S.D.), University of California, San Francisco
| | - Christopher R West
- From the International Collaboration on Repair Discoveries (ICORD) (J.W.S., M.F.D., C.R.W., B.K.K.); MD/PhD Training Program (J.W.S.), Department of Orthopaedics (J.S., C.G.F., M.F.D, B.K.K) and Division of Neurosurgery (T.A., S. Paquette, N.D.), Vancouver Spine Surgery Institute, Blusson Spinal Cord Centre, and School of Kinesiology (C.R.W.), University of British Columbia; Vancouver Spine Program (L.M.B., A.T., L.R.), Vancouver General Hospital; Department of Surgery, Hôpital du Sacré-Coeur de Montréal (J.-M.M.-T., S. Parent), and Chu Sainte-Justine, Department of Surgery (S.C.), Université de Montréal; Division of Orthopaedic Surgery (C.B.), London Health Sciences Centre, University of Western Ontario, Canada; and Department of Neurological Surgery (S.D.), University of California, San Francisco
| | - Brian K Kwon
- From the International Collaboration on Repair Discoveries (ICORD) (J.W.S., M.F.D., C.R.W., B.K.K.); MD/PhD Training Program (J.W.S.), Department of Orthopaedics (J.S., C.G.F., M.F.D, B.K.K) and Division of Neurosurgery (T.A., S. Paquette, N.D.), Vancouver Spine Surgery Institute, Blusson Spinal Cord Centre, and School of Kinesiology (C.R.W.), University of British Columbia; Vancouver Spine Program (L.M.B., A.T., L.R.), Vancouver General Hospital; Department of Surgery, Hôpital du Sacré-Coeur de Montréal (J.-M.M.-T., S. Parent), and Chu Sainte-Justine, Department of Surgery (S.C.), Université de Montréal; Division of Orthopaedic Surgery (C.B.), London Health Sciences Centre, University of Western Ontario, Canada; and Department of Neurological Surgery (S.D.), University of California, San Francisco.
| |
Collapse
|
102
|
|
103
|
Nori S, Ahuja CS, Fehlings MG. Translational Advances in the Management of Acute Spinal Cord Injury: What is New? What is Hot? Neurosurgery 2017; 64:119-128. [DOI: 10.1093/neuros/nyx217] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/04/2017] [Indexed: 01/10/2023] Open
Affiliation(s)
- Satoshi Nori
- Department of Genetics and Develop-ment, University of Toronto, Toronto, Canada
| | - Christopher S. Ahuja
- Department of Genetics and Develop-ment, University of Toronto, Toronto, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Michael G. Fehlings
- Department of Genetics and Develop-ment, University of Toronto, Toronto, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
- Spine Program, University of Toronto, Toronto, Canada
| |
Collapse
|
104
|
Draghici AE, Taylor JA. Baroreflex autonomic control in human spinal cord injury: Physiology, measurement, and potential alterations. Auton Neurosci 2017; 209:37-42. [PMID: 28844537 DOI: 10.1016/j.autneu.2017.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 07/25/2017] [Accepted: 08/16/2017] [Indexed: 12/27/2022]
Abstract
The arterial baroreflex is a primary regulator of autonomic outflow to effectively regulate acute changes in blood pressure. After a spinal cord injury (SCI), regulation of autonomic function is disrupted, although the damage of the autonomic pathways may not necessarily be related to the severity of injury (i.e. level and completeness). Nonetheless, it can be assumed that there would be greater loss of sympathetic innervation with higher level of injury and that cardiac parasympathetic control would remain intact regardless of injury level. In those with SCI, impaired baroreflex regulation has implications not only for adequate pressure regulation, but also for long term cardiovascular health. In this review, we discuss the expected impact ofan SCI on baroreflex control and the studies that have investigated baroreflex sensitivity in this population. The data generally indicates that baroreflex sensitivity is lesser in those with chronic injuries. However, these findings are counter to the expected effect of an SCI and hence may indicate that the effect of an SCI on baroreflex control might be secondary to long term deconditioning and/or vascular stiffening of baroreceptive arteries. Furthermore, the alterations in the ability to regulate pressure do not impact the relationship between spontaneous heart rate and blood pressure variabilities. In addition, those with SCI are not adequately able to control blood pressure changes in response to orthostasis, resulting in frank hypotension in a significant proportion of those with high level injuries.
Collapse
Affiliation(s)
- Adina E Draghici
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States; Cardiovascular Research Laboratory, Spaulding Rehabilitation Hospital, Cambridge, MA, United States.
| | - J Andrew Taylor
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States; Cardiovascular Research Laboratory, Spaulding Rehabilitation Hospital, Cambridge, MA, United States
| |
Collapse
|
105
|
Samali M, Elkoundi A, Tahri A, Bensghir M, Haimeur C. Anesthetic management of spontaneous cervical epidural hematoma during pregnancy: a case report. J Med Case Rep 2017. [PMID: 28648141 PMCID: PMC5483838 DOI: 10.1186/s13256-017-1335-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background Spontaneous spinal epidural hematoma during pregnancy is a quite rare event requiring emergent decompressive surgery in the majority of cases to prevent permanent neurological damage. Therefore, there is little data in the literature regarding anesthetic management of cervical localization during pregnancy. The potential for difficult airway management with the patient under general anesthesia is one of the major concerns that needs to be addressed to prevent further cord compression. Anesthetic management should also include measures to maintain the mean arterial pressure to improve spinal cord perfusion. Furthermore, spine surgery in pregnant patients needs special consideration in terms of positioning and in the postoperative period. Case presentation We present a case of a 35-year-old white woman at 21 weeks of gestation with a spontaneous cervical epidural hematoma. Fiberoptic bronchoscope-guided nasal intubation was a safe option to ensure a higher rate of successful endotracheal intubation while minimizing the risk of aggravating the injury. Her care posed other multiples challenges that required a multidisciplinary team approach. Conclusions The case of our patient serves as a reminder of this rare condition and its implications regarding anesthesia.
Collapse
Affiliation(s)
- Mehdi Samali
- Department of Anesthesiology and Intensive Care, Military Hospital Mohammed 5 Rabat, Faculty of Medicine and Pharmacy of Rabat, University Mohammed 5, Rabat, Morocco
| | - Abdelghafour Elkoundi
- Department of Anesthesiology and Intensive Care, Military Hospital Mohammed 5 Rabat, Faculty of Medicine and Pharmacy of Rabat, University Mohammed 5, Rabat, Morocco.
| | - Achraf Tahri
- Department of Anesthesiology and Intensive Care, Military Hospital Mohammed 5 Rabat, Faculty of Medicine and Pharmacy of Rabat, University Mohammed 5, Rabat, Morocco
| | - Mustapha Bensghir
- Department of Anesthesiology and Intensive Care, Military Hospital Mohammed 5 Rabat, Faculty of Medicine and Pharmacy of Rabat, University Mohammed 5, Rabat, Morocco
| | - Charki Haimeur
- Department of Anesthesiology and Intensive Care, Military Hospital Mohammed 5 Rabat, Faculty of Medicine and Pharmacy of Rabat, University Mohammed 5, Rabat, Morocco
| |
Collapse
|
106
|
Optimization of the mean arterial pressure and timing of surgical decompression in traumatic spinal cord injury: a retrospective study. Spinal Cord 2017. [DOI: 10.1038/sc.2017.52] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
107
|
Satyarthee GD. Ways to Improve Outcomes of Traumatic Acute Spinal Cord Injury: Integrated Approaches of Improved Prehospital Care, the Adoption of Synergistic Medical and Surgical Intervention, Along with Care for Associated Systemic Injury and Rehabilitation and Social Inclusion. World Neurosurg 2017; 101:786-787. [DOI: 10.1016/j.wneu.2017.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 11/27/2022]
|
108
|
Daniels AH, Hart RA, Hilibrand AS, Fish DE, Wang JC, Lord EL, Buser Z, Tortolani PJ, Stroh DA, Nassr A, Currier BL, Sebastian AS, Arnold PM, Fehlings MG, Mroz TE, Riew KD. Iatrogenic Spinal Cord Injury Resulting From Cervical Spine Surgery. Global Spine J 2017; 7:84S-90S. [PMID: 28451499 PMCID: PMC5400194 DOI: 10.1177/2192568216688188] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
STUDY DESIGN Retrospective cohort study of prospectively collected data. OBJECTIVE To examine the incidence of iatrogenic spinal cord injury following elective cervical spine surgery. METHODS A retrospective multicenter case series study involving 21 high-volume surgical centers from the AOSpine North America Clinical Research Network was conducted. Medical records for 17 625 patients who received cervical spine surgery (levels from C2 to C7) between January 1, 2005, and December 31, 2011, were reviewed to identify occurrence of iatrogenic spinal cord injury. RESULTS In total, 3 cases of iatrogenic spinal cord injury following cervical spine surgery were identified. Institutional incidence rates ranged from 0.0% to 0.24%. Of the 3 patients with quadriplegia, one underwent anterior-only surgery with 2-level cervical corpectomy, one underwent anterior surgery with corpectomy in addition to posterior surgery, and one underwent posterior decompression and fusion surgery alone. One patient had complete neurologic recovery, one partially recovered, and one did not recover motor function. CONCLUSION Iatrogenic spinal cord injury following cervical spine surgery is a rare and devastating adverse event. No standard protocol exists that can guarantee prevention of this complication, and there is a lack of consensus regarding evaluation and treatment when it does occur. Emergent imaging with magnetic resonance imaging or computed tomography myelography to evaluate for compressive etiology or malpositioned instrumentation and avoidance of hypotension should be performed in cases of intraoperative and postoperative spinal cord injury.
Collapse
Affiliation(s)
| | - Robert A. Hart
- Oregon Health & Science University, Portland, OR, USA,Robert A. Hart, Department of Orthopaedics & Rehabilitation, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, OP-31, Portland, OR 97239, USA.
| | - Alan S. Hilibrand
- Jefferson Medical College, The Rothman Institute, Philadelphia, PA, USA
| | - David E. Fish
- University of California Los Angeles, Santa Monica, CA, USA
| | | | | | - Zorica Buser
- University of Southern California, Los Angeles, CA, USA
| | - P. Justin Tortolani
- Medstar Union Memorial Hospital, Baltimore, MD, USA,Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | | | | | | | | | | | | - K. Daniel Riew
- Columbia University, New York, NY, USA,New York-Presbyterian/The Allen Hospital, New York, NY, USA
| |
Collapse
|
109
|
Fenn J, Laber E, Williams K, Rousse CA, Early PJ, Mariani CL, Muñana KR, De Decker S, Volk HA, Olby NJ. Associations Between Anesthetic Variables and Functional Outcome in Dogs With Thoracolumbar Intervertebral Disk Extrusion Undergoing Decompressive Hemilaminectomy. J Vet Intern Med 2017; 31:814-824. [PMID: 28295616 PMCID: PMC5435081 DOI: 10.1111/jvim.14677] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/06/2017] [Accepted: 01/18/2017] [Indexed: 12/19/2022] Open
Abstract
Background Outcome of acute experimental spinal cord injury is strongly associated with tissue perfusion and oxygenation. Cardiopulmonary depression could affect outcome in dogs undergoing general anesthesia for surgical treatment of thoracolumbar intervertebral disk extrusion (IVDE). Hypothesis/Objectives To evaluate the effects of general anesthesia on functional outcome in dogs undergoing surgery to treat thoracolumbar IVDE. Animals Eighty‐four client‐owned dogs with acute thoracolumbar IVDE treated by decompressive hemilaminectomy. Methods Exploratory, retrospective observational study. Medical records were reviewed for clinical presentation and anesthetic monitoring variables, including duration of anesthesia and surgery, hypotension, bradycardia, temperature, and respiratory parameters. Multivariable regression tree analysis was performed to explore associations between anesthetic variables and functional outcome scores after 6 weeks, as well as return to ambulatory status. Results Episodes of bradycardia (69%) and hypotension (57%) were frequent. Across all outcome measures, regression tree analysis highlighted functional grade at presentation as the primary determining factor, and among pain perception negative dogs, there was a possible association between increased duration of surgery and poorer outcome. In dogs with intact pain perception, duration of bradycardia, mean body temperature, and mean end‐tidal carbon dioxide were highlighted. Conclusions and Clinical Importance Exploratory statistical methods can facilitate hypothesis‐generating studies to inform prospective investigations in veterinary medicine. Although the mechanism is uncertain, increased duration of surgery might be associated with poorer outcome in pain perception negative dogs with thoracolumbar IVDE.
Collapse
Affiliation(s)
- J Fenn
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, UK
| | - E Laber
- Department of Statistics, North Carolina State University, Raleigh, NC
| | - K Williams
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - C A Rousse
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - P J Early
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - C L Mariani
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| | - K R Muñana
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| | - S De Decker
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, UK
| | - H A Volk
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, UK
| | - N J Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| |
Collapse
|
110
|
|
111
|
Galeiras Vázquez R, Ferreiro Velasco ME, Mourelo Fariña M, Montoto Marqués A, Salvador de la Barrera S. Update on traumatic acute spinal cord injury. Part 1. Med Intensiva 2017; 41:237-247. [PMID: 28161028 DOI: 10.1016/j.medin.2016.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/30/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022]
Abstract
Traumatic spinal cord injury requires a multidisciplinary approach both for specialized treatment of the acute phase and for dealing with the secondary complications. A suspicion or diagnosis of spinal cord injury is the first step for a correct management. A review is made of the prehospital management and characteristics of the acute phase of spinal cord injury. Respiratory monitoring for early selective intubation, proper identification and treatment of neurogenic shock are essential for the prevention of secondary spinal cord injury. The use of corticosteroids is currently not a standard practice in neuroprotective treatment, and hemodynamic monitoring and early surgical decompression constitute the cornerstones of adequate management. Traumatic spinal cord injury usually occurs as part of multiple trauma, and this can make diagnosis difficult. Neurological examination and correct selection of radiological exams prevent delayed diagnosis of spinal cord injuries, and help to establish the prognosis.
Collapse
Affiliation(s)
- R Galeiras Vázquez
- Unidad de Cuidados Intensivos, Complexo Hospitalario Universitario de A Coruña, A Coruña, España.
| | - M E Ferreiro Velasco
- Unidad de Lesionados Medulares, Complexo Hospitalario Universitario de A Coruña, A Coruña, España
| | - M Mourelo Fariña
- Unidad de Cuidados Intensivos, Complexo Hospitalario Universitario de A Coruña, A Coruña, España
| | - A Montoto Marqués
- Unidad de Lesionados Medulares, Complexo Hospitalario Universitario de A Coruña, A Coruña, España; Departamento de Medicina, Universidad de A Coruña, A Coruña, España
| | - S Salvador de la Barrera
- Unidad de Lesionados Medulares, Complexo Hospitalario Universitario de A Coruña, A Coruña, España
| |
Collapse
|
112
|
Shank CD, Walters BC, Hadley MN. Management of acute traumatic spinal cord injuries. HANDBOOK OF CLINICAL NEUROLOGY 2017; 140:275-298. [PMID: 28187803 DOI: 10.1016/b978-0-444-63600-3.00015-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acute traumatic spinal cord injury (SCI) is a devastating disease process affecting tens of thousands of people across the USA each year. Despite the increase in primary prevention measures, such as educational programs, motor vehicle speed limits, automobile running lights, and safety technology that includes automobile passive restraint systems and airbags, SCIs continue to carry substantial permanent morbidity and mortality. Medical measures implemented following the initial injury are designed to limit secondary insult to the spinal cord and to stabilize the spinal column in an attempt to decrease devastating sequelae. This chapter is an overview of the contemporary management of an acute traumatic SCI patient from the time of injury through the stay in the intensive care unit. We discuss initial triage, immobilization, and transportation of the patient by emergency medical services personnel to a definitive treatment facility. Upon arrival at the emergency department, we review initial trauma protocols and the evidence-based recommendations for radiographic evaluation of the patient's vertebral column. Finally, we outline closed cervical spine reduction and various aggressive medical therapies aimed at improving neurologic outcome.
Collapse
Affiliation(s)
- C D Shank
- Department of Neurosurgery, University of Alabama, Birmingham, AL, USA
| | - B C Walters
- Department of Neurosurgery, University of Alabama, Birmingham, AL, USA
| | - M N Hadley
- Department of Neurosurgery, University of Alabama, Birmingham, AL, USA.
| |
Collapse
|
113
|
|
114
|
Davidson R, Phillips A. Cardiovascular Physiology and Responses to Sexual Activity in Individuals Living with Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2017; 23:11-19. [PMID: 29339873 PMCID: PMC5340505 DOI: 10.1310/sci2301-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background: Spinal cord injury (SCI) may profoundly impact autonomic function producing a variable degree of dysfunction in cardiovascular, bronchopulmonary, sweating, bladder, bowel, and sexual function. The cardiovascular system is crucially important for sexual function, as it is responsible for blood flow shifts to cavernous and musculoskeletal tissue during sexual activity. This system is prone to 3 main abnormalities after SCI including low resting blood pressure (LRBP), orthostatic hypotension (OH), and autonomic dysreflexia (AD), all of which have important effects on sexual function. Methods: We review the current etiological mechanisms and manifestations of cardiovascular dysfunction after SCI and discuss how this is documented to impact sexual function in individuals living with SCI. Conclusions: All individuals with SCI at or above the T6 neurologic level have an increased risk of AD during sexual stimulation, with increasing risk associated with higher levels of injury and greater completeness of injury. AD can be silent, and individuals living with SCI should be aware of blood pressure values at baseline and during sexual activity. Clinicians performing vibrostimulation fertility procedures need to be aware of the risk of AD and consider pretreatment if needed. Researchers studying the cardiovascular response to sexual stimulation should consider continuous monitoring of blood pressure, as intermittent monitoring may underestimate true blood pressure values.
Collapse
Affiliation(s)
- Ross Davidson
- International Collaboration On Repair Discoveries, Vancouver, BC, Canada
- Faculty of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, British Columbia, Canada
| | - Aaron Phillips
- International Collaboration On Repair Discoveries, Vancouver, BC, Canada
- Faculty of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, British Columbia, Canada
| |
Collapse
|
115
|
Park JH, Kim JH, Roh SW, Rhim SC, Jeon SR. Prognostic factor analysis after surgical decompression and stabilization for cervical spinal-cord injury. Br J Neurosurg 2016; 31:194-198. [DOI: 10.1080/02688697.2016.1247781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jin Hoon Park
- Department of Neurological Surgery, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea
| | - Jeoung Hee Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Woo Roh
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung Chul Rhim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
116
|
Stricsek G, Ghobrial G, Wilson J, Theofanis T, Harrop JS. Complications in the Management of Patients with Spine Trauma. Neurosurg Clin N Am 2016; 28:147-155. [PMID: 27886876 DOI: 10.1016/j.nec.2016.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
More than 50% of patients diagnosed with acute, traumatic spinal cord injury will experience at least 1 complication during their hospitalization. Age, severity of neurological injury, concurrent traumatic brain injury, comorbid illness, and mechanism of injury are all associated with increasing risk of complication. More than 75% of complications will occur within 2 weeks of injury. The complications associated with SCI carry a significant risk of morbidity and mortality; their early identification and management is critical in the care of the SCI patient.
Collapse
Affiliation(s)
- Geoffrey Stricsek
- Division of Spine and Peripheral Nerve Surgery, Department of Neurologic Surgery, Thomas Jefferson University, 909 Walnut Street - Third Floor, Philadelphia, PA 19107, USA
| | - George Ghobrial
- Division of Spine and Peripheral Nerve Surgery, Department of Neurologic Surgery, Thomas Jefferson University, 909 Walnut Street - Third Floor, Philadelphia, PA 19107, USA
| | - Jefferson Wilson
- Division of Spine and Peripheral Nerve Surgery, Department of Neurologic Surgery, Thomas Jefferson University, 909 Walnut Street - Third Floor, Philadelphia, PA 19107, USA
| | - Thana Theofanis
- Division of Spine and Peripheral Nerve Surgery, Department of Neurologic Surgery, Thomas Jefferson University, 909 Walnut Street - Third Floor, Philadelphia, PA 19107, USA
| | - James S Harrop
- Division of Spine and Peripheral Nerve Surgery, Department of Neurologic Surgery, Thomas Jefferson University, 909 Walnut Street - Third Floor, Philadelphia, PA 19107, USA; Department of Orthopedic Surgery, Thomas Jefferson University, 909 Walnut Street - Third Floor, Philadelphia, PA 19107, USA.
| |
Collapse
|
117
|
Expert's comment concerning Grand Rounds case entitled: "Increased intrathecal pressure after traumatic spinal cord injury: an illustrative case presentation and a review of the literature" by Grassner L, Winkler PA, Strowitzki M, et al. (Eur Spine J (2016). doi:10.1007/s00586-016-4769-9) : Surgical treatment of SICS (spinal intradural compartment syndrome)? EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2016; 26:26-27. [PMID: 27743203 DOI: 10.1007/s00586-016-4804-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
|
118
|
Islam M, Atmaramani R, Mukherjee S, Ghosh S, Iqbal SM. Enhanced proliferation of PC12 neural cells on untreated, nanotextured glass coverslips. NANOTECHNOLOGY 2016; 27:415501. [PMID: 27587351 DOI: 10.1088/0957-4484/27/41/415501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Traumatic injury to the central nervous system is a significant health problem. There is no effective treatment available partly because of the complexity of the system. Implementation of multifunctional micro- and nano-device based combinatorial therapeutics can provide biocompatible and tunable approaches to perform on-demand release of specific drugs. This can help the damaged cells to improve neuronal survival, regeneration of axons, and their reconnection to appropriate targets. Nano-topological features induced rapid cell growth is especially important towards the design of effective platforms to facilitate damaged neural circuit reconstruction. In this study, for the first time, feasibility of neuron-like PC12 cell growth on untreated and easy to prepare nanotextured surfaces has been carried out. The PC12 neuron-like cells were cultured on micro reactive ion etched nanotextured glass coverslips. The effect of nanotextured topology as physical cue for the growth of PC12 cells was observed exclusively, eliminating the possible influence(s) of the enhanced concentration of coated materials on the surface. The cell density was observed to increase by almost 200% on nanotextured coverslips compared to plain coverslips. The morphology study indicated that PC12 cell attachment and growth on the nanotextured substrates did not launch any apoptotic machinery of the cell. Less than 5% cells deformed and depicted condensed nuclei with apoptotic bodies on nanotextured surfaces which is typical for the normal cell handling and culture. Enhanced PC12 cell proliferation by such novel and easy to prepare substrates is not only attractive for neurite outgrowth and guidance, but may be used to increase the affinity of similar cancerous cells (ex: B35 neuroblastoma) and rapid proliferation thereafter-towards the development of combinatorial theranostics to diagnose and treat aggressive cancers like neuroblastoma.
Collapse
Affiliation(s)
- Muhymin Islam
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX 76019, USA. Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76011, USA. Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | | | | | |
Collapse
|
119
|
Fournier J, Tsirikos AI. Paediatric spinal trauma: patterns of injury, clinical assessment and principles of treatment. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.mporth.2016.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
120
|
Abstract
Traumatic spine injuries (TSIs) carry significantly high risks of morbidity, mortality, and exorbitant health care costs from associated medical needs following injury. For these reasons, TSI was chosen as an ENLS protocol. This article offers a comprehensive review on the management of spinal column injuries using the best available evidence. Alhough the review focuses primarily on cervical spinal column injuries, thoracolumbar injuries are briefly discussed as well. The initial emergency department clinical evaluation of possible spinal fractures and cord injuries, along with the definitive early management of confirmed injuries, is also covered.
Collapse
|
121
|
Palejwala AH, Fridley JS, Mata JA, Samuel ELG, Luerssen TG, Perlaky L, Kent TA, Tour JM, Jea A. Biocompatibility of reduced graphene oxide nanoscaffolds following acute spinal cord injury in rats. Surg Neurol Int 2016; 7:75. [PMID: 27625885 PMCID: PMC5009578 DOI: 10.4103/2152-7806.188905] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/20/2016] [Indexed: 11/05/2022] Open
Abstract
Background: Graphene has unique electrical, physical, and chemical properties that may have great potential as a bioscaffold for neuronal regeneration after spinal cord injury. These nanoscaffolds have previously been shown to be biocompatible in vitro; in the present study, we wished to evaluate its biocompatibility in an in vivo spinal cord injury model. Methods: Graphene nanoscaffolds were prepared by the mild chemical reduction of graphene oxide. Twenty Wistar rats (19 male and 1 female) underwent hemispinal cord transection at approximately the T2 level. To bridge the lesion, graphene nanoscaffolds with a hydrogel were implanted immediately after spinal cord transection. Control animals were treated with hydrogel matrix alone. Histologic evaluation was performed 3 months after the spinal cord transection to assess in vivo biocompatibility of graphene and to measure the ingrowth of tissue elements adjacent to the graphene nanoscaffold. Results: The graphene nanoscaffolds adhered well to the spinal cord tissue. There was no area of pseudocyst around the scaffolds suggestive of cytotoxicity. Instead, histological evaluation showed an ingrowth of connective tissue elements, blood vessels, neurofilaments, and Schwann cells around the graphene nanoscaffolds. Conclusions: Graphene is a nanomaterial that is biocompatible with neurons and may have significant biomedical application. It may provide a scaffold for the ingrowth of regenerating axons after spinal cord injury.
Collapse
Affiliation(s)
- Ali H Palejwala
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA; Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas, USA
| | - Jared S Fridley
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA; Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas, USA
| | - Javier A Mata
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA; Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas, USA
| | | | - Thomas G Luerssen
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA; Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas, USA
| | - Laszlo Perlaky
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; Research and Tissue Support Services Core Laboratory, Texas Children's Cancer and Hematology Services, Houston, Texas, USA
| | - Thomas A Kent
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA; Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA; Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, Texas, USA
| | - James M Tour
- Department of Chemistry, Rice University, Houston, Texas, USA; Department of Chemistry and Materials Science and NanoEngineering, Rice University, Houston, Texas, USA
| | - Andrew Jea
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA; Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
122
|
Catapano JS, John Hawryluk GW, Whetstone W, Saigal R, Ferguson A, Talbott J, Bresnahan J, Dhall S, Pan J, Beattie M, Manley G. Higher Mean Arterial Pressure Values Correlate with Neurologic Improvement in Patients with Initially Complete Spinal Cord Injuries. World Neurosurg 2016; 96:72-79. [PMID: 27565460 DOI: 10.1016/j.wneu.2016.08.053] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) guidelines recommend to maintain mean arterial pressures (MAPs) above 85 mm Hg for 7 days following SCI to minimize spinal cord ischemia. Some physicians doubt that patients with initially complete injuries benefit. OBJECTIVE To assess the relationship between MAP augmentation and neurologic improvement in SCI patients stratified by initial American Spinal Injury Association Impairment Scale (AIS) score. METHODS High-frequency MAP values of acute SCI patients admitted over a 6-year period were recorded, and values were correlated with degree of neurologic recovery in an analysis stratified by postresuscitation AIS score. RESULTS Sixty-two patients with SCI were analyzed. Thirty-three patients were determined to have complete injuries, and of those 11 improved at least 1 AIS grade by discharge. The average MAP of initially AIS A patients who improved versus those who did not was significantly higher (96.6 ± 0.07 mm Hg vs. 94.4 ± 0.06 mm Hg, respectively; P < 0.001), and the proportion of MAP values <85 mm Hg was significantly lower (13.5% vs. 25.6%, respectively; P < 0.001). A positive correlation between MAP values and outcome was also observed in AIS B and C patients but was not observed in patients who were initially AIS D. CONCLUSION A positive correlation was observed between MAP values and neurologic recovery in AIS A, B, and C patients but not AIS D patients. These data raise the possibility that patients with an initially complete SCI may derive greater benefit from MAP augmentation than patients with initial AIS D injuries.
Collapse
Affiliation(s)
| | - Gregory William John Hawryluk
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA; Brain and Spinal Cord Injury Center, University of California, San Francisco, California, USA; Department of Neurosurgery, University of California, San Francisco, California, USA.
| | - William Whetstone
- Department of Emergency Medicine, University of California, San Francisco, California, USA
| | - Rajiv Saigal
- Department of Neurosurgery, University of Washington, Seattle, Washington, USA
| | - Adam Ferguson
- Brain and Spinal Cord Injury Center, University of California, San Francisco, California, USA; Department of Neurosurgery, University of California, San Francisco, California, USA
| | - Jason Talbott
- Department of Radiology, University of California, San Francisco, California, USA
| | - Jacqueline Bresnahan
- Brain and Spinal Cord Injury Center, University of California, San Francisco, California, USA; Department of Neurosurgery, University of California, San Francisco, California, USA
| | - Sanjay Dhall
- Brain and Spinal Cord Injury Center, University of California, San Francisco, California, USA; Department of Neurosurgery, University of California, San Francisco, California, USA
| | - Jonathan Pan
- Department of Anaesthesia, University of California, San Francisco, California, USA
| | - Michael Beattie
- Brain and Spinal Cord Injury Center, University of California, San Francisco, California, USA; Department of Neurosurgery, University of California, San Francisco, California, USA
| | - Geoffrey Manley
- Brain and Spinal Cord Injury Center, University of California, San Francisco, California, USA; Department of Neurosurgery, University of California, San Francisco, California, USA
| |
Collapse
|
123
|
Battistuzzo CR, Armstrong A, Clark J, Worley L, Sharwood L, Lin P, Rooke G, Skeers P, Nolan S, Geraghty T, Nunn A, Brown DJ, Hill S, Alexander J, Millard M, Cox SF, Rao S, Watts A, Goods L, Allison GT, Agostinello J, Cameron PA, Mosley I, Liew SM, Geddes T, Middleton J, Buchanan J, Rosenfeld JV, Bernard S, Atresh S, Patel A, Schouten R, Freeman BJ, Dunlop SA, Batchelor PE. Early Decompression following Cervical Spinal Cord Injury: Examining the Process of Care from Accident Scene to Surgery. J Neurotrauma 2016; 33:1161-9. [DOI: 10.1089/neu.2015.4207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Camila R. Battistuzzo
- Department of Medicine (Royal Melbourne Hospital), the University of Melbourne, Melbourne, Australia
| | - Alex Armstrong
- School of Animal Biology, the University of Western Australia, Perth Australia
| | - Jillian Clark
- Center for Orthopedic and Trauma Research, the University of Adelaide, Adelaide, Australia
| | - Laura Worley
- Queensland Spinal Injuries Service, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Lisa Sharwood
- John Walsh Center for Rehabilitation Research, the University of Sydney, Sydney, Australia
| | - Peny Lin
- Orthopedic Department, Middlemore Hospital, Auckland, New Zealand
| | - Gareth Rooke
- Orthopedic Department, Christchurch Hospital, Christchurch, New Zealand
| | - Peta Skeers
- Department of Medicine (Royal Melbourne Hospital), the University of Melbourne, Melbourne, Australia
| | - Sherilyn Nolan
- School of Animal Biology, the University of Western Australia, Perth Australia
| | - Timothy Geraghty
- Queensland Spinal Injuries Service, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Andrew Nunn
- Victorian Spinal Cord Service, Austin Hospital, Melbourne, Australia
| | | | - Steven Hill
- Victorian Spinal Cord Service, Austin Hospital, Melbourne, Australia
| | - Janette Alexander
- Victorian Spinal Cord Service, Austin Hospital, Melbourne, Australia
| | - Melinda Millard
- Victorian Spinal Cord Service, Austin Hospital, Melbourne, Australia
| | - Susan F. Cox
- Neuroscience Trials Australia, the Florey Institute of Neuroscience, Melbourne, Australia
| | - Sudhakar Rao
- Trauma Service, Royal Perth Hospital, Perth, Australia
| | - Ann Watts
- Spinal Unit, Royal Perth Hospital, Perth, Australia
| | - Louise Goods
- School of Animal Biology, the University of Western Australia, Perth Australia
| | - Garry T. Allison
- School of Physiotherapy and Exercise Science, Curtin University, Bentley, Australia
| | - Jacqui Agostinello
- Department of Medicine (Royal Melbourne Hospital), the University of Melbourne, Melbourne, Australia
| | - Peter A. Cameron
- Emergency and Trauma Center, the Alfred Hospital, Melbourne, Australia
| | - Ian Mosley
- College of Science, Health and Engineering, La Trobe University, Melbourne, Australia
| | - Susan M. Liew
- Department of Orthopedic Surgery, the Alfred Hospital, Melbourne, Australia
| | - Tom Geddes
- Orthopedic Department, Middlemore Hospital, Auckland, New Zealand
| | - James Middleton
- John Walsh Center for Rehabilitation Research, the University of Sydney, Sydney, Australia
| | - John Buchanan
- Department of Physiotherapy, Royal Perth Hospital, Perth, Australia
| | | | - Stephen Bernard
- Intensive Care Unit, the Alfred Hospital, Melbourne, Australia
| | - Sridhar Atresh
- Queensland Spinal Injuries Service, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Alpesh Patel
- Orthopedic Department, Middlemore Hospital, Auckland, New Zealand
| | - Rowan Schouten
- Orthopedic Department, Christchurch Hospital, Christchurch, New Zealand
| | - Brian J.C. Freeman
- Department of Orthopedics and Trauma, the University of Adelaide, Adelaide, Australia
| | - Sarah A. Dunlop
- School of Animal Biology, the University of Western Australia, Perth Australia
| | - Peter E. Batchelor
- Department of Medicine (Royal Melbourne Hospital), the University of Melbourne, Melbourne, Australia
| |
Collapse
|
124
|
The differential effects of norepinephrine and dopamine on cerebrospinal fluid pressure and spinal cord perfusion pressure after acute human spinal cord injury. Spinal Cord 2016; 55:33-38. [PMID: 27271117 DOI: 10.1038/sc.2016.79] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/15/2016] [Accepted: 04/06/2016] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Prospective vasopressor cross-over interventional studyObjectives:To examine how two vasopressors used in acute traumatic spinal cord injury (SCI) affect intrathecal cerebrospinal fluid pressure and the corresponding spinal cord perfusion pressure (SCPP). SETTING Vancouver, British Columbia, Canada. METHODS Acute SCI patients over the age of 17 with cervical or thoracic ASIA Impairment Scale (AIS). A, B or C injuries were enrolled in this study. Two vasopressors, norepinephrine and dopamine, were evaluated in a 'crossover procedure' to directly compare their effect on the intrathecal pressure (ITP). The vasopressor cross-over procedures were performed in the intensive care unit where ITP, mean arterial pressure (MAP) and heart rate were being continuously measured. The SCPP was calculated as the difference between MAP and ITP. RESULTS A total of 11 patients were enrolled and included in our analysis. There were 6 patients with AIS A, 3 with AIS B and 2 with AIS C injuries at baseline. We performed 24 cross-over interventions in these 11 patients. There was no difference in MAP with the use of norepinephrine versus dopamine (84±1 mm Hg for both; P=0.33). Conversely, ITP was significantly lower with the use of norepinephrine than with dopamine (17±1 mm Hg vs 20±1 mm Hg, respectively, P<0.001). This decrease in ITP with norepinephrine resulted in an increased SCPP during the norepinephrine infusion when compared with dopamine (67±1 mm Hg vs 65±1 mm Hg respectively, P=0.0049). CONCLUSION Norepinephrine was able to maintain MAP with a lower ITP and a correspondingly higher SCPP as compared with dopamine in this study. These results suggest that norepinephrine may be preferable to dopamine if vasopressor support is required post SCI to maintain elevated MAPs in accordance with published guidelines.
Collapse
|
125
|
The Potential of Curcumin in Treatment of Spinal Cord Injury. Neurol Res Int 2016; 2016:9468193. [PMID: 27298735 PMCID: PMC4889828 DOI: 10.1155/2016/9468193] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/10/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022] Open
Abstract
Current treatment for spinal cord injury (SCI) is supportive at best; despite great efforts, the lack of better treatment solutions looms large on neurological science and medicine. Curcumin, the active ingredient in turmeric, a spice known for its medicinal and anti-inflammatory properties, has been validated to harbor immense effects for a multitude of inflammatory-based diseases. However, to date there has not been a review on curcumin's effects on SCI. Herein, we systematically review all known data on this topic and juxtapose results of curcumin with standard therapies such as corticosteroids. Because all studies that compare the two show superior results for curcumin over corticosteroids, it could be true that curcumin better acts at the inflammatory source of SCI-mediated neurological injury, although this question remains unanswered in patients. Because curcumin has shown improvements from current standards of care in other diseases with few true treatment options (e.g., osteoarthritis), there is immense potential for this compound in treating SCI. We critically and systematically summarize available data, discuss clinical implications, and propose further testing of this well-tolerated compound in both the preclinical and the clinical realms. Analyzing preclinical data from a clinical perspective, we hope to create awareness of the incredible potential that curcumin shows for SCI in a patient population that direly needs improvements on current therapy.
Collapse
|
126
|
Readdy WJ, Saigal R, Whetstone WD, Mefford AN, Ferguson AR, Talbott JF, Inoue T, Bresnahan JC, Beattie MS, Pan J, Manley GT, Dhall SS. Failure of Mean Arterial Pressure Goals to Improve Outcomes Following Penetrating Spinal Cord Injury. Neurosurgery 2016; 79:708-714. [DOI: 10.1227/neu.0000000000001249] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
Increased spinal cord perfusion and blood pressure goals have been recommended for spinal cord injury (SCI). Penetrating SCI is associated with poor prognosis, but there is a paucity of literature examining the role of vasopressor administration for the maintenance of mean arterial pressure (MAP) goals in this patient population.
OBJECTIVE:
To elucidate this topic and to determine the efficacy of vasopressor administration in penetrating SCI by examining a case series of consecutive penetrating SCIs.
METHODS:
We reviewed consecutive patients with complete penetrating SCI who met inclusion and exclusion criteria, including the administration of vasopressors to maintain MAP goals. We identified 14 patients with complete penetrating SCIs with an admission American Spinal Injury Association grade of A from 2005 to 2011. The neurological recovery, complications, interventions, and vasopressor administration strategies were reviewed and compared with those of a cohort with complete blunt SCI.
RESULTS:
In our patient population, only 1 patient with penetrating SCI (7.1%) experienced neurological recovery, as determined by improvement in the American Spinal Injury Association grade, despite the administration of vasopressors for supraphysiological MAP goals for an average of 101.07 ± 34.96 hours. Furthermore, 71.43% of patients with penetrating SCI treated with vasopressors experienced associated cardiogenic complications.
CONCLUSION:
Given the decreased likelihood of neurological improvement in penetrating injuries, it may be important to re-examine intervention strategies in this population. Specifically, the use of vasopressors, in particular dopamine, with their associated complications is more likely to cause complications than to result in neurological improvement. Our experience shows that patients with acute penetrating SCI are unlikely to recover, despite aggressive cardiopulmonary management.
Collapse
Affiliation(s)
- William J. Readdy
- Brain and Spinal Injury Center, Departments of Neurological Surgery, San Francisco, San Francisco, California
- Emergency Medicine, San Francisco, California
| | - Rajiv Saigal
- Brain and Spinal Injury Center, Departments of Neurological Surgery, San Francisco, San Francisco, California
- Emergency Medicine, San Francisco, California
| | - William D. Whetstone
- Emergency Medicine, San Francisco, California
- Radiology and Biomedical Imaging, San Francisco, California
| | | | | | - Jason F. Talbott
- Emergency Medicine, San Francisco, California
- Anesthesia, University of California, San Francisco, San Francisco, California
| | - Tomoo Inoue
- Emergency Medicine, San Francisco, California
| | | | | | - Jonathan Pan
- Emergency Medicine, San Francisco, California
- Anesthesia, University of California, San Francisco, San Francisco, California
| | | | | |
Collapse
|
127
|
Readdy WJ, Dhall SS. Vasopressor administration in spinal cord injury: should we apply a universal standard to all injury patterns? Neural Regen Res 2016; 11:420-1. [PMID: 27127478 PMCID: PMC4829004 DOI: 10.4103/1673-5374.179051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- William J Readdy
- Department of Neurological Surgery, University of California, San Francisco, CA, USA; Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Sanjay S Dhall
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
128
|
Mediating the Secondary Effects of Spinal Cord Injury Through Optimization of Key Physiologic Parameters. J Am Acad Orthop Surg 2016; 24:160-71. [PMID: 26855116 DOI: 10.5435/jaaos-d-14-00314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Spinal cord injury remains a challenging clinical entity with considerable socioeconomic impact on patients, their families, and the healthcare system. Advances in medical care and rehabilitation continue to improve, but treatment outcomes following tissue regeneration for spinal cord injury remain dismal. Therefore, attempts at mediating the secondary effects of spinal cord injury remain the mainstay of current treatment. Recent studies evaluating the timing of decompression suggest improved neurologic recovery with early surgical decompression and the maintenance of mean arterial pressures >85 mm Hg. With systemic and local treatments, including riluzole, minocycline, GM1 ganglioside, BA-210, and granulocyte-colony stimulating factor, remaining in their infancy, randomized controlled trials demonstrating efficacy are needed before adopting their widespread use.
Collapse
|
129
|
Rogers WK, Todd M. Acute spinal cord injury. Best Pract Res Clin Anaesthesiol 2016; 30:27-39. [DOI: 10.1016/j.bpa.2015.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 12/31/2022]
|
130
|
Wilson JR, Voth J, Singh A, Middleton J, Jaglal SB, Singh JM, Mainprize TG, Yee A, Fehlings MG. Defining the Pathway to Definitive Care and Surgical Decompression after Traumatic Spinal Cord Injury: Results of a Canadian Population-Based Cohort Study. J Neurotrauma 2016; 33:963-71. [PMID: 26652196 DOI: 10.1089/neu.2015.4258] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Early access to specialized care after acute traumatic spinal cord injury (SCI) is associated with improved outcomes. However, many SCI patients do not receive timely access to such care. To characterize and quantify patients' pathway to definitive care and surgery post SCI, and to identify factors that may delay expeditious care, a population based cohort study was performed in Ontario. Using provincial administrative health data, adult patients with acute traumatic SCI who underwent surgery between 2002 and 2011 were identified using SCI specific ICD-10 codes. The relationship between predictor variables and a) time to arrival at the site of definitive care and b) time to surgery was statistically evaluated. Of 1,111 patients meeting eligibility criteria, mean times to arrival at the site of definitive care and to surgery were 8.1 ± 25.5 and 49.4 ± 65.0 hours respectively, with 53.3% of patients having surgery prior to 24 hours. While most patients (88.4%) reached the site of definitive care within 6 hours, only 34.2% reached surgery within 12 hours of arrival. Older age (IRR = 1.01; 95% CI: 1.01, 1.02), increased number of stops at intermediate health care centers (IRR = 7.70; 95% CI: 7.54, 7.86), higher comorbidity index (IRR = 1.43; 95% CI: 1.14, 1.72) and fall related SCI etiology (IRR = 1.16; 95% CI: 1.02, 1.29) were associated with increased time to arrival at definitive care. For surgery, increased age (OR = 1.02; 95% CI: 1.01, 1.03) and stops at intermediate health centers (OR = 2.48; 95% CI: 1.35, 4.56) were associated with a greater odds of undergoing late surgery (>24hrs). These results can inform policy decisions and facilitate creation of a streamlined path to specialized care for patients with acute SCI.
Collapse
Affiliation(s)
- Jefferson R Wilson
- 1 Division of Neurosurgery and Spinal Program, University of Toronto , Toronto, Ontario, Canada
| | - Jennifer Voth
- 2 Institute of Clinical Evaluative Sciences, University of Toronto , Toronto, Ontario, Canada
| | - Anoushka Singh
- 1 Division of Neurosurgery and Spinal Program, University of Toronto , Toronto, Ontario, Canada
| | - James Middleton
- 3 Rehabilitation Studies Unit, University of Sydney , Sydney, Australia
| | - Susan B Jaglal
- 2 Institute of Clinical Evaluative Sciences, University of Toronto , Toronto, Ontario, Canada .,4 Department of Physical Therapy, University of Toronto , Toronto, Ontario, Canada
| | - Jeffrey M Singh
- 4 Department of Physical Therapy, University of Toronto , Toronto, Ontario, Canada
| | - Todd G Mainprize
- 1 Division of Neurosurgery and Spinal Program, University of Toronto , Toronto, Ontario, Canada
| | - Albert Yee
- 5 Division of Orthopedic Surgery and Spinal Program, University of Toronto , Toronto, Ontario, Canada
| | - Michael G Fehlings
- 1 Division of Neurosurgery and Spinal Program, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
131
|
Leonard AV, Thornton E, Vink R. The relative contribution of edema and hemorrhage to raised intrathecal pressure after traumatic spinal cord injury. J Neurotrauma 2015; 32:397-402. [PMID: 25111333 DOI: 10.1089/neu.2014.3543] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Raised intrathecal pressure (ITP) after traumatic spinal cord injury (SCI) is a critically important aspect of injury development that may result in significantly greater tissue damage and worsened functional outcome. Raised ITP is caused by the accumulation of blood and/or water (edema), and while their occurrence after traumatic SCI has been well established, the relative contribution of both processes to the development of ITP after SCI has not yet been determined. Accordingly, the current study investigates the temporal profile of raised ITP after traumatic SCI in relation to both hemorrhage and edema development. A closed balloon compression injury was induced at T10 in New Zealand White rabbits. Animals were thereafter assessed for spinal water content (edema), ITP, lesion and hemorrhage volume, and albumin immunoreactivity from 5 h to 1 week post-SCI. Early increases in ITP at 5 h post-injury were associated with significant increases in blood volume. ITP, however, was maximal at 3 days post-SCI, at which time there was an associated significant increase in edema that persisted for 1 week. We conclude that raised ITP after traumatic SCI is initially driven by volumetric increases in hemorrhage, while edema becomes the primary driver of ITP at 3 days post-injury.
Collapse
Affiliation(s)
- Anna V Leonard
- 1 Adelaide Centre for Neuroscience Research, School of Medical Sciences The University of Adelaide , South Australia, Australia
| | | | | |
Collapse
|
132
|
Readdy WJ, Whetstone WD, Ferguson AR, Talbott JF, Inoue T, Saigal R, Bresnahan JC, Beattie MS, Pan JZ, Manley GT, Dhall SS. Complications and outcomes of vasopressor usage in acute traumatic central cord syndrome. J Neurosurg Spine 2015; 23:574-580. [DOI: 10.3171/2015.2.spine14746] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT
The optimal mean arterial pressure (MAP) for spinal cord perfusion after trauma remains unclear. Although there are published data on MAP goals after spinal cord injury (SCI), the specific blood pressure management for acute traumatic central cord syndrome (ATCCS) and the implications of these interventions have yet to be elucidated. Additionally, the complications of specific vasopressors have not been fully explored in this injury condition.
METHODS
The present study is a retrospective cohort analysis of 34 patients with ATCCS who received any vasopressor to maintain blood pressure above predetermined MAP goals at a single Level 1 trauma center. The collected variables were American Spinal Injury Association (ASIA) grades at admission and discharge, administered vasopressor and associated complications, other interventions and complications, and timing of surgery. The relationship between the 2 most common vasopressors—dopamine and phenylephrine—and complications within the cohort as a whole were explored, and again after stratification by age.
RESULTS
The mean age of the ATCCS patients was 62 years. Dopamine was the most commonly used primary vasopressor (91% of patients), followed by phenylephrine (65%). Vasopressors were administered to maintain MAP goals fora mean of 101 hours. Neurological status improved by a median of 1 ASIA grade in all patients, regardless of the choice of vasopressor. Sixty-four percent of surgical patients underwent decompression within 24 hours. There was no observed relationship between the timing of surgical intervention and the complication rate. Cardiogenic complications associated with vasopressor usage were notable in 68% of patients who received dopamine and 46% of patients who received phenylephrine. These differences were not statistically significant (OR with dopamine 2.50 [95% CI 0.82–7.78], p = 0.105). However, in the subgroup of patients > 55 years, dopamine produced statistically significant increases in the complication rates when compared with phenylephrine (83% vs 50% for dopamine and phenylephrine, respectively; OR with dopamine 5.0 [95% CI 0.99–25.34], p = 0.044).
CONCLUSIONS
Vasopressor usage in ATCCS patients is associated with complication rates that are similar to the reported literature for SCI. Dopamine was associated with a higher risk of complications in patients > 55 years. Given the increased incidence of ATCCS in older populations, determination of MAP goals and vasopressor administration should be carefully considered in these patients. While a randomized control trial on this topic may not be practical, a multiinstitutional prospective study for SCI that includes ATCCS patients as a subpopulation would be useful for examining MAP goals in this population.
Collapse
Affiliation(s)
- William J. Readdy
- 1Department of Neurological Surgery, Brain and Spinal Injury Center; and
| | - William D. Whetstone
- 1Department of Neurological Surgery, Brain and Spinal Injury Center; and
- Departments of 2Emergency Medicine,
| | - Adam R. Ferguson
- 1Department of Neurological Surgery, Brain and Spinal Injury Center; and
| | - Jason F. Talbott
- 1Department of Neurological Surgery, Brain and Spinal Injury Center; and
- 3Radiology and Biomedical Imaging, and
| | - Tomoo Inoue
- 1Department of Neurological Surgery, Brain and Spinal Injury Center; and
| | - Rajiv Saigal
- 1Department of Neurological Surgery, Brain and Spinal Injury Center; and
| | | | - Michael S. Beattie
- 1Department of Neurological Surgery, Brain and Spinal Injury Center; and
| | - Jonathan Z. Pan
- 1Department of Neurological Surgery, Brain and Spinal Injury Center; and
- 4Anesthesia, University of California, San Francisco, California
| | - Geoffrey T. Manley
- 1Department of Neurological Surgery, Brain and Spinal Injury Center; and
| | - Sanjay S. Dhall
- 1Department of Neurological Surgery, Brain and Spinal Injury Center; and
| |
Collapse
|
133
|
Abstract
PURPOSE OF REVIEW This article provides an overview of acute spinal cord injury with an emphasis on practical issues regarding initial evaluation and management. Spinal cord injury continues to be a devastating neurologic injury and a significant public health burden, both in terms of patient morbidity as well as societal costs. Optimal management is highly dependent on a strong multidisciplinary and interprofessional collaborative approach. RECENT FINDINGS In contrast to prior experience, current guidelines strongly suggest avoidance of steroids in patients with spinal cord injury. Additionally, early evaluation with MRI and decompressive surgery can be important for achieving good outcomes. SUMMARY Effective management of acute spinal cord injury requires a team skilled in the approach to short- and long-term respiratory management as well as vigilance for common secondary complications including systemic thrombosis, infection, and pain syndromes.
Collapse
|
134
|
Noussitou FL, Gorgas D, Rohrbach H, Henke D, Howard J, Forterre F. Assessment of Intramedullary Spinal Pressure in Small Breed Dogs With Thoracolumbar Disk Extrusion Undergoing Hemilaminectomy. Vet Surg 2015; 44:944-8. [DOI: 10.1111/vsu.12399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Fiammetta L. Noussitou
- Department of Clinical Veterinary Medicine; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - Daniela Gorgas
- Department of Clinical Veterinary Medicine; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - Helene Rohrbach
- Department of Clinical Veterinary Medicine; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - Diana Henke
- Department of Clinical Veterinary Medicine; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - Judith Howard
- Department of Clinical Veterinary Medicine; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - Franck Forterre
- Department of Clinical Veterinary Medicine; Vetsuisse Faculty; University of Bern; Bern Switzerland
| |
Collapse
|
135
|
Phillips AA, Krassioukov AV. Contemporary Cardiovascular Concerns after Spinal Cord Injury: Mechanisms, Maladaptations, and Management. J Neurotrauma 2015; 32:1927-42. [PMID: 25962761 DOI: 10.1089/neu.2015.3903] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular (CV) issues after spinal cord injury (SCI) are of paramount importance considering they are the leading cause of death in this population. Disruption of autonomic pathways leads to a highly unstable CV system, with impaired blood pressure (BP) and heart rate regulation. In addition to low resting BP, on a daily basis the majority of those with SCI suffer from transient episodes of aberrantly low and high BP (termed orthostatic hypotension and autonomic dysreflexia, respectively). In fact, autonomic issues, including resolution of autonomic dysreflexia, are frequently ranked by individuals with high-level SCI to be of greater priority than walking again. Owing to a combination of these autonomic disturbances and a myriad of lifestyle factors, the pernicious process of CV disease is accelerated post-SCI. Unfortunately, these secondary consequences of SCI are only beginning to receive appropriate clinical attention. Immediately after high-level SCI, major CV abnormalities present in the form of neurogenic shock. After subsiding, new issues related to BP instability arise, including orthostatic hypotension and autonomic dysreflexia. This review describes autonomic control over the CV system before injury and the mechanisms underlying CV abnormalities post-SCI, while also detailing the end-organ consequences, including those of the heart, as well as the systemic and cerebral vasculature. The tertiary impact of CV dysfunction will also be discussed, such as the potential impediment of rehabilitation, and impaired cognitive function. In the recent past, our understanding of autonomic dysfunctions post-SCI has been greatly enhanced; however, it is vital to further develop our understanding of the long-term consequences of these conditions, which will equip us to better manage CV disease morbidity and mortality in this population.
Collapse
Affiliation(s)
- Aaron A Phillips
- 1 Center for Heart, Lung, and Vascular Health, Faculty of Health and Social Development, University of British Columbia , Kelowna, British Columbia, Canada .,2 Experimental Medicine Program, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia, Canada .,3 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- 2 Experimental Medicine Program, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia, Canada .,3 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada .,4 Department of Physical Medicine and Rehabilitation, University of British Columbia , Vancouver, British Columbia, Canada
| |
Collapse
|
136
|
Kumar JI, Yanamadala V, Shin JH. Operative Management of Spinal Injuries. CURRENT TRAUMA REPORTS 2015. [DOI: 10.1007/s40719-015-0024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
137
|
Hawryluk G, Whetstone W, Saigal R, Ferguson A, Talbott J, Bresnahan J, Dhall S, Pan J, Beattie M, Manley G. Mean Arterial Blood Pressure Correlates with Neurological Recovery after Human Spinal Cord Injury: Analysis of High Frequency Physiologic Data. J Neurotrauma 2015; 32:1958-67. [PMID: 25669633 DOI: 10.1089/neu.2014.3778] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Current guidelines for the care of patients with acute spinal cord injuries (SCIs) recommend maintaining mean arterial pressure (MAP) values of 85-90 mm Hg for 7 days after an acute SCI however, little evidence supports this recommendation. We sought to better inform the relationship between MAP values and neurological recovery. A computer system automatically collected and stored q1 min physiological data from intensive care unit monitors on patients with SCI over a 6-year period. Data for 100 patients with acute SCI were collected. 74 of these patients had American Spinal Injury Association Impairment Scale (AIS) grades determined by physical examination on admission and at time of hospital discharge. Average MAP values as well as the proportion of MAP values below thresholds were explored for values from 120 mm Hg to 40 mm Hg in 1 mm Hg increments; the relationship between these measures and outcome was explored at various time points up to 30 days from the time of injury. A total of 994,875 q1 min arterial line blood pressure measurements were recorded for the included patients amid 1,688,194 min of recorded intensive care observations. A large proportion of measures were below 85 mm Hg despite generally acceptable average MAP values. Higher average MAP values correlated with improved recovery in the first 2-3 days after SCI while the proportion of MAP values below the accepted threshold of 85 mm Hg seemed a stronger correlate, decreasing in strength over the first 5-7 days after injury. This study provides strong evidence supporting a correlation between MAP values and neurological recovery. It does not, however, provide evidence of a causal relationship. Duration of hypotension may be more important than average MAP. It provides support for the notion of MAP thresholds in SCI recovery, and the highest MAP values correlated with the greatest degree of neurological recovery. The results are concordant with current guidelines in suggesting that MAP thresholds >85 mm Hg may be appropriate after acute SCI.
Collapse
Affiliation(s)
- Gregory Hawryluk
- 1 Department of Neurosurgery, University of Utah , Salt Lake City, Utah.,3 Department of Brain and Spinal Cord Injury Center (BASIC), University of California , San Francisco, San Francisco, California.,4 Department of Neurosurgery, University of California , San Francisco, San Francisco, California
| | - William Whetstone
- 2 Department of Emergency Medicine, University of California , San Francisco, San Francisco, California
| | - Rajiv Saigal
- 3 Department of Brain and Spinal Cord Injury Center (BASIC), University of California , San Francisco, San Francisco, California.,4 Department of Neurosurgery, University of California , San Francisco, San Francisco, California
| | - Adam Ferguson
- 3 Department of Brain and Spinal Cord Injury Center (BASIC), University of California , San Francisco, San Francisco, California.,4 Department of Neurosurgery, University of California , San Francisco, San Francisco, California
| | - Jason Talbott
- 5 Department of Radiology, University of California , San Francisco, San Francisco, California
| | - Jacqueline Bresnahan
- 3 Department of Brain and Spinal Cord Injury Center (BASIC), University of California , San Francisco, San Francisco, California.,4 Department of Neurosurgery, University of California , San Francisco, San Francisco, California
| | - Sanjay Dhall
- 3 Department of Brain and Spinal Cord Injury Center (BASIC), University of California , San Francisco, San Francisco, California.,4 Department of Neurosurgery, University of California , San Francisco, San Francisco, California
| | - Jonathan Pan
- 6 Department of Anaesthesia, University of California , San Francisco, San Francisco, California
| | - Michael Beattie
- 3 Department of Brain and Spinal Cord Injury Center (BASIC), University of California , San Francisco, San Francisco, California.,4 Department of Neurosurgery, University of California , San Francisco, San Francisco, California
| | - Geoffrey Manley
- 3 Department of Brain and Spinal Cord Injury Center (BASIC), University of California , San Francisco, San Francisco, California.,4 Department of Neurosurgery, University of California , San Francisco, San Francisco, California
| |
Collapse
|
138
|
Kunz RE, Rohrbach H, Gorgas D, Gendron K, Henke D, Forterre F. Assessment of Intrathecal Pressure in Chondrodystrophic Dogs With Acute Thoracolumbar Disk Disease. Vet Surg 2015. [DOI: 10.1111/j.1532-950x.2014.12319.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rhona E. Kunz
- Department Clinical Veterinary Medicine; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - Helene Rohrbach
- Department Clinical Veterinary Medicine; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - Daniela Gorgas
- Department Clinical Veterinary Medicine; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - Karine Gendron
- Department Clinical Veterinary Medicine; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - Diana Henke
- Department Clinical Veterinary Medicine; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - Franck Forterre
- Department Clinical Veterinary Medicine; Vetsuisse Faculty; University of Bern; Bern Switzerland
| |
Collapse
|
139
|
Pre-hospital and acute management of traumatic spinal cord injury in the Netherlands: survey results urge the need for standardisation. Spinal Cord 2015; 54:34-8. [PMID: 26169166 DOI: 10.1038/sc.2015.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/22/2015] [Accepted: 05/27/2015] [Indexed: 01/15/2023]
Abstract
STUDY DESIGN Questionnaire survey. OBJECTIVES Although a range of novel therapeutic approaches for traumatic spinal cord injury (tSCI) are being trialled in highly standardised, pre-clinical research models, little has been published about the extent of standardisation in health service delivery for newly injured tSCI patients. SETTING All Emergency Medical Services (EMSs) and 11 level-1 trauma centres (L1TCs) in the Netherlands. METHODS A survey assessing the organisation of pre-hospital and acute tSCI management was developed and distributed across all 23 pre-hospital EMSs and 11 L1TCs based in the Netherlands. RESULTS Response rates for EMSs and L1TCs were 82 and 100%, respectively. Thirteen EMSs (68%) transported all patients who are suspected of having tSCI to L1TCs. The decision to transfer tSCI patients to L1TCs was primarily made by paramedics at the scene of accident (79%). Nonetheless, no EMS reported the use of validated neurological assessments for determining the likelihood of tSCI. The International Standards for Neurological Classification of SCI were used to determine the level and severity of tSCI in four centres, and three centres performed magnetic resonance imaging in all tSCI patients. Three L1TCs had spinal cord perfusion support protocols in place, and two centres administered methylprednisolon to acute tSCI patients. CONCLUSION We found a large variance in the delivery of pre-hospital and acute tSCI management in a well-defined geographical catchment area. This survey urges the need for implementing standardised assessments and developing best-practice guidelines, which should be endorsed by all pre-hospital and acute tSCI health-care providers.
Collapse
|
140
|
Lemley K, Bauer P. Pediatric Spinal Cord Injury: Recognition of Injury and Initial Resuscitation, in Hospital Management, and Coordination of Care. J Pediatr Intensive Care 2015; 4:27-34. [PMID: 31110847 DOI: 10.1055/s-0035-1554986] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Spinal cord injury is uncommon in the pediatric population with a lifelong impact for the patient and family. Knowledge of spine embryology, mechanisms of injury that lead to specific injuries, appropriate utilization of radiographic imaging based on suspected injury, prehospital and hospital management of various spinal cord injuries is essential for providers attending to traumatically injured patients. In addition to patients who present with soft tissue and bony injuries diagnosed with clinical examination and confirmed with computed tomography or magnetic resonance imaging, it is important to note that the pediatric population is at a higher risk for spinal cord injury without radiographic abnormality than the adult population. Patients who survive the acute phase of injury face long-term rehabilitation and have an increased risk of depression and mortality. Understanding the long-term sequelae of spinal cord injuries is also an essential management component of traumatically injured children. A program that provides long-term rehabilitation, psychosocial and spiritual support, and adaptive environmental supports gives patients and their families the best opportunity for long-term recovery. A review of the current literature on the diagnosis, management, and follow-up of pediatric spinal cord injury is presented.
Collapse
Affiliation(s)
- Kyle Lemley
- Department of Pediatric Critical Care, Children's Mercy Hospital and Clinics, Kansas City, Missouri, United States
| | - Paul Bauer
- Department of Pediatric Critical Care, Children's Mercy Hospital and Clinics, Kansas City, Missouri, United States
| |
Collapse
|
141
|
|
142
|
Martin AR, Aleksanderek I, Fehlings MG. Diagnosis and Acute Management of Spinal Cord Injury: Current Best Practices and Emerging Therapies. CURRENT TRAUMA REPORTS 2015. [DOI: 10.1007/s40719-015-0020-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
143
|
Le E, Aarabi B, Hersh DS, Shanmuganathan K, Diaz C, Massetti J, Akhtar-Danesh N. Predictors of intramedullary lesion expansion rate on MR images of patients with subaxial spinal cord injury. J Neurosurg Spine 2015; 22:611-21. [DOI: 10.3171/2014.10.spine14576] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT
Studies of preclinical spinal cord injury (SCI) in rodents indicate that expansion of intramedullary lesions (IMLs) seen on MR images may be amenable to neuroprotection. In patients with subaxial SCI and motor-complete American Spinal Injury Association (ASIA) Impairment Scale (AIS) Grade A or B, IML expansion has been shown to be approximately 900 μm/hour. In this study, the authors investigated IML expansion in a cohort of patients with subaxial SCI and AIS Grade A, B, C, or D.
METHODS
Seventy-eight patients who had at least 2 MRI scans within 6 days of SCI were enrolled. Data were analyzed by regression analysis.
RESULTS
In this cohort, the mean age was 45.3 years (SD 18.3 years), 73 patients were injured in a motor vehicle crash, from a fall, or in sport activities, and 77% of them were men. The mean Injury Severity Score (ISS) was 26.7 (SD 16.7), and the AIS grade was A in 23 patients, B in 7, C in 7, and D in 41. The mechanism of injury was distraction in 26 patients, compression in 22, disc/osteophyte complex in 29, and Chance fracture in 1. The mean time between injury onset and the first MRI scan (Interval 1) was 10 hours (SD 8.7 hours), and the mean time to the second MRI scan (Interval 2) was 60 hours (SD 29.6 hours). The mean IML lengths of the first and second MR images were 38.8 mm (SD 20.4 mm) and 51 mm (SD 36.5 mm), respectively. The mean time from the first to the second MRI scan (Interval 3) was 49.9 hours (SD 28.4 hours), and the difference in IML lengths was 12.6 mm (SD 20.7 mm), reflecting an expansion rate of 366 μm/ hour (SD 710 μm/hour). IML expansion in patients with AIS Grades A and B was 918 μm/hour (SD 828 μm/hour), and for those with AIS Grades C and D, it was 21 μm/hour (SD 304 μm/hour). Univariate analysis indicated that AIS Grade A or B versus Grades C or D (p < 0.0001), traction (p= 0.0005), injury morphology (p < 0.005), the surgical approach (p= 0.009), vertebral artery injury (p= 0.02), age (p < 0.05), ISS (p < 0.05), ASIA motor score (p < 0.05), and time to decompression (p < 0.05) were all predictors of lesion expansion. In multiple regression analysis, however, the sole determinant of IML expansion was AIS grade (p < 0.005).
CONCLUSIONS
After traumatic subaxial cervical spine or spinal cord injury, patients with motor-complete injury (AIS Grade A or B) had a significantly higher rate of IML expansion than those with motor-incomplete injury (AIS Grade C or D).
Collapse
Affiliation(s)
| | - Bizhan Aarabi
- 1Department of Neurosurgery and
- 2R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland; and
| | | | | | - Cara Diaz
- 2R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Jennifer Massetti
- 2R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Noori Akhtar-Danesh
- 3School of Nursing and Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
144
|
Ropper AE, Neal MT, Theodore N. Acute management of traumatic cervical spinal cord injury. Pract Neurol 2015; 15:266-72. [PMID: 25986457 DOI: 10.1136/practneurol-2015-001094] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2015] [Indexed: 11/03/2022]
Abstract
Patients with acute cervical spinal cord injury present complex clinical challenges. These injuries may result in motor and sensory deficits and also in cardiovascular and respiratory perturbations. Increased attention to critical care support has led to improved survival and recovery in many patients. The methods and technology used to diagnose and classify these injuries as well as medical and surgical treatments have evolved significantly in recent decades. We review important aspects of the diagnosis and acute care of patients with traumatic cervical spinal cord injuries, emphasising the recent evidence.
Collapse
Affiliation(s)
- Alexander E Ropper
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Matthew T Neal
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Nicholas Theodore
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
145
|
Martin ND, Kepler C, Zubair M, Sayadipour A, Cohen M, Weinstein M. Increased mean arterial pressure goals after spinal cord injury and functional outcome. J Emerg Trauma Shock 2015; 8:94-8. [PMID: 25949039 PMCID: PMC4411584 DOI: 10.4103/0974-2700.155507] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/04/2014] [Indexed: 11/12/2022] Open
Abstract
Introduction: Acute spinal cord injury (SCI) is often treated with induced hypertension to enhance spinal cord perfusion. The optimal mean arterial pressure (MAP) likely varies between patients. Arbitrary goals are often set, frequently requiring vasopressors to achieve, with no clear evidence supporting this practice. We hypothesize that increased MAP goals and episodes of relative hypotension do not affect hospital outcome. Materials and Methods: All cervical and thoracic SCI patients treated at a level one trauma and regional SCI center over at 2.5-year period were retrospectively reviewed. Lowest and average hourly MAP was recorded for the first 72 h of hospitalization, allowing for quantification of mean MAP and the total number of episodic relative hypotensive events. These data were further compared to daily American spinal injury association motor score (AMS), which was used to determine the severity of SCI and improvement/decline during hospitalization. Patient's data were finally analyzed at theoretic MAP set points. Results: One hundred and five patients had complete data during the study period. At higher theoretic MAP set points (85 and 90), increased number of relative hypotensive episodes correlated with lower admission AMS (85 mmHg: <10 episodes, AMS 66.2; >50 episodes, 22.0; P < 0.001) and the need for vasopressors (P < 0.03) but showed no statistical change in AMS by hospital discharge. The need for vasopressors correlated with the number of hypotensive episodes and inversely related to admission AMS at all theoretic MAP goal set points but was not correlated with the change in AMS during the hospitalization. Conclusions: The frequency of relative hypotension and the need for vasopressors are progressively related to more severe SCI, as denoted by lower admission AMS. However, episodes of hypotension and the need for vasopressors did not affect the change in AMS during the acute hospitalization, regardless of theoretic MAP goal set-point. Arbitrarily elevated MAP goals may not be efficacious.
Collapse
Affiliation(s)
- Niels D Martin
- Department of Surgery, Division of Traumatology, Surgical Critical Care and Emergency Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chris Kepler
- Department of Orthopedics, Rothman Institute at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Muhammad Zubair
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amirali Sayadipour
- Department of Orthopedics, Rothman Institute at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Murray Cohen
- Department of Surgery, Division of Acute Care Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michael Weinstein
- Department of Surgery, Division of Acute Care Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
146
|
Kepler CK, Schroeder GD, Martin ND, Vaccaro AR, Cohen M, Weinstein MS. The effect of preexisting hypertension on early neurologic results of patients with an acute spinal cord injury. Spinal Cord 2015; 53:763-6. [DOI: 10.1038/sc.2015.76] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 02/07/2023]
|
147
|
Martirosyan NL, Kalani MYS, Bichard WD, Baaj AA, Gonzalez LF, Preul MC, Theodore N. Cerebrospinal Fluid Drainage and Induced Hypertension Improve Spinal Cord Perfusion After Acute Spinal Cord Injury in Pigs. Neurosurgery 2015; 76:461-8; discussion 468-9. [DOI: 10.1227/neu.0000000000000638] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
148
|
Leonard AV, Vink R. Reducing intrathecal pressure after traumatic spinal cord injury: a potential clinical target to promote tissue survival. Neural Regen Res 2015; 10:380-2. [PMID: 25878583 PMCID: PMC4396097 DOI: 10.4103/1673-5374.153683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2015] [Indexed: 11/15/2022] Open
Affiliation(s)
- Anna V Leonard
- School of Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Robert Vink
- Division of Health Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
149
|
Charles YP, Steib JP. Management of thoracolumbar spine fractures with neurologic disorder. Orthop Traumatol Surg Res 2015; 101:S31-40. [PMID: 25577599 DOI: 10.1016/j.otsr.2014.06.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 06/13/2014] [Accepted: 06/23/2014] [Indexed: 02/02/2023]
Abstract
Thoracic and lumbar fractures represent approximately 50% of neurologic spinal trauma. They lead to paraplegia or cauda equina syndrome depending on the level injured. In the acute phase, the extension of spinal cord lesions should be limited by immediately treating secondary systemic injury factors. Quick recovery of hemodynamic stability, with mean arterial blood pressure>85 mm Hg, appears essential. There is no clinical evidence in favor of high-dose corticosteroid protocols. Their effect on neurologic recovery is unproven, whereas they lead to a higher rate of secondary septic and pulmonary complications. Incomplete deficits (ASIA B-D) require urgent surgery. There is no consensus with regard to complete paraplegia (ASIA A), but early surgery can enable neurologic recovery in some cases. The principle of surgical treatment is based on spinal cord decompression, instrumentation and fracture reduction. Early stabilization of the spine improves respiratory function and shortens the duration of mechanical ventilation and thus intensive care unit stay. Depending on the severity of associated lesions, early surgery within 48 hours is beneficial in polytrauma patients. Percutaneous instrumentation combined with mini-open posterior decompression stabilizes the spine, limiting approach-related morbidity.
Collapse
Affiliation(s)
- Y P Charles
- Service de Chirurgie du Rachis, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle (FMTS), Université de Strasbourg, 1, place de l'Hôpital, BP 426, 67091 Strasbourg Cedex, France.
| | - J-P Steib
- Service de Chirurgie du Rachis, Hôpitaux Universitaires de Strasbourg, Fédération de Médecine Translationnelle (FMTS), Université de Strasbourg, 1, place de l'Hôpital, BP 426, 67091 Strasbourg Cedex, France
| |
Collapse
|
150
|
|